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Resting-state networks (RSNs), which have become a
main focus in neuroimaging research, can be best simu-
lated by large-scale cortical models in which networks
teeter on the edge of instability. In this state, the func-
tional networks are in a low firing stable state while they
are continuously pulled towards multiple other config-
urations. Small extrinsic perturbations can shape task-
related network dynamics, whereas perturbations from
intrinsic noise generate excursions reflecting the range
of available functional networks. This is particularly
advantageous for the efficiency and speed of network
mobilization. Thus, the resting state reflects the dynam-
ical capabilities of the brain, which emphasizes the vital
interplay of time and space. In this article, we propose a
new theoretical framework for RSNs that can serve as a
fertile ground for empirical testing.

The phenomenology of resting brains
Interest in the interplay between the intrinsic activity of the
brain and the external world has seen a revival over the past
decade, especially in neuroimaging. An assumption in many
of the early studies was that such intrinsic brain activity is
irrelevant and sufficiently random that it averages out in
statistical analysis. Hence, the use of ‘activation paradigms’
(see Glossary) in these studies, where experimental manip-
ulation resulted in the activation of cerebral circuits that
were necessary for performing the task [1,2]. However,
despite the most elegant experimental designs, there were
consistent patterns of deactivation that often accompanied
increased cognitive demands. Several researchers began to
examine these deactivations based on the idea that the low-
level baseline tasks were active states and that the patterns
of activation and deactivation represented a shift in the
balance from a focus on the internal state of the subject and
its ruminations, to one on the external environment [3–5].
This pattern was later dubbed the ‘default mode’ [6] or, more
recently, the ‘default mode network’ (DMN) [7].

The observation that there are relatively consistent
distributed patterns of activity during rest led to the
suggestion that it might be possible to characterize net-
work dynamics without needing an explicit task to drive
brain activity. This possibility has been explored in studies
of RSNs in functional magnetic resonance imaging (fMRI).
Probably the first demonstration of resting-state correla-
tions using fMRI examined the cross-correlation (i.e., func-
tional connectivity) between activity in the primary motor
cortex (M1) and other brain regions independent of any
overt task [8]. Spatially, the functional connectivity pat-
tern seemed to mimic the pattern of activation seen when
subjects executed an overt motor response. This observa-
tion led to a veritable explosion of work exclusively focused
on the identification and characterization of these net-
works [7,9,10]. More recently, RSNs have been studied
with magnetoencephalography (MEG) and electroenceph-
alography (EEG) [11,12]. In general, EEG and MEG stud-
ies of resting-state activity have found slow fluctuations in
the power of alpha and beta-frequency oscillations, which
correlate across distant brain areas. Notably, these band-
limited power (BLP) fluctuations yield large-scale spatial
maps, some of which correspond quantitatively to the
RSNs derived from fMRI [13]. Overall, these results indi-
cate that resting state functional connectivity in blood
oxygen-level dependence (BOLD) responses corresponds
to a spatially structured modulation of BLP fluctuations.

Much of the RSN work in neuroimaging has emphasized
the consistency of the spatial pattern, but that is likely a
reflection of the relatively long time course over which the
functional connectivity was estimated. RSNs have a rich
spatiotemporal signature. The first clue to this behavior
came from large-scale network simulations using anatomi-
cally realistic cortical connectivity [14]. Across a long time
window, distinct functional networks formed that related to
the structural connections. At shorter time steps, however,
subnetworks formed and dissolved as the full network
evolved. The regions within each of the broad spatial pat-
terns would move away from their core network to form
other networks, and then transition to a new set of spatial
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patterns. A schematic of this behavior is shown in
Figure 1, where a ‘core’ pattern of functional connectivity
is identified (Figure 1A), for example by looking at the
correlation across a long time window; however, when
smaller time windows are considered (Figure 1B), the core
pattern dissolves and re-emerges. This temporal depen-
dency has been empirically validated in fMRI studies
[15–18] and emphasizes the rich spatiotemporal dynamics
of resting-state brain networks.

Neurodynamical mechanisms underlying the resting
state
Spatiotemporal functional connectivity in RSNs was origi-
nally hypothesized to reflect the underlying anatomical

connectivity structure. If we assume that each indepen-
dent local cortical area shows low level noisy neural ongo-
ing activity (i.e., Poissonian spiking activity at
approximately 3–10 Hz), as evidenced experimentally with
neuronal recordings [19–21], then the spatial structure of
the underlying anatomical coupling between those brain
areas would support correlations of the noisy fluctuations.
Indeed, the correlation structure of spontaneous BOLD
fluctuations relates to the underlying anatomical circuitry
in monkeys [22]. In particular, there is a strong similarity
between retrograde tracer maps reflecting anatomical con-
nectivity and the resting BOLD functional connectivity.
Furthermore, the networks of coherent spontaneous BOLD
fluctuations under anesthesia are similar to networks
commonly engaged during task performance in awake
animals.

Despite the relation between anatomical and functional
connectivity, the link is not perfect. Areas can show func-
tional connectivity without a direct anatomical link and that
is likely mediated through a series of indirect links [23,24]
and, as noted above, are also dependent on the time window
over which functional connectivity is computed. Thus, al-
though RSNs may depend on the anatomical connectivity,
they cannot be understood in those terms alone [25–27]. The
missing link for understanding the formation and dissolu-
tion of RSNs is the dynamics [26]. Different local brain areas
show specific dynamics; how these different dynamics inter-
act through the anatomical coupling is not intuitive. Thus,
theoretical models that bind structure and dynamics are
fundamental for studying the relation between anatomical
structure and RSN dynamics, and explicitly show that
structure shapes functional connectivity but is definitively
not identical to the latter [14,23,28,29]. Models of resting
state activity have three ingredients: (i) the underlying

Glossary

Activation paradigm: experimental design in which the subject is asked to

execute a perceptual, motor, or cognitive task relative to a low-level baseline

task (e.g., visual fixation or ‘rest’). During execution of the task, the associated

brain activation is measured and is considered to be the only neural correlate

of that specific function.

Attractor networks: brain dynamics can be modeled by attractor network

models. These comprise a network of neurons that is a dynamical system that,

in general, has the tendency to settle in stationary states, fixed points called

‘attractors’, typically characterized by a stable pattern of firing activity. External

or even intrinsic noise that appears in the form of finite size effects could

provoke destabilization of an attractor, therefore inducing transitions between

different stable attractors. The dynamics of the network can be detailed by

coupling the dynamical equations describing each neuron and the synaptic

variables associated with their mutual coupling.

Bifurcation: one of the basic tools of analysis of dynamical systems. A

bifurcation is defined by qualitative changes of the asymptotic behavior of the

system (‘attractors’) under parameter variation.

Chaos: behavior of a dynamical system that is highly sensitive to initial

conditions in such a way that extremely small differences in initial conditions

yield widely diverging outcomes; thus, the evolution of the system is

effectively unpredictable, even if the system is purely deterministic.

Criticality: at the brink of a bifurcation, the system displays certain

characteristic dynamic features, most of which are related to enhanced

fluctuations.

Diffusion spectrum imaging (DSI): an MRI technique that is similar to DTI, but

with the added capability of resolving multiple directions of diffusion in each

voxel of white matter. This enables multiple groups of fibers at each location,

including intersecting fiber pathways, to be mapped.

Diffusion tensor imaging (DTI): an MRI technique that takes advantage of the

restricted diffusion of water through myelinated nerve fibers in the brain to

infer the anatomical connectivity between brain areas.

Functional connectivity: the statistical relation between activity in two or more

neural sources. This usually refers to the temporal correlation between

sources, but has been extended to include correlations across trials or different

experimental subjects. Functional connectivity methods include estimation of

correlation coefficients and coherence. The estimation cannot be used to infer

the direction of the relation between sources.

Mean field: the mean-field approximation involves replacing the temporally

averaged discharge rate of a cell with an equivalent momentary activity of a

neural population (ensemble average) that corresponds to the assumption of

ergodicity. According to this approximation, each cell assembly is character-

ized by means of its activity population rate.

Neural avalanches: bursts of elevated population activity, correlated in space

and time, that are distinguished by a particular statistical character: activity

clusters of size s occur with probability P(s) equal to s–a (i.e., a power law with

exponent a=1.5).

Noise: in neurodynamical systems, noise is mainly produced by the

probabilistic spiking times of neurons and usually plays an important and

advantageous role in brain function. Spiking noise is a significant factor in a

network with a finite (i.e., limited) number of neurons. The spiking noise can be

described as introducing statistical fluctuations into the finite-size system.

Spiking dynamics: a network of spiking neurons establishes a high-dimen-

sional dynamic system, in which individual neurons (usually expressed by

integrate-and-fire or Hodgkin–Huxley models) interact with each other through

different types of dynamical synapse (e.g., AMPA, NMDA, or GABA).

Wilson–Cowan oscillator: a mean field-like rate model expressing the coupling

between two populations of excitatory and inhibitory neurons. In general, the

Wilson–Cowan model is tuned such that the population rate of the pools

oscillates. It is one of the simple neural oscillators.
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Figure 1. Schematic of the transitions of functional connectivity in different resting

state networks (RSNs) across time. (A) The left most panel represents a correlation

matrix (functional connectivity) from simulated data among network nodes across

a long time interval. In actual functional magnetic resonance imaging (fMRI) blood

oxygen-level dependence (BOLD) studies, this can be as long as 10 min. Each

square represents a correlation between two regions and the matrix is symmetric

about the diagonal. The clustering in the matrix indicates three networks dominant

at that time window. (B) The change in functional connectivity of the nodes over

shorter time window. Here, the dominant pattern in (A) repeats (e.g., times T1 and

T4), but different subnetworks form as the system ‘explores’ different functional

architectures. This behavior of RSNs has been shown in both simulations and

empirical work.
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anatomical connectivity; (ii) the time delays due to signal
transmission across different distances; and (iii) the local
brain area dynamics (Figure 2). The main theoretical goal is
to study the critical dynamical features of the model that are
able to fit RSNs to understand the mechanisms that explain
their origin.

The first ingredient of these models is the anatomical
structure. In all models, structural information is
extracted from databases compiling different types of trac-
ing studies; for example, for the macaque cortex, this
information is provided by CoCoMac neuroinformatics
[30], or by diffusion tensor imaging and/or diffusion spec-
trum imaging (DTI/DSI) techniques [31]. The second in-
gredient is the signal transmission time delays. Generally,
time delays do not alter the stationary spatial patterns in a
network, but they do change their stability [32]. Although
time delays play an essential role in the synchronization
behavior of oscillatory patterns, it is less clear to what
extent they influence patterns of spiking neurons. Various
RSN models have demonstrated that the space–time struc-
ture of the couplings shapes the emergent network dynam-
ics [25,27,29,33], although RSN models based on spiking
neurons ignore the time delays due to the absence of
oscillations [34]. The third ingredient of the models is
the type of intrinsic dynamics of the local nodes: models

considered simple oscillatory dynamics [25,27,29,33], cha-
otic dynamics [14], and finally, detailed realistic local net-
works with excitatory and inhibitory populations of spiking
neurons coupled through NMDA, AMPA, and GABA syn-
aptic dynamics [34].

A common characteristic of all models is that the opti-
mal working point for explaining the emergence of RSN is
at the edge of instability, the critical point of a bifurcation.
The first account of the RSN dynamics arising under
conditions of criticality [27] demonstrated that the resting
state emerges from noise-induced transient fluctuations
around the stable equilibrium state of a network of coupled
FitzHugh–Nagumo oscillators just below the edge of insta-
bility. The noise provokes fluctuations between different
multistable oscillatory brain states in a network of Wilson–
Cowan oscillators, again in the neighborhood of the critical
point, but above the edge of instability [25]. RSNs also
result from instability due to chaotic fluctuations [14]. In
other words, the type of local dynamics is relevant for
determining whether those particular dynamics show
the relevant criticality, such that working at that point
generates the resting functional connectivity. Neverthe-
less, in all models, the underlying anatomical structure
shapes the structure of the dynamical landscape, which the
fluctuations of the network model can explore. The time
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Figure 2. Neuroanatomical connectivity data obtained by DTI/DSI techniques are used for defining the structural connectivity between the different brain areas. (A) For a

given parcellation, a neuroanatomical structural connectivity matrix links the N-parcellated cortical regions with clear anatomical landmarks. (B) A neurodynamical model is

then constructed using a set of stochastic differential equations coupled according to the connectivity matrix. (C) The model is then constrained by fitting the functional

connectivity (FC) observed in empirical data. In our case, the empirical FC was measured using functional magnetic resonance imaging (fMRI) blood oxygen-level

dependence (BOLD) activity. This framework enables one to study the link between anatomical structure and resting-state dynamics. Abbreviation: FC, functional

connectivity; DTI, diffusion tensor imaging; DSI, diffusion spectrum imaging.
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delays may then alter the location of the instability, but
will not change the actual structure of spatial patterns in
the dynamical landscape. This is the reason why, general-
ly, all the models could explain the spatial functional
correlations defining the different RSNs. At the edge of
the critical instability of any model, the spatial correlations
of the noisy excursions are mainly shaped by the anatomi-
cal structure. The degree to which the RSNs are expressed
depends on the proximity to the instability, which is deter-
mined by the space–time structure of the couplings (i.e.,
the topology of the connectivity and its associated time
delays). In other words, by working near instability, RSNs
reflect the dynamical capacity of that system to take on

different functional networks. The global dynamics of a
brain working at a critical point amplifies the underlying
structure of the anatomical connections and of its interac-
tions with the local dynamics. Importantly, if the system
were not working at that critical point, then the noisy
fluctuations would reflect no structure whatsoever, the
RSNs would not exist, and the resting state would be
uncorrelated noise.

Hypotheses related to criticality and brain function
have been put forward previously; for instance, one exam-
ple [35] posits that the brain operates in the close proximity
of so-called ‘saddle points’, which are characterized by
stable and unstable directions in the state space of the
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Figure 3. The large-scale dynamical brain model is able to best fit the empirical resting functional magnetic resonance imaging (fMRI) data when the brain network is critical

(i.e., at the border of a dynamical bifurcation point), so that, at that operating point, the system defines a meaningful dynamic repertoire that is inherent to the

neuroanatomical connectivity. (A) To determine the dynamical operating point of the system, we contrasted the results of the simulated model with the experimental

resting functional connectivity (FC) as a function of the control parameter G describing the scaling or global strength of the intercortical coupling. The fit between both the

empirical and the simulated FC matrix was measured by the Pearson correlation coefficient. In the same plot, the second bifurcation line obtained below is also shown. The

best fit of the empirical data is observed at the brink of the second bifurcation model. (B) Bifurcation diagrams characterizing the stationary states of the brain system as a

function of the control parameter G. We plotted the maximal firing rate activity over all cortical areas for the different possible stable states. We studied 1000 different

random initial conditions to identify all possible new stationary states, and also the case where the initial condition was just the spontaneous state, to identify when the

spontaneous state loses stability. For small values of the global coupling G, only one stable state exists, namely the spontaneous state characterized by low firing activity in

all cortical areas. For a critical value of G, a first bifurcation emerges where at least one new multistable state appears while the spontaneous state is still stable. For even

larger values of G, a second bifurcation appears where the spontaneous state becomes unstable. (C) Sensitivity to external stimulations with stimulus strength I. The critical

point, where the trivial spontaneous state loses stability, is an optimal working point from an economical and ecological point of view. At that particular point, the system is

maximally sensitive to external stimulations (i.e., is able to respond fast and efficiently even to weak ‘gentle’ stimulations). The figure plots how fast the system converges

to the appropriate network attractor as a function of the strength of the external stimulating bias. In particular, we show the convergence characteristics for two different

working points, one at the edge of the second bifurcation (in red) and one further away (in blue). The most optimal working point is indeed the one observed experimentally

(i.e., at the brink of the second bifurcation), because it offers an advantage in terms of response time and sensitivity to incoming information.
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brain. As the brain network dynamics evolve, various
saddle points are visited, giving rise to the expression of
brain states, because the dwell times at these points are
significantly longer than anywhere else. These states
might be related to cognitive processes, which is reminis-
cent of another proposal [36,37] that heteroclinic cycles
comprise chains of cognitively relevant brain states. The
working point of neural networks at criticality has also
been noted in the context of optimized information proces-
sing. Simulations predicted that, at this point of criticality,
neuronal networks optimize several aspects of information
processing [38,39]. Experimental support of these predic-
tions has been provided by the demonstration that, in vitro,
cortical networks have maximum dynamic range when
spontaneous activity takes the form of ‘neuronal ava-
lanches’ [40]. During rest in the awake monkey, the ava-
lanches constitute the dominant form of ongoing cortical
activity [41].

For RSN dynamics, the discussion of the potential role of
criticality as an organizing principle has been further
explored with a realistic spiking cortical network that
was microscopically organized as standard attractor mod-
els (known from neural models of memory, attention,
decision making, etc. [42,43]) and macroscopically orga-
nized through a large-scale anatomical connection matrix
obtained from human subjects via DTI/DSI tractography
[31]. The model of a local brain area comprises integrate-
and-fire spiking neurons with excitatory (AMPA and
NMDA) and inhibitory (GABA-A) synaptic receptor types.
Figure 3 shows the main results and explains the mecha-
nisms causing resting state activity. Let us assume that
the control parameter is the coupling strength between
different brain areas. The global dynamical states of the
system can be described by a so-called ‘bifurcation dia-
gram’, which captures the stationary states (attractors) of
the system as a function of the coupling strength. For low
coupling strength, only a stable spontaneous state occurs,
characterized by asynchronous low-level firing activity in
all brain areas. By increasing the coupling strength at the
first bifurcation point, new stable attractors emerge. These
new attractors reflect increased activity in some brain
areas, defining the emergence and stabilization of specific
networks of brain areas. In Figure 3, this is shown in the
landscape cartoon (Figure 3B), and in the bifurcation dia-
gram on top of that, where the maximal rate activity in the
brain is plotted. After the first bifurcation, a new branch
appears, which is evidence of the emergence of new attrac-
tors. Nevertheless, after this first bifurcation, the sponta-
neous state is still stable. Only after a second bifurcation
does the spontaneous state lose stability. The brain
appears to operate precisely at the edge of this second
bifurcation point. In the top panel of Figure 3B, we show
the fitting between the empirical and simulated resting
BOLD functional connectivity. The best fit (maximal cor-
relation) occurs exactly at the edge of the second bifurca-
tion, where the spontaneous state loses its stability and,
therefore, the noisy fluctuations of the dynamics are able to
explore and reflect the structure of the other ‘cognitive’
attractors shaped by the underlying anatomy. Although
this constitutes the origin and explanation of the resting
state, it does not explain why the brain operates at that

particular bifurcation. The right panel of Figure 3 provides
the answer. The critical point is an optimal working point
from an economical and ecological point of view. At that
particular point, the system is maximally sensitive to
external stimulations and able to respond fast and effi-
ciently even to weak ‘gentle’ stimulations. In Figure 3, the
visual network was stimulated by the application of an
external bias in the V1 area, and the convergence to the
appropriate network attractor for different strengths of the
external stimulating bias was measured. Figure 3C shows
the convergence characteristics for two different working
points, one at the edge of the second bifurcation and one
further away. The most optimal working point is indeed
the one observed experimentally (i.e., at the brink of the
second bifurcation), because it offers an advantage in terms
of response time and sensitivity to incoming information.

Concluding remarks and outlook
As brain network properties change, be it due to inter-
subject variability, learning, disease, aging, or develop-
ment, the critical point of the network will also change,
as will its associated dynamic features, including the
subspace spanned by the RSNs and optimality of informa-
tion processing through the network. If criticality is indeed
a principle of functional brain organization, then homeo-
static mechanisms are required to maintain the brain
network at criticality, which can be explored in theoretical
and empirical work (e.g., Box 1).

Consideration of criticality as a principle of functional
brain organization has implications for the emergence of
cognitive processes in the context of RSNs. Rather than
embodying specific cognitive or behavioral operations,
RSN dynamics is the gateway to the array of cognitive
architectures that the brain has available (Box 2). From
this perspective, RSN dynamics represent the instigation
of lower-dimensional subspaces within the available high-
dimensional space. The lower-dimensional subspaces de-
fine a specific workspace that constitutes some sort of
prospective exploration of potential functions, but not their

Box 1. Outstanding issues and questions

Can we measure the critical point empirically?

To address this question, we need to measure the critical point

directly from empirical studies. The mixing of deterministic and

stochastic contributions of the network dynamics renders this task

difficult, but not impossible. The variability of the brain signals will

typically scale with the ratio Q/L, in which L denotes the linear

stability strength of the equilibrium attractor and Q the noise

strength. The disentangling of deterministic and noise contributions

is possible by measuring statistical quantifiers, including the

variance of the brain signals and the dwell time at individual

attractors, as well as the mean escape time of resting state attractors

(e.g., [44]).

Can we manipulate the critical point?

Exogenous drives, such as transcranial magnetic stimulation (TMS)

or deep brain stimulation (DBS), offer independent means of testing

understanding of RSN dynamics. In particular, criticality predicts

that the RSNs are closer to instability than other networks, as

quantified by the linear stability strength L. The networks closest to

instability (with the smallest L) will determine the overall brain

dynamics after a perturbation and show the longest relaxation times

(scaling inversely to L) returning towards equilibrium.
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instantiation. In a sense, RSNs represent exploration by
the brain of what is possible.
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