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Abstract

Brain function emerges from interactions between multi-scale networks that can be modeled as

a set of interconnected neural mass models (NMM). While biologically inspired, these models

cannot directly reproduce the physics of laminar electrophysiology since they are not embedded

in a 3D space. Here we present a novel modeling framework to properly simulate multi-laminar

recordings by adding a physical layer to a generic version of a NMM, what we call LaNMM. Using

this formalism, we propose a specific model architecture able to represent fast (gamma) and

slow (alpha) oscillations of laminar recordings and show it can reproduce experimental findings

such as depth-frequency distribution, cross-frequency phase and amplitude coupling. While

most of the experimental findings are based on LFP data, susceptible to volume conduction

artifacts, we also analyse multi-laminar recordings of the prefrontal cortex of macaque monkeys

in order to extract more local measurements such as bipolar-LFP (nE) and current source

density (CSD), and use them to fit the model parameters with the depth power profiles. We

first observe that even if the dynamical parameters of the model are kept fixed, the dynamics of

physical quantities, including power profiles of LFP/nE/CSD, are highly sensitive to the choice

of synapse locations. Beyond our specific application with LFP multi-probe measurements in a

macaque model, this physically realistic modeling framework can be helpful to understand the

neural mechanisms behind the origin of oscillation generators in the brain and shed some light

into the controversial measuring issues of LFPs, bipolar-LFPs and CSD as well as provide a

better model for the coupling of NMM dynamics with EEG/MEG recordings.

Keywords: Laminar Neural Mass Model, Local Field Potential, Relative Power, Laminar

Recordings





Chapter 1

Introduction

1.1 Background and motivation

Brain function is the result of interactions between specialized, spatially-segregated areas of

brain networks [1]. For this reason, the brain can be modeled as a complex and dynamic

multi-scale network to explore the relationship between function and the underlying structure

(for a review see [2, 3]). In an earlier study [4], we proposed to represent the human brain as

a network of biologically realistic neural mass models (NMM), fitting model parameters with

subject-specific structural (MRI, DTI) and functional (EEG) data.

As a starting point, in that first study we relied on Jansen and Rit’s NMM [5] to describe cortical

column dynamics, with important limitations. On the one hand, this model can represent

oscillations only in one specific band for each parameter configuration. This can be a limitation

when modeling disorders such as Alzheimer’s disease, where there are multifrequency alterations

[6]. This can be remedied as in [7], but at the cost of considerably increasing the complexity of

the model. On the other hand, neural mass models do not per se reproduce the physics of laminar

measurements such as Local Field Potentials (LFP) or Current Source Density (CSD), since

they are not embedded in a physical 3D space. They do however provide a handle on synaptic

current sources and membrane potential, where physics modeling can begin. Physics modeling is

necessary to properly contrast model outputs with real electrophysiological recordings, including

LFPs, or, further down the line, EEG or MEG data.

There exist computational studies in the literature where NMM parameters are estimated from

rodent MUA, LFP and CSD data [8, 9, 10, 11]. The approach taken in these papers to simulate

1



2 Chapter 1. Introduction

the laminar electrophysiological recordings is to sum the average membrane potential of the

populations of each layer as proxy for CSD [8] or to use simpler models and directly extract

the average membrane potential or firing rates of the pyramidal populations as the represented

MUA [9], LPF [11] or CSD [10] measurements. Other whole-brain computational models used

the same approach to relate with more macroscopic electrophysiological recordings (e.g., EEG)

in humans [12, 13, 14]. Yet, all these modeling approaches do not represent the NMM in space,

thus failing to realistically extract the laminar physics unlike other detailed compartment models

[15, 16].

The first objective of this thesis is to create a framework to model the cortical column physics

by embedding our NMM (Appendix B.2) in a physical matrix. In this framework, we can assign

coordinates in space (vertical axis) of apical and basal dendrites of the pyramidal populations

and therefore, the locations of each input synapse, which produce a flow of ions across the

membrane (a synaptic current). Then, using Poisson equation (the equation that governs the

distribution of electrostatic potential in biological media), we can extract the voltage profiles

(LFP), the normal component of the field (nE, or bipolar LFP) and CSD. We call this framework

laminar neural mass modelling, or LaNMM.

In order to model cortical circuitry dynamics, we derive a LaNMM model adapted to simulate

multi-laminar LFP recordings of the prefrontal cortex (PFC) of two macaque monkeys doing

a working memory task, which will be called McLaNMM. This dataset comes from previous

experimental work by A. Bastos and colleagues [17]. In that study, the main findings were that

1) LFP power was strongest in the gamma band (30-250 Hz) for superficial layers and in the

alpha/beta band for deep layers and that 2) there was a positive modulation index and a negative

Amplitude-Amplitude Coupling (AAC) from deep alpha to superficial gamma oscillations, as

well as a causal drive from deep to superficial alpha band (estimated with Granger Causality,

GC).

The findings by Bastos et al. were in alignment with other studies where multi-laminar data from

the visual cortex of non-human primates were recorded [18, 19, 20, 21, 22, 23, 24]. Nonetheless,

there are some experimental discrepancies in these studies regarding the recording site (e.g., not

visual cortex) and the type of measurement. Bollimunta et al. [25], using bipolar-LFP and CSD

measurements, found alpha in superficial layers for all areas, but only in deep layers for the

visual cortices, and a drive from superficial to deep layers of alpha in IT (GC). Ninomyia et al.

(2015) [26], also using bipolar-LFP and CSD measurements, could replicate the findings in V1
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but not in SEF. Finally, Haegens et al. [27] found an increase of alpha power in deep layers

with LFP, but a shift towards superficial layers using CSD measurements (see Appendix A for a

literature review table with different animals, recording areas, tasks and measurement type).

A possible explanation for these discrepancies is that LFPs are recorded with respect to a distant

reference point and they represent the spatial line integral of the electric field (∆V = −
∫ b
a
E ·dl),

thus susceptible to volume conduction of currents originating from other near or remote sites and

common reference noise, which can affect the power distribution and the coupling measurements

(e.g. GC). Ultimately, it would be desirable to avoid referencing and/or volume conduction

issues by computing either the local normal electric field (approximated as the first spatial

derivative of the voltage along the linear array, which removes the referencing issue but not

volume conduction confounds) or the CSD (approximated as the second spatial derivative of the

voltage multiplied by the tissue conductivity, which takes care of both problems). CSD analysis

reveals the location, direction (inwards or outwards) and strength of the flow of ions, and is

widely used to distinguish the laminar location of recording sites [28, 17, 29].

In relation to this, the second objective of this work is to try to shed some light into these

issues by estimating the power profile distribution across the laminae of PFC in macaque

monkeys by computing bipolar-LFP (nE) and CSD from the available multi-laminar data

[17], together with the exploration of the different coupling schemes between the generators of

oscillatory activity.

Based on the initial LFP findings [17], the first version of the model, which we will refer to as

McLaNMM, since it simulates laminar physics of macaque depth recordings, is composed of a

population of neurons in superficial layers oscillating in gamma and a population of neurons in

deep layers oscillating in alpha. We have added a connection from deep to superficial layers in

order to simulate the drive from deep alpha to superficial gamma rhythms and other coupling

metrics such as MI and AAC. Finally, we derive the second version of the model by fitting the

parameters (synapse locations) with the preprocessed data (LFP, nE and CSD) to provide a

mechanistic understanding of the distribution of the oscillation generators across the laminae of

PFC in macaque monkeys.

1.2 Objectives

To sum up, the main objectives of this study are: 1) extend the NMM formalism to properly

simulate LFP, bipolar-LFP (nE) and CSD measurements and 2) process collected LFP data to
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extract bipolar-LFP and CSD measurements to then fit our model parameters.

1.3 Structure of the Report

This thesis is structured as follows. In the Materials and Methods section, we describe the multi-

laminar dataset and its preprocessing, the models used in this study (Synapse-driven NMM) and

the extension of the NMM formalism to properly represent laminar physics (LaNMM). Next, we

propose a specific LaNMM model to fit the macaque data (McLaNMM). In the Results section,

we first try to replicate the results obtained in [17] with our dataset and study the influence of

the reference contact on the relative power profiles, complementing it with bipolar-LFP and

CSD power profiles. Then, with the first version of the model proposed in the Materials and

Methods we try to replicate the LFP-based findings in [17]. Finally, we provide an updated

model that replicates the power profiles of LFP, nE and CSD measurements.



Chapter 2

Materials and Methods

In this section, we first describe the multi-laminar LFP recordings from macaque monkeys. This

data is from the same experimental dataset as in [17] but involves different animals. Then,

we describe the Synapse-driven NMM, a useful reformulation of the work done by Lopes Da

Silva and van Rotterdam in the 70s [30, 31, 32], later used in models such as Jansen and

Rit [5] or Wendling [33]. This reformulation is done to generalize the equations and be more

flexible to create different column architectures. Next, we define the model architecture in

order to represent alpha oscillations driving gamma oscillations, which is a combination of two

well-known mass configurations, Jansen and Rit [5] and PING [34, 35]. Finally, we develop the

physical elements of the model to be added to a general NMM in what we call the LaNMM

formalism (Laminar NMM). This allows us to place the neuronal dynamics in space to implement

electromagnetic features and compare model outputs with LFP data [17]. The specific model in

this study —with parameters optimized to fit multi-laminar LFP data from macaques— is what

we call McLaNMM. In Appendix E we provide a summary table of the symbols used in the

next sections.

2.1 Multi-laminar recordings

LFPs from the prefrontal cortex (VLPFC, 46dv, 8A) of two macaque monkeys (Macaca mulatta)

were recorded using a linear array of multi-laminar probes (16 contact, U and V, Plexon) while

the animals were performing a working memory task, as described in [17]. For this study, we

selected the delay period of the task, and the transition between superficial and deep layers

was defined by a visual evoked CSD analysis of the LFPs, where the earliest reliable current

5



6 Chapter 2. Materials and Methods

sink was used as the zero point to align all the trials and sessions. We removed the contacts

belonging to the CSF as in [17], ending up with an average of 11 contacts per session. The

reference (ground) of the LFP recordings was on the PFC chamber. We also extracted the

first spatial derivative of the voltage along the linear array (nE, bipolar-LFP) and, in order

to minimize volume conduction and common noise confounds we computed the second spatial

derivative multiplied by the conductivity of the gray matter (CSD).

2.2 Synapse-driven NMM

Neural mass models (NMM) are essentially mathematical abstractions of the dynamics of the

average membrane potential and firing rates of a population of neurons in a cortical column [36].

In essence, a second order differential equation describes the currents in each of the synapses

that a neuronal population m receives from another one, n. A synapse represents the conversion

from an input pre-synaptic firing rate (ϕn) to a membrane potential alteration of the membrane

potential (um←n) of the post-synaptic neuron, which we represent with the linear operator L−1m←n
(a linear temporal filter),

um←n(t) = L−1m←n
(
Cm←n ϕn(t)

)
Lm←n

(
um←n(t)

)
= Cm←n ϕn(t)

(2.1)

where Cm←n is the connectivity constant between the populations. Note that, for simplicity,

we use the index notation s to represent the connection/synapse from one neuronal population

to another, such that s ≡ {m← n : Cm←n 6= 0}. Then the linear operator that describes the

synapse dynamics is defined as

Ls
(
us(t)

)
=

1

As

(
τs
d2

dt2
+ 2

d

dt
+

1

τs

)
us(t) (2.2)

where As is the average excitatory/inhibitory synaptic gain and τs the synaptic time constant.

In turn, the post-synaptic neuronal population sums the membrane perturbation from each

of the synapses or external perturbations (such as an external electric field), converting its

membrane potential (vm) to an output firing rate (ϕm) in a non-linear manner using a sigmoid
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function,

vm(t) =
∑
s

us(t)

ϕm(t) = σm
(
vm(t)

)
σm
(
vm(t)

)
=

2ϕ0

1 + er(v0−vm(t))

(2.3)

where ϕ0 is half of the maximum firing rate of each neuronal population, v0 is the value of the

potential when the firing rate is ϕ0 and r determines the slope of the sigmoid at the central

symmetry point (v0, ϕ0). See Table 3 for the standard parameter values of the model equations.

This is what we call a Synapse-driven formulation of a NMM (Fig. 1), and the model equations

are derived from the original Jansen and Rit NMM [5]. See Appendix B for the detailed

formulation of the model.

Figure 1: Diagram of the two fundamental components of the synapse-driven formalism. Each
synapse s is represented by the linear operator L−1s . A neuronal population n is represented
by the summation of all the pre-synaptic membrane perturbations us, and by the non-linear
transformation σn of its membrane potential vn into its firing rate ϕn.

2.3 Model architecture

In order to generate the dynamics found in previous studies [17, 20, 19, 21, 26, 37, 24], which

found alpha oscillations driving gamma activity, we have combined two well known computational

models. Slow oscillations are represented by the Jansen and Rit NMM [5], and the fast ones by

the PING model [34, 35], described in Appendix B.2 and Appendix C, respectively.

The Jansen-Rit model (Fig.2A and B, layers IV and V/VI) is composed by a population

of pyramidal neurons, P , a population of excitatory cells (interneurons or other pyramidal

populations in layer IV), E, and a population representing slow inhibitory interneurons, I

(e.g. somatostatin expressing cells). PING (Fig.2A and B, layers II/III) is composed of two

populations: a pyramidal population, P ′, and fast oscillatory interneuron population, I ′ (e.g.

parvalbumin+ basket cells). The connectivity between these models is directed from slow to fast
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Figure 2: A) Diagram of the model equations. B) Illustration of the neuronal populations with
synapse location sites (the locations are used in LaNMM, section 2.4). C) Membrane potential,
vn, of each population and its power spectrum with the mean of the external input noise given
by ϕext = 200. D) Bifurcation diagram with respect to the mean of external input, ϕext, modeled
as pink noise.

(C6, Fig. 2), as suggested by experimental data [17, 18, 21, 23, 26, 24]. The geometric/anatomical

connectivity in this case is not taken into account at this stage to keep the model as simple as

possible, focusing just on the dynamics. Fig.2 C shows the membrane potential of each of the

populations (color-coded) and its PSD profile for an external input noise ϕext with a mean of

200 Hz. Fig.2 D is the bifurcation diagram of the model with respect to the mean input noise of

ϕext (also color-coded).

The parameters of the model (Fig. 2) are described in Table 1, and the equations, expressed in
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the synapse-centric formalism in Appendix B, are the following:

L1

(
u1(t)

)
= C1ϕE = c1σE(vE) = C1σE

(
u4(t)

)
L2

(
u2(t)

)
= C2ϕI = C2σI(vI) = C2σI

(
u5(t)

)
L3

(
u3(t)

)
= C3ϕext

L4

(
u4(t)

)
= C4ϕP = C4σP (vP ) = C4σP

(
u1(t) + u2(t) + u3(t)

)
L5

(
u5(t)

)
= C5ϕP = C5σP (vP ) = C5σP

(
u1(t) + u2(t) + u3(t)

)
L6

(
u6(t)

)
= C6ϕP = C6σP (vP ) = C6σP

(
u1(t) + u2(t) + u3(t)

)
L7

(
u7(t)

)
= C7ϕP ′ = C7σP ′ (vP ′ ) = C7σP ′

(
u6(t) + u7(t) + u8(t) + u9(t)

)
L8

(
u8(t)

)
= C8ϕI′ = C8σI′ (vI′ ) = C8σI′

(
u10(t) + u11(t)

)
L9

(
u9(t)

)
= C9ϕext

L10

(
u10(t)

)
= C10ϕP ′ = C10σP ′ (vP ′ ) = C10σP ′

(
u6(t) + u7(t) + u8(t) + u9(t)

)
L11

(
u11(t)

)
= C11ϕI′ = C11σI′ (vI′ ) = C11σI′

(
u10(t) + u11(t)

)

(2.4)

Table 1: Model parameters. The parameters for the deep neural populations are taken from [5],
and for the superficial populations from [35]. The only additional parameters defined are the
ones associated to synapse s = 6, so that deep oscillations modulate the superficial ones.

Synapse s Cs As (mV) τs (s−1) layer
1 108 3.25 100 5
2 33.75 -22 50 5
3 1 3.25 100 1
4 135 3.25 100 5
5 33.75 3.25 100 5
6 40 18 108 2
7 10 18 108 2
8 560 -30 132 2
9 0.0067 18 100 1
10 40 18 108 2
11 400 -30 132 2

2.4 LaNMM and McLaNMM

By LaNMM we mean here a framework to build specific laminar models that unite the synapse-

centric formalism with physics. Here we describe a specific model built using this framework,

that we call McLaNMM. The name reflects the fact that we have designed it to match macaque

intracortical data.

More specifically, we work with a column of layer width h, cortical width 6h, and with a uniform

conductivity σ. Given their anatomical characteristics (elongated form factor, which enhances
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the effects of electric field on membrane polarization), organization (horizontal connectivity,

homogeneous orientation in cortical patches and temporal synchronicity), cortical pyramidal

cell synapses are the main electric current and field generators [38, 39].

The apical and basal dendrites of the pyramidal populations, with locations across the vertical z

axis (Fig.3, zl ∈ [1, 6]) will be the location of the input/output currents of each of the synapses

(sinks and sources, respectively). Each synapse perturbation us has its own location in space

now (zl) and will produce a flow of ions across the membrane and, therefore, a synaptic current,

Is (Amperes). Moreover, the membrane perturbation generated by an injected current depends

on several factors, including cell morphology and membrane conductivity. We represent these

factors with a gain factor ηn (A/mV) and write

Is(zl) =

 ηnus(zl) if zl is the location of s

0 Otherwise
(2.5)

Note that, for simplicity, we have removed the time dimension of the equations.

Each injected current is accompanied by a capacitive return current (charge conservation),

generated by charges accumulated in the membrane. In the current version we model this by

assuming two isotropic media with conductivities σ1 = 0.40 S/m (gray matter) and σ2 = 1.79

S/m (CSF) [40] and a common planar boundary (Fig.3A). The potential induced by a set of

point current sources in a space with two conductive media separated by a plane is [38]:

V (z) =
1

4πσ1

∑
s

[
Is(zl)

Rs(z)
+

(
σ1 − σ2
σ1 + σ2

)
Is(zl)

Rs′ (z)

]
(2.6)

Here Rs(z) and Rs′ (z) are the distances from current source and mirror current source to

the recording point (z), respectively (Fig.3A). Once the potential is evaluated, the normal

component of the electric field can be computed from its gradient. We can estimate the CSD

(A/m3) from the electric potential using

CSD(z) = − σ

(δz)2

(
V (z + δz)− 2V (z) + V (z − δz)

)
(2.7)

where σ (S/m) is the tissue conductivity ([41, 42]). The values at the boundary layers are not

evaluated. We assume, based on previous studies [43], that inputs to apical dendrites (layer

location za) create a CSD contribution at the basal dendrites at two locations (layer zb and

zb+1) with half contribution to each, since there are more dendritic ramifications at the soma of
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the pyramidal neuron (Fig.3B). On the other hand, inputs to the basal dendrites (zb) create a

return also on the layer above (zb+1). That is,

CSD(za) =
∑
s

Is(za)

CSD(zb) =
∑
s

Is(zb)−
1

2

∑
s

Is(za)

CSD(zb+1) = −
∑
s

Is(zb)−
1

2

∑
s

Is(za)

(2.8)

with (charge conservation)
∑

z CSD(z) = 0.

In Fig.3C-E we can observe the different measurements that we can extract from this physical

layer of the NMM (δz = 1/72). The synapse locations are specified in Table 1 and in Fig.2A.

We can further extract from this model the dipole current density J , outward normal to the

surface, generated by each pyramidal population, which can be used, for example, to predict

scalp potential measurements in a rapid manner. Furthermore, this model allows for a realistic

representation of the interaction with an external electric field, such as transcranial magnetic or

electrical stimulation. For further details, see Appendix D.

Figure 3: LaNMM and physical features of the McLaNMM. A) Diagram of the equation 2.6. B)
Schematic representation of the CSD configuration as in equation 2.8. C) Voltage profile of the
McLaNMM taken from equation 2.6. D) What we call the normal component of the electric
field (En), which is the differential of V across the vertical axis(z). E) The CSD as computed in
Equation 2.7.
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2.5 Simulation specifications

The models above have been implemented in Python 3.0. We’ve developed an in-house code

PyLaNMM 1.0 as part of Neuroelectrics’ Turing library for hybrid brain modeling [4, 44]. This

is a synapse-oriented / object-oriented implementation with hierarchical classes for synapse,

neuron, column and cortex, using a fourth order Runge-Kutta solver with a sampling rate of 500

Samples/s. The implementation calls for specification of a sampling frequency, an architecture

for the column as well as of external inputs (synaptic and electric field). After the model is run,

noise is added (20% of standard deviation of signals) prior evaluation of connectivity metrics.



Chapter 3

Results

3.1 Multi-laminar recordings data analysis

We first used the model to replicate the main results in Bastos et al. (2018) [17] using available

data from the same experimental protocol, i.e., processing multi-laminar LFP recordings with

the reference in the PFC chamber. The only limitation was that since we didn’t have access

to data from two adjacent probes in this dataset we could not compute the Granger Causality

measures as in [17]. Nonetheless, we focused on replicating 1) the relative voltage power peak

on superficial layers in the gamma band and on deep layers in the alpha/beta, 2) the positive

modulation index (voltage PAC) and 3) the negative voltage AAC from deep alpha/beta to

superficial gamma.

To evaluate the difference in voltage power across each laminar probe, we normalized the power

at alpha/beta (4–22 Hz) and gamma (50–250 Hz) frequency bands (as in [17]) and averaged

them for all animals, PFC areas, sessions and trials (Fig.4A). The peak gamma power (red

line) occurred in superficial layers, 200 µm above the sink, and the peak of alpha/beta power

(blue line) occurred in deep layers, -1000 µm below the sink. The intersection point between

the profiles occurred between -200 µm and -400 µm, very close to the location of the CSD sink.

Hence, gamma power was prominent in superficial layers and alpha/beta power in deep, as in

Bastos et al. (2018) [17].

To test whether the phase/amplitude of the slower frequency band coupled with the amplitude

of the higher-frequency band, we used phase-amplitude coupling (PAC), amplitude-amplitude

coupling (AAC) and Modulation Index (MI). Both PAC and AAC are computed extracting

13



14 Chapter 3. Results

the phase and amplitude of the band-passed signals (in alpha/beta and gamma bands) using

the Hilbert transform. The MI is computed as the entropy of the phase-amplitude histogram,

with phase measured in the alpha/gamma band and the amplitude in the gamma band. The

statistical significance of these values was assessed with a one sample, two-tailed t-test, where

the null hypothesis was that the average is not different from zero (scipy.stats.ttest_1samp in

Python).

We found that the influence from superficial alpha/beta phase modulated both superficial and

deep gamma amplitude (Fig.4B and C) and that the influence of deep alpha/beta amplitude

modulated superficial gamma amplitude (Fig.4D). Nonetheless, most of the AAC values were

not significant. These results do not seem to be consistent with the findings of Bastos et al. [17],

even though here we used different animals and there could be some unidentified differences in

the data-processing.

We then further investigated the effect on these metrics 1) when using a local reference (i.e., the

first gray matter contact) instead of the global reference used here (PFC chamber) and 2) when

computing the local normal electric field and the CSD (Appendix F).

3.2 Measurement study

To explore the effect of the reference point in the LFP measurements, we have computed the

LFP power profile of the same data with different reference points: the PFC chamber (Fig.5A,

same as in Fig.4A), the first electrode contact in the gray matter (Fig.5B) and the last (Fig.5C).

To complement these results we also evaluated the relative power of the bipolar-LFP (or nE)

and CSD measurements (Fig.5D), in order to mitigate the impact of possible far-field sources

and referencing artifacts, and get the local current flow.

We observe that the reference point location has a big impact on the LFP power profiles, leading

to a peak of the alpha power in superficial layers when the reference is located in the last contact

of the probe.

Considering the definition of voltage, ∆V = −
∫ b
a
E · dl (where a is the reference location and

b the location of the measured point), and the results obtained for bipolar-LFP and CSD

measurements, we can see that the alpha and gamma generators could be placed in superficial

layers. If we observe the LFP profiles of alpha in Fig.5A,B and C, between contact b2 and b6

there is a significant increase in power compared with the power between b6 and b10, where it
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Figure 4: LFP measurements averaged across sessions, trials and animal specimens. A)
Normalized power averaged across low (4—22 Hz, blue line) and high (50—250 Hz, red line)
frequencies. Error bars ± 2 SEM. B) Modulation Index (MI) and C) Phase-Amplitude Coupling
(PAC) between the phase of alpha/beta oscillations and the amplitude of gamma oscillations. D)
Amplitude-Amplitude coupling between the amplitude of alpha/beta oscillations and amplitude
of gamma oscillations. The dashed black line denotes the transition from superficial to deep
layers. White entries represent pairs of contacts that did not show statistically significant
measures (p-value>0.05, testing the null hypothesis that the average is not different from 0 in a
1 sample, 2-tailed t-test)

plateaus. That means that the spatial integral in the vertical axis sums significant power of

alpha between the contacts in superficial layers compared with the ones in deep layers. Moreover,

the peak of alpha in nE and CSD measurements occurs in superficial layers as well.

Altogether, we found that both gamma and alpha oscillatory generators could be located in

superficial layers, as opposed to what it was previously reported in Bastos et al. (2018) [17].

3.3 Voltage measurements in McLaNMM

We first sought to replicate the same results as in Bastos et al. (2018) [17] with the McLaNMM

model (Fig.2). We used the parameters specified in Table 1, with gain factors ηdeep = 10−8 for
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Figure 5: LFP relative power profiles with different reference points, bipolar-LFP and CSD. A)
LFP relative power, same as in Fig.4A, with the reference in the PFC chamber. B) Same LFP
data re-referenced to the first contact of the gray matter. C) Same LFP data re-referenced to the
last contact. D) Bipolar-LFP (nE) and CSD relative power profiles, invariant of the reference
point. The yellow contact, a, denotes the reference point, and bc the different measurements in
contacts c = 2, 6, 10. The transition between superficial and deep layers happens between the
contact 5 and 6.

the deep layer populations and ηsup = 10−9 for the superficial ones, in order to take into account

the amount of synapses in each layer and the population morphologies (sampling rate 500 S/s

and simulation time 60 s).

Spectral Granger Causality (GC), a measure of statistical prediction between time series [45],

was computed using the spectral_connectivity library in Python, for simulated LFPs of two

different columns with independent input noise sources (Fig.6A). We found that GC spectrum

had peaks in the alpha/beta range, and that directed interactions were asymmetric: deep layer

alpha/beta drove superficial layer alpha/beta more than the other way around. These findings

are identical to those found in Bastos et al. (2018) [17].

To evaluate the difference in voltage power across layers, we normalized the power of alpha
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(8–14 Hz) and gamma (30–50 Hz) frequency bands for one cortical column (Fig.6B). Similar to

Bastos et al. (2018) [17], the peak gamma power (red line) occurred in superficial layers and

the peak of alpha (blue line) occurred in deep layers.

To test whether the phase/amplitude of the slower frequency band coupled with the amplitude

of the higher-frequency band we used the same metrics as in the previous section: MI, PAC,

and AAC. We found that the influence of deep alpha phase coupled with superficial gamma

amplitude, and that it was stronger from deep to superficial than in the reverse direction (Fig.6C

and D). Moreover, deep layer alpha power was negatively correlated with superficial gamma

power (Fig.6E).

These findings, even if simplistic, are aligned with the results of Bastos et al. (2018) [17],

suggesting that this model can properly simulate the main features of multi-laminar LFP

recordings of macaque monkeys.

3.4 Model fit with power profiles

As mentioned in the introduction, we also wanted to explore the model performance in simulating

the power profiles for different measurements: LFPs (voltage), bipolar LFPs (normal component

of the electric field, nE) and CSD. Since the current model configuration was just to represent

the voltage measurements, we have explored different model parameters configurations in order

to obtain the desired power profiles (Fig.7A).

The choice of parameters was such that the dynamics of the model didn’t change, so we had the

same oscillatory activity in the populations, but the physics did. For this reason, we chose just

the parameters that influenced the physical measurements: the location of the synapses (Table

1, location) and the synaptic gain ηn.

We explored all possible combinations of such parameters and found that changing the synaptic

gain, ηn, we didn’t obtain any realistic profile distribution. With the change in the synapse

locations we found more realistic profiles. The one that best matched the data is shown in

Fig.7B, where we just change the location of the synapse s = 2 (Table 1), corresponding to the

synapse from the slow inhibitory interneuron to the pyramidal one in deep layers, from location

5 to location 1. This result is consistent with the anatomical circuitry of a column, where the

slow interneurons, such as somatostatin expressing cells, synapse to the apical dendrites instead

of the basal ones [46, 47, 48].
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Figure 6: McLaNMM voltage measures. A) Granger Causality (GC) influence across frequencies.
The red line represents the GC from deep to superficial layers and the blue line the reverse
direction. B) Normalized power across low (8–14 Hz, blue line) and high (30–50 Hz, red line),
C) Modulation Index (MI) and D)Phase-Amplitude Coupling (PAC) between the phase of
alpha/beta oscillations and the amplitude of gamma oscillations. E) Amplitude-Amplitude
coupling between the amplitude of alpha/beta oscillations and amplitude of gamma oscillations.
The dashed black line denotes the transition from superficial to deep layers.
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Figure 7: Relative power comparison between macaque multi-laminar data and McLaNMM. A)
Grand average of the relative power between monkeys, sessions and trials of the LFPs (V, same
as in Fig.4A), nE and CSD, filtered in slow (4—22 Hz, blue line) and high (50—250 Hz,red line)
frequency bands. Error bars ± 2 SEM. B) McLaNMM relative power profiles of V, nE and CSD
measures filtered in slow (8–14, blue line) and high (30–50Hz, red line) frequency bands. The
model parameters are the same as in Table 1, with the exception of the synapse s = 2, whose
location was in layer 1.
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Discussion and Conclusions

4.1 Discussion

The relative power distribution across layers depends on the choice of the measure-

ment. Figures 5 and 7A show that the distributions of the relative power varies significantly

depending on the type of measurement. The distribution of the peak of alpha power shifts

to superficial layers when measuring CSD or bipolar-LFPs, in agreement with other existing

studies [18, 27]. Altogether, most of the studies that find the peak of alpha in deep layers are

based mostly on monopolar LFP recordings, with a remote reference away (on top) from the

electrode contacts [17, 20, 19, 49, 23].

The reference issue can be addressed by using bipolar measurements or CSD estimates. Monopo-

lar measurements (LFP) and bipolar-LFPs, unlike CSD measurements, are susceptible to volume

conduction from remote sources since they represent the spatial integral of the electric field

(∆V = −
∫ b
a
E · dl) between two reference points. Therefore, in order to properly interpret

LFP measurements, it is important to take into account the slope of the LFP power signal and

complement it with more local measurements such as nE, CSD or MUA [25, 18]. Another way

to complement the measurements is to re-reference the data to more local electrode contacts, as

studied by [26, 23, 27].

A recent study supports our findings regarding the location of alpha sources using micro- and

macro-electrodes in epileptic patients, suggesting that alpha is dominated by currents and firing

in superficial layers and that it reflects short-range supragranular feedback that propagates from

higher- to lower-order cortex and thalamus [50]. Further work employing laminar simultaneous

20
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recordings in different brain areas of animal models can shed light to determine if this is

consistent across species and tasks.

It is important to note that other factors may influence the power profiles across layers: recording

area [27, 26, 25], task type [23, 18, 27, 24], and experimental procedures, such as electrode

placement [26]. The proper identification of the transition between superficial and deep layers,

which should also depend on the recording site [29, 19, 26], can also be a confound when

comparing across studies. Therefore, future work should consider thoughtfully all these factors

and not generalize the conclusions to other areas and tasks, while trying to establish a golden

standard for the experimental procedures (as suggested by [26]).

Our modeling framework can help shed some light into the generation of cortical

rhythms across the laminae. In this study we showed that our modeling framework is

able to represent the different oscillatory rhythms across layers and couplings (Fig.6), and the

different laminar measurements extracted from multi-contact electrodes (Fig.7) in a physically

realistic manner. Moreover, the choice of synapse locations has proven to be a critical element

to fit the model to the available data, and has driven the model to a realistic architecture with

the slow inhibitory interneuron synapse in layer I.

Limitations. There are several limitations regarding the physical modeling framework we

propose in this study (LaNMM). First, when estimating the voltage of the cortical column model

(Eq. 2.6), we assume the column can be represented as a single dipole and that the measurement

point is relatively far from it. In reality, there is a field of dipoles in the cortical surface/patch

and the measurement contact can be placed exactly where the main dipole is located [39]. Other

modeling approaches, such as describing the sources as homogeneously distributed in the the

horizontal plane, can be explored. Moreover, in our estimation of CSD from data we implicitly

assume that all currents occur in a vertical axis, whereas in order to properly extract the CSD

we need measurements in 3D space. This assumption could be supported by the fact that

pyramidal cells are oriented perpendicular to the surface and they are thought to be the source

of cortical dipoles for they elongated shape [39, 38].

Another limitation of this work is that the presented model (McLaNMM) is a relatively simple

model, which has just two pyramidal populations located in deep and superficial layers, oscillating

in alpha and gamma bands, respectively. This model architecture is inspired by the experimental

work of Bastos et al. (2018) [17] and references therein. We didn’t explore all possible locations

for the pyramidal populations. These were fixed, and then only the synapse locations in their
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apical or basal dendrites were varied.

As future work, we can explore all range of possibilities: pyramidal cell locations, synapse

locations, and even creating new synapses (without changing much the oscillatory dynamics), in

order to explore other models proposed in the literature [17, 29, 51, 50]. Furthermore, we could

analyze different input schemes (for ϕext), which instead of using pink noise, could represent

different oscillatory rhythms as proxy for inputs from other cortical areas or the thalamus [50].

4.2 Conclusions

In this study we extended the NMM formalism (LaNMM) to simulate electrophysiological

measurements from laminar multiprobes. We used this framework to simulate and match several

features of LFP recordings from macaque data. This was achieved with a specific laminar model:

McLaNMM. We fitted model parameters and architecture in order to match the relative power

profiles across depth for alpha and gamma oscillatory activity, for different measuring schemes

including the LFP itself as well as bipolar-LFP and CSD. This resulted in the McLaNMM

architecture —including the specification of synaptic locations, which proved to be an important

element. This physically realistic modeling framework will be helpful to understand the neural

mechanisms behind the origin of oscillation generators in the brain and shed some light into the

controversial issues regarding the measurement of LFPs, bipolar-LFPs and CSD.



4.2. Conclusions 23

Contribution statement

• Conceptualization Ideas: Roser Sanchez-Todo and Giulio Ruffini

• Methodology Development: Roser Sanchez-Todo and Giulio Ruffini

• Software Programming, software development: Roser Sanchez-Todo and Giulio Ruffini

• Investigation Conducting: Roser Sanchez-Todo

• Formal Analysis: Roser Sanchez-Todo and Giulio Ruffini

• Visualization Preparation: Roser Sanchez-Todo

• Writing – Original Draft: Roser Sanchez-Todo

• Mentoring: Gustavo Deco and Giulio Ruffini

• Additional comments: macaque LFP data was collected by André Bastos



List of Figures

1 Diagram of the two fundamental components of the synapse-driven formalism.

Each synapse s is represented by the linear operator L−1s . A neuronal population

n is represented by the summation of all the pre-synaptic membrane perturbations

us, and by the non-linear transformation σn of its membrane potential vn into its

firing rate ϕn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 A) Diagram of the model equations. B) Illustration of the neuronal populations

with synapse location sites (the locations are used in LaNMM, section 2.4). C)

Membrane potential, vn, of each population and its power spectrum with the

mean of the external input noise given by ϕext = 200. D) Bifurcation diagram

with respect to the mean of external input, ϕext, modeled as pink noise. . . . . . 8

3 LaNMM and physical features of the McLaNMM. A) Diagram of the equation

2.6. B) Schematic representation of the CSD configuration as in equation 2.8. C)

Voltage profile of the McLaNMM taken from equation 2.6. D) What we call the

normal component of the electric field (En), which is the differential of V across

the vertical axis(z). E) The CSD as computed in Equation 2.7. . . . . . . . . . . 11

4 LFP measurements averaged across sessions, trials and animal specimens. A)

Normalized power averaged across low (4—22 Hz, blue line) and high (50—250

Hz, red line) frequencies. Error bars ± 2 SEM. B) Modulation Index (MI)

and C) Phase-Amplitude Coupling (PAC) between the phase of alpha/beta

oscillations and the amplitude of gamma oscillations. D) Amplitude-Amplitude

coupling between the amplitude of alpha/beta oscillations and amplitude of

gamma oscillations. The dashed black line denotes the transition from superficial

to deep layers. White entries represent pairs of contacts that did not show

statistically significant measures (p-value>0.05, testing the null hypothesis that

the average is not different from 0 in a 1 sample, 2-tailed t-test) . . . . . . . . . 15

24



LIST OF FIGURES 25

5 LFP relative power profiles with different reference points, bipolar-LFP and

CSD. A) LFP relative power, same as in Fig.4A, with the reference in the PFC

chamber. B) Same LFP data re-referenced to the first contact of the gray matter.

C) Same LFP data re-referenced to the last contact. D) Bipolar-LFP (nE) and

CSD relative power profiles, invariant of the reference point. The yellow contact,

a, denotes the reference point, and bc the different measurements in contacts

c = 2, 6, 10. The transition between superficial and deep layers happens between

the contact 5 and 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 McLaNMM voltage measures. A) Granger Causality (GC) influence across

frequencies. The red line represents the GC from deep to superficial layers and

the blue line the reverse direction. B) Normalized power across low (8–14 Hz,

blue line) and high (30–50 Hz, red line), C) Modulation Index (MI) and D)Phase-

Amplitude Coupling (PAC) between the phase of alpha/beta oscillations and the

amplitude of gamma oscillations. E) Amplitude-Amplitude coupling between the

amplitude of alpha/beta oscillations and amplitude of gamma oscillations. The

dashed black line denotes the transition from superficial to deep layers. . . . . . 18

7 Relative power comparison between macaque multi-laminar data and McLaNMM.

A) Grand average of the relative power between monkeys, sessions and trials

of the LFPs (V, same as in Fig.4A), nE and CSD, filtered in slow (4—22 Hz,

blue line) and high (50—250 Hz,red line) frequency bands. Error bars ± 2 SEM.

B) McLaNMM relative power profiles of V, nE and CSD measures filtered in

slow (8–14, blue line) and high (30–50Hz, red line) frequency bands. The model

parameters are the same as in Table 1, with the exception of the synapse s = 2,

whose location was in layer 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 Diagram of Jansen and Rit equations, adapted from [52] . . . . . . . . . . . . . 39

9 Jansen and Rit Synapse-driven model. A) Illustration of the neuronal populations

with synapse location sites. B) Diagram of the model equations. C) Membrane

potential, vn, of each population and its power spectral density with the mean

of the external input noise given by ϕext = 200. D) Bifurcation diagram with

respect to the mean of external input, ϕext, modeled as pink noise. . . . . . . . . 42



26 LIST OF FIGURES

10 PING Synapse-driven model. A) Illustration of the neuronal populations with

synapse location sites. B) Diagram of the model equations. C) Membrane

potential, vn, of each population and its power spectral density with the mean

of the external input noise given by ϕext = 200. D) Bifurcation diagram with

respect to the mean of external input, ϕext, modeled as pink noise. . . . . . . . . 44

11 λE model. The pyramidal populations get an extra synapse perturbation propor-

tional to the orientation of the pyramidal population with respect to the external

electric field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12 Response to electric field stimulation. A) Schematic representation of the λE

model for the McLaNMM. Connectivity between populations and interneurons

not shown. B) Membrane potential peak PSD of the deep pyramidal population

(Jansen and Rit, oscillating in alpha). C) Superficial population (PING, gamma)

depending of the stimulation frequency and amplitude. . . . . . . . . . . . . . . 47

13 Voltage measures with reference in the first contact. Same metrics and information

as in Fig.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

14 A) nE and B) CSD alpha-gamma coupling profiles. . . . . . . . . . . . . . . . . 51



List of Tables

1 Model parameters. The parameters for the deep neural populations are taken

from [5], and for the superficial populations from [35]. The only additional

parameters defined are the ones associated to synapse s = 6, so that deep

oscillations modulate the superficial ones. . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review on layer specific oscillations and couplings (Order by publication

date). Abbreviations: Rat in Vitro (RV), Rat (R), Macaques (M), Rhesus

Monkeys (RM), Humans (H), Computational Model (CM), Marmoset (Mt),

Resting-State (R-S), Visual Evoked Potentials (VEP), Working Memory (WM),

Local Field Potential gradients (LFPg), Superficial layers (Sup.), Deep layers

(Deep), layer (l), Granger Causality (GC). Red colored text indicates discrepancies

in the general findings [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Parameters, description and standard values of the JR synapse model. Values

taken from [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Parameters, description and standard values of the PING synapse model. Values

taken from [35]. Here, we have modified the τ parameter so the neural mass

oscillates in slow gamma instead of fast gamma. . . . . . . . . . . . . . . . . . . 44

5 Symbols, descriptions and units. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

27



Bibliography

[1] Danielle S. Bassett and Olaf Sporns. Network neuroscience. Nature Neuroscience, 20(3):353–

364, 2017.

[2] Kanika Bansal, Johan Nakuci, and Sarah Feldt Muldoon. Personalized brain network

models for assessing structure–function relationships. Current Opinion in Neurobiology,

52:42–47, October 2018.

[3] Hannelore Aerts, Wim Fias, Karen Caeyenberghs, and Daniele Marinazzo. Brain networks

under attack: Robustness properties and the impact of lesions. Brain, 139(12):3063–3083,

2016.

[4] R. Sanchez-Todo, R. Salvador, E. Santarnecchi, F. Wendling, G. Deco, and G. Ruffini.

Personalization of hybrid brain models from neuroimaging and electrophysiology data.

BioRxiv, 2018.

[5] B. H. Jansen and V. G. Rit. Electroencephalogram and visual evoked potential generation

in a mathematical model of coupled cortical columns. Biol Cybern, 73(4):357–66, 1995.

[6] Jorge J. Palop and Lennart Mucke. Network abnormalities and interneuron dysfunction in

Alzheimer disease. Nature Reviews Neuroscience, 17(12):777–792, December 2016. Number:

12 Publisher: Nature Publishing Group.

[7] Roberto C. Sotero. Topology, Cross-Frequency, and Same-Frequency Band Interactions

Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical

Column. PLOS Computational Biology, 12(11):e1005180, November 2016. Publisher: Public

Library of Science.

[8] Roberto C. Sotero, Aleksandra Bortel, Ramón Martínez-Cancino, Sujaya Neupane, Peter

O’connor, Felix Carbonell, and Amir Shmuel. Anatomically-constrained effective connectiv-

ity among layers in a cortical column modeled and estimated from local field potentials.

28



BIBLIOGRAPHY 29

Journal of Integrative Neuroscience, 09(04):355–379, December 2010. Publisher: Imperial

College Press.

[9] Patrick Blomquist, Anna Devor, Ulf G. Indahl, Istvan Ulbert, Gaute T. Einevoll, and

Anders M. Dale. Estimation of Thalamocortical and Intracortical Network Models from

Joint Thalamic Single-Electrode and Cortical Laminar-Electrode Recordings in the Rat

Barrel System. PLOS Computational Biology, 5(3):e1000328, March 2009. Publisher:

Public Library of Science.

[10] Veronique Lefebvre, Ying Zheng, Chris Martin, Ian M. Devonshire, Samuel Harris, and

John E. Mayhew. A Dynamic Causal Model of the Coupling Between Pulse Stimulation

and Neural Activity. Neural Computation, 21(10):2846–2868, July 2009. Publisher: MIT

Press.

[11] R. J. Moran, K. E. Stephan, S. J. Kiebel, N. Rombach, W. T. O’Connor, K. J. Murphy,

R. B. Reilly, and K. J. Friston. Bayesian estimation of synaptic physiology from the spectral

responses of neural masses. NeuroImage, 42(1):272–284, August 2008.

[12] Isabelle Merlet, Gwénaël Birot, Ricardo Salvador, Behnam Molaee-Ardekani, Abeye Mekon-

nen, Aureli Soria-Frish, Giulio Ruffini, Pedro C. Miranda, and Fabrice Wendling. From

Oscillatory Transcranial Current Stimulation to Scalp EEG Changes: A Biophysical and

Physiological Modeling Study. PLoS ONE, 8(2):1–12, 2013.

[13] Tim Kunze, Alexander Hunold, Jens Haueisen, Viktor Jirsa, and Andreas Spiegler. Transcra-

nial direct current stimulation changes resting state functional connectivity: A large-scale

brain network modeling study. NeuroImage, 140:174–187, 2016.

[14] Sarah Feldt Muldoon, Fabio Pasqualetti, Shi Gu, Matthew Cieslak, Scott T. Grafton,

Jean M. Vettel, and Danielle S. Bassett. Stimulation-Based Control of Dynamic Brain

Networks. PLoS Computational Biology, 12(9), 2016.

[15] Shane Lee and Stephanie R. Jones. Distinguishing mechanisms of gamma frequency

oscillations in human current source signals using a computational model of a laminar

neocortical network. Frontiers in Human Neuroscience, 7, December 2013.

[16] Espen Hagen, Solveig Næss, Torbjørn V. Ness, and Gaute T. Einevoll. Multimodal Modeling

of Neural Network Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy

2.0. Frontiers in Neuroinformatics, 12, 2018.



30 BIBLIOGRAPHY

[17] André M. Bastos, Roman Loonis, Simon Kornblith, Mikael Lundqvist, and Earl K. Miller.

Laminar recordings in frontal cortex suggest distinct layers for maintenance and control

of working memory. Proceedings of the National Academy of Sciences, 115(5):1117–1122,

2018.

[18] Anil Bollimunta, Jue Mo, Charles E. Schroeder, and Mingzhou Ding. Neuronal mechanisms

and attentional modulation of corticothalamic alpha oscillations. The Journal of Neuro-

science: The Official Journal of the Society for Neuroscience, 31(13):4935–4943, March

2011.

[19] Elizabeth A. Buffalo, Pascal Fries, Rogier Landman, Timothy J. Buschman, and Robert Des-

imone. Laminar differences in gamma and alpha coherence in the ventral stream. Proceedings

of the National Academy of Sciences of the United States of America, 108(27):11262–11267,

July 2011.

[20] Alexander Maier, Geoffrey K. Adams, Christopher Aura, and David A. Leopold. Distinct

superficial and deep laminar domains of activity in the visual cortex during rest and

stimulation. Frontiers in Systems Neuroscience, 4, 2010.

[21] Eelke Spaak, Mathilde Bonnefond, Alexander Maier, David A. Leopold, and Ole Jensen.

Layer-specific entrainment of gamma-band neural activity by the alpha rhythm in monkey

visual cortex. Current biology: CB, 22(24):2313–2318, December 2012.

[22] Dajun Xing, Chun-I. Yeh, Samuel Burns, and Robert M. Shapley. Laminar analysis of

visually evoked activity in the primary visual cortex. Proceedings of the National Academy

of Sciences, 109(34):13871–13876, August 2012.

[23] Timo van Kerkoerle, Matthew W. Self, Bruno Dagnino, Marie-Alice Gariel-Mathis, Jasper

Poort, Chris van der Togt, and Pieter R. Roelfsema. Alpha and gamma oscillations

characterize feedback and feedforward processing in monkey visual cortex. Proceedings of

the National Academy of Sciences, 111(40):14332, October 2014.

[24] Kevin Johnston, Liya Ma, Lauren Schaeffer, and Stefan Everling. Alpha Oscillations Mod-

ulate Preparatory Activity in Marmoset Area 8Ad. Journal of Neuroscience, 39(10):1855–

1866, March 2019.

[25] Anil Bollimunta, Yonghong Chen, Charles E. Schroeder, and Mingzhou Ding. Neuronal

mechanisms of cortical alpha oscillations in awake-behaving macaques. The Journal of



BIBLIOGRAPHY 31

Neuroscience: The Official Journal of the Society for Neuroscience, 28(40):9976–9988,

October 2008.

[26] Taihei Ninomiya, Kacie Dougherty, David C. Godlove, Jeffrey D. Schall, and Alexander

Maier. Microcircuitry of agranular frontal cortex: contrasting laminar connectivity between

occipital and frontal areas. Journal of Neurophysiology, 113(9):3242–3255, May 2015.

[27] Saskia Haegens, Annamaria Barczak, Gabriella Musacchia, Michael L. Lipton, Ashesh D.

Mehta, Peter Lakatos, and Charles E. Schroeder. Laminar Profile and Physiology of the

alpha Rhythm in Primary Visual, Auditory, and Somatosensory Regions of Neocortex. The

Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(42):14341–

14352, October 2015.

[28] N. Maier, V. Nimmrich, and A. Draguhn. Cellular and network mechanisms underlying

spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J Physiol, 550(Pt

3):873–87, 2003.

[29] David C. Godlove, Alexander Maier, Geoffrey F. Woodman, and Jeffrey D. Schall. Mi-

crocircuitry of agranular frontal cortex: testing the generality of the canonical cortical

microcircuit. The Journal of Neuroscience: The Official Journal of the Society for Neuro-

science, 34(15):5355–5369, April 2014.

[30] FH Lopes da Silva, A Hoek, H Smits, and LH (1974) Kyber-netik 15: Zetterberg. Model of

brain rhythmic activity: the alpha rhythm of the thalamus. Kybernetik, pages 27–37, 1974.

[31] FH Lopes da Silva, van Rotterdam A, P Barts, E Heusden, and W van Burr. Model of

neuronal populations: the basic mechanism of rhythmicity. Prog Brain Res, 45, 1976.

[32] A van Rotterdam, F H Lopes da Silva, J van den Ende, M A Viergever, and A J Hermans. A

model of the spatial-temporal characteristics of the alpha rhythm. Bulletin of Mathematical

Biology, 44(2):283–305, 1982.

[33] F. Wendling, J. J. Bellanger, F. Bartolomei, and P. Chauvel. Relevance of nonlinear

lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern,

83(4):367–378, October 2000.

[34] C. Borgers, S. Epstein, and N. J. Kopell. Gamma oscillations mediate stimulus competition

and attentional selection in a cortical network model. Proceedings of the National Academy

of Sciences, 105(46):18023–18028, November 2008.



32 BIBLIOGRAPHY

[35] Behnam Molaee-Ardekani, Pascal Benquet, Fabrice Bartolomei, and Fabrice Wendling.

Computational modeling of high-frequency oscillations at the onset of neocortical partial

seizures: from ‘altered structure’ to ‘dysfunction’. Neuroimage, 52(3):1109–22, 2010.

[36] F. H. Lopes da Silva, A. van Rotterdam, P. Barts, E. van Heusden, and W. Burr. Models of

Neuronal Populations: The Basic Mechanisms of Rhythmicity. In M. A. Corner and D. F.

Swaab, editors, Progress in Brain Research, volume 45 of Perspectives in Brain Research,

pages 281–308. Elsevier, January 1976.

[37] J.J. Bonaiuto, S.S. Meyer, S. Little, H. Rossiter, M.F. Callaghan, F. Dick, G.R. Barnes,

and S. Bestmann. Lamina-specific cortical dynamics in human visual and sensorimotor

cortices. eLife, 7(e33977), 2018.

[38] P. L. Nunez and R. Srinivasan. Electric Fields of the Brain: theNeurophysics of EEG.

Oxford University Press, USA, 2006.

[39] György Buzsáki, Costas A. Anastassiou, and Christof Koch. The origin of extracellular

fields and currents — EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13:407,

2012.

[40] Pedro Cavaleiro Miranda, Abeye Mekonnen, Ricardo Salvador, and Giulio Ruffini. The

electric field in the cortex during transcranial current stimulation. Neuroimage, 70:45–58,

2013.

[41] U Mitzdorf. Current source-density method and application in cat cerebral cortex: investi-

gation of evoked potentials and EEG phenomena. Physiol Rev, 65(37–100), 1985.

[42] C Quairiaux, P Megevand, J.Z Kiss, and C Michel. Functional Development of Large-Scale

Sensorimotor Cortical Networks in the Brain. The Journal of Neuroscience, 31(26):9574–

9584, 2011.

[43] S Leski, KH Pettersen, B Tunstall, GT Einevoll, and DK Gigg, J DK Wójcik. Inverse current

source density method in two dimensions: inferring neural activation from multielectrode

recordings. Neuroinformatics, 9(4):401–25, December 2011.

[44] Giulio Ruffini, Fabrice Wendling, Roser Sanchez-Todo, and Emiliano Santarnecchi. Tar-

geting brain networks with multichannel transcranial current stimulation (tCS). Current

Opinion in Biomedical Engineering, 2018.



BIBLIOGRAPHY 33

[45] Adriano B. L. Tort, Robert Komorowski, Howard Eichenbaum, and Nancy Kopell. Measuring

Phase-Amplitude Coupling Between Neuronal Oscillations of Different Frequencies. J

Neurophysiol, 104:1195–1210, 2010.

[46] Henry Markram, Maria Toledo-Rodriguez, YunWang, Anirudh Gupta, Gilad Silberberg, and

Caizhi Wu. Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience,

5(10):793–807, October 2004. Number: 10 Publisher: Nature Publishing Group.

[47] Robin Tremblay, Soohyun Lee, and Bernardo Rudy. GABAergic Interneurons in the

Neocortex: From Cellular Properties to Circuits. Neuron, 91(2):260–292, July 2016.

[48] Yves Denoyer, Isabelle Merlet, Fabrice Wendling, and Pascal Benquet. Modelling acute

and lasting effects of tDCS on epileptic activity. Journal of Computational Neuroscience,

48(2):161–176, May 2020.

[49] Matthew A. Smith, Xiaoxuan Jia, Amin Zandvakili, and Adam Kohn. Laminar dependence

of neuronal correlations in visual cortex. Journal of Neurophysiology, 109(4):940–947,

February 2013.

[50] Milan Halgren, István Ulbert, Hélène Bastuji, Dániel Fabó, Lorand Erőss, Marc Rey, Orrin

Devinsky, Werner K. Doyle, Rachel Mak-McCully, Eric Halgren, Lucia Wittner, Patrick

Chauvel, Gary Heit, Emad Eskandar, Arnold Mandell, and Sydney S. Cash. The generation

and propagation of the human alpha rhythm. Proceedings of the National Academy of

Sciences, 116(47):23772–23782, November 2019.

[51] Anne-Lise Giraud and David Poeppel. Cortical oscillations and speech processing: emerging

computational principles and operations. Nature Neuroscience, 15(4):511–517, April 2012.

[52] F. Grimbert and Olivier Faugeras. Analysis of Jansen’s model of a single cortical column.

INRIA, June 2006.

[53] Anita K. Roopun, Steven J. Middleton, Mark O. Cunningham, Fiona E. N. LeBeau, Andrea

Bibbig, Miles A. Whittington, and Roger D. Traub. A beta2-frequency (20-30 Hz) oscillation

in nonsynaptic networks of somatosensory cortex. Proceedings of the National Academy of

Sciences of the United States of America, 103(42):15646–15650, October 2006.

[54] Wenzhi Sun and Yang Dan. Layer-specific network oscillation and spatiotemporal receptive

field in the visual cortex. Proceedings of the National Academy of Sciences of the United

States of America, 106(42):17986–17991, October 2009.



34 BIBLIOGRAPHY

[55] Anita K. Roopun, Fiona E.N. LeBeau, James Rammell, Mark O. Cunningham, Roger D.

Traub, and Miles A. Whittington. Cholinergic Neuromodulation Controls Directed Temporal

Communication in Neocortex in Vitro. Frontiers in Neural Circuits, 4, March 2010.

[56] Roberto C. Sotero, Aleksandra Bortel, Shmuel Naaman, Victor M. Mocanu, Pascal Kropf,

Martin Y. Villeneuve, and Amir Shmuel. Laminar Distribution of Phase-Amplitude Coupling

of Spontaneous Current Sources and Sinks. Frontiers in Neuroscience, 9, 2015.

[57] Anirvan S. Nandy, Jonathan J. Nassi, and John H. Reynolds. Laminar Organization of

Attentional Modulation in Macaque Visual Area V4. Neuron, 93(1):235–246, January 2017.

[58] Milan Halgren, Daniel Fabó, István Ulbert, Joseph R. Madsen, Lorand Erőss, Werner K.

Doyle, Orrin Devinsky, Donald Schomer, Sydney S. Cash, and Eric Halgren. Superficial

Slow Rhythms Integrate Cortical Processing in Humans. Scientific Reports, 8(1):1–12,

February 2018.

[59] B. H. Jansen, G. Zouridakis, and M. E. Brandt. A neurophysiologically-based mathematical

model of flash visual evoked potentials. Biol Cybern, 68(3):275–83, 1993.

[60] Saeed Ahmadizadeh, Philippa J. Karoly, Dragan Nešić, David B. Grayden, Mark J. Cook,

Daniel Soudry, and Dean R. Freestone. Bifurcation analysis of two coupled Jansen-Rit

neural mass models. PLOS ONE, 13(3):1–51, 2018.

[61] Peter Lakatos and et al. Entrainment of neuronal oscillations as a mechanism of attentional

selection. Science, 320:110–113, April 2008.

[62] Giulio Ruffini, Fabrice Wendling, Isabelle Merlet, Behnam Molaee-Ardekani, Abeye Mekko-

nen, Ricardo Salvador, Aureli Soria-Frisch, Carles Grau, Stephen Dunne, and Pedro

Miranda. Transcranial Current Brain Stimulation (tCS): Models and Technologies. IEEE

Transactions on Neural Systems and Rehabilitation Engineering, 21(3):333–345, May 2013.



Appendix A

Literature review table

Table 2: Literature Review on layer specific oscillations and couplings (Order by publication
date). Abbreviations: Rat in Vitro (RV), Rat (R), Macaques (M), Rhesus Monkeys (RM),
Humans (H), Computational Model (CM), Marmoset (Mt), Resting-State (R-S), Visual Evoked
Potentials (VEP), Working Memory (WM), Local Field Potential gradients (LFPg), Superficial
layers (Sup.), Deep layers (Deep), layer (l), Granger Causality (GC). Red colored text indicates
discrepancies in the general findings [17]

Ref. Animal Area Task Measure Sup. Deep Couplings

Roopun

(2006)[53]
RV A1, S1 - Cell rec. γ β2 -

Bollimunta

(2008)[25]
M

V2, V4,

IT
Sensory

MUA

LFP-

bipolar

CSD

α

α

(V2,

V4)

GC from Deep α to Sup in V2 and

V4 but the opposite for IT.

Sun

(2009)[54]
R V1

R-S and

visual
Cell rec. δ α -

Roopun

(2010)[55]

RV,

CM
A1, P - Cell rec. γ β -

Maier

(2010)[20]
M V1

R-S,

Visual
LFP γ α

Coherence between Sup-Sup and

Deep-Deep but not Sup-Deep.

Buffalo

(2011)[19]
RM

V1, V2,

V4
Visual

MUA,

LFP
γ α -

Bollimunta

(2011)[18]
M V1

Visual,

auditory

LFP,

CSD (au-

ditory),

MUA

α α GC: Deep α drives Sup α

Spaak

(2012)[21]
M V1 R-S

LFP-

bipolar

CSD

γ α
+PAC and -AAC from Deep α to

Sup γ

Giraud

(2012)[51]

H,

CM
A1

R-S

Speech
SEEG γ

θ

(IV)
PAC from θ in l-IV to Sup γ.

Xing

(2012)[22]
M V1 Visual

MUA

LFP
γ - -
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Smith

(2013)[49]
M V1 Visual LFP γ α -

van

Kerkoerle

(2014)[23]

M V1, V4 Visual

CSD,

MUA,

LFPs

γ α GC: Deep α drives Sup α

Godlove

(2014)[29]
M SEF Visual LFP γ - -

Sotero

(2015) [56]
R S1 R-S CSD

δ,

θ,

α,

β,

γ

δ,

θ,

β,

γ

PAC: from θ, α to γ in the same lay-

ers (mostly Sup).

Ninomiya

(2015)[26]
M V1, SEF R-S, VEP

LFP-

bipolar
γ α

+PAC/MI between α phase in Deep

and γ amplitude in Sup (V1, not

SEF).

Haegens

(2015)[27]
M

V1, S1,

A1

R-S

Sensory

Stim.

LFP

MUA

CSD

α

CSD

α

LFP
-

Nandy

(2017)[57]
M V1 Attention LFP - β, γ

Bastos

(2018)[17]
M PFC WM

LFP

MUA
γ α

GC of α from Deep to Sup., +MI

and -AAC from Deep α, β to Sup γ

Halgren

(2018)[58]
H

Front.

Temp.

Par.

R-S vs.

Sleep

ECpG,

iEEG,

LFPg-

bipolar,

CSD

δ, θ -

PAC/MI: δ phase modulated θ

power. Both δ, θ in Sup. modulated

the power of α, β, γ in both states of

the rest of the layers, and the power

was maximal in the up phase.

Bonaiuto

(2018)[37]
H V1, S1

Visual At-

tention
MEG γ α -

Johnston

(2019)[24]
Mt

8ad, lat-

Parietal
Visual LFP

γ

8ad

α

8ad
-MI of Deep α to Sup. γ.



Appendix B

From Jansen and Rit to a Synapse-driven

model

B.1 Jansen and Rit model description

In 1993 Jansen and Rit [59] developed a model of a cortical column which consists of three

different neural populations: Pyramidal neurons (P ), inhibitory interneurons (I) and excitatory

interneurons (E). The state variables of the model are the membrane potential and the firing

rate of the neuron populations, and they are linked by two different transformations that shape

the classical properties of neurons: the pulse-to-wave, h(t), and wave-to-pulse, σ(v) functions

[52, 60].

The σ(v) operator, also called "wave-to-pulse", introduces a nonlinear component that transforms

the average membrane potential of a population, v(t), in mV , into the average firing rate, ϕ(t):

ϕ(t) = σ
(
v(t)

)
=

2ϕ0

1 + er(v0−v(t))
(B.1)

where ϕ0 is half of the maximum firing rate of each neuronal population, v0 is the value of the

potential when the firing rate is ϕ0 and r determines the slope of the sigmoid at the central

symmetry point (v0, ϕ0). See Table 3 for the standard parameter values of the model equations.

The h(t) operator, also called "pulse-to-wave", converts the average rate of action potentials

into an average post-synaptic potential, either excitatory, h0,1(t), or inhibitory, h2(t). The

37
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Table 3: Parameters, description and standard values of the JR synapse model. Values taken
from [5]

Parameter Description Value

As Average excitatory and inhibitory synaptic gain A1,3,4,5 = 3.25mV
A2 = −22.mV

τs
Time constant of average excitatory and inhibitory post
synaptic potentials

τ1,3,4,5 = 100 s−1

τ2 = 50 s−1

Cs
Average number of synaptic contacts between population
types

C1 = 108.
C2 = 33.7
C3 = 1
C4 = 135.
C5 = 33.75

v0 Potential when 50% of the firing rate is achieved 6mV
ϕ0 Half of the maximum firing rate 2.5Hz
r Slope of the sigmoid function at v0 0.56mV −1

transformation is done through a second order differential linear transform whose equivalent

impulse response is given by:

h(t) =

 A
τ
te−t/τ t ≥ 0

0 t < 0
(B.2)

Each of these post-synaptic boxes corresponds to solving a differential equation such as:

ü(t) =
A

τ
ϕ(t)− 2

τ
u̇(t)− 1

τ 2
u(t) (B.3)

where ϕ(t) is the output of the sigmoid function (average firing rate of a population) as well

as the input to the linear function h(t), and u(t) is the membrane potential alteration in each

of the synapses. The parameters A and 1/τ represent the maximal amplitude of excitatory

or inhibitory post-synaptic potential and the average time constant for each synapse type,

respectively.

This second order differential equation can be decomposed in a system of two equations,

u̇(t) = z(t)

ż(t) =
A

τ
ϕ(t)− 1

τ
2z(t)− 1

τ 2
u(t)

(B.4)

There are thus three main state variables in the model: the average membrane potential of

each of the subpopulations of the system: vP (t) for the pyramidal cells, and vE(t), vI(t) for the
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Figure 8: Diagram of Jansen and Rit equations, adapted from [52]

excitatory and inhibitory interneurons, respectively. Here vP is the main output of the model

since the sum of the membrane potentials of the pyramidal neurons has been typically used as a

proxy source of electrophysiological signals such as LFPs and EEG (dipole generator). This

approximation will be revised by future follow-up work using the LaNMM framework.

The Jansen and Rit model can be described with a set of six differential equations, with each

pair corresponding to each of the populations:

u̇0(t) = u3(t)

u̇3(t) =
A0

τ0

[
σP
(
u1(t)− u2(t)

)]
− 2

1

τ0
u3(t)−

1

τ 20
u0(t)

u̇1(t) = u4(t)

u̇4(t) =
A1

τ1

[
ϕext(t) + C2σE

(
C1u0(t)

)]
− 2

1

τ1
u4(t)−

1

τ 21
u1(t)

u̇2(t) = u5(t)

u̇5(t) =
A2

τ2

[
C4σI

(
C3u0(t)

)]
− 2

1

τ2
u5(t)−

1

τ 22
u2(t)

(B.5)

For an illustrative description of the model equations see Figure 8. In this cortical column

configuration the membrane potential of the pyramidal population is vP (t) = u1(t)− u2(t), the

membrane potential of the inhibitory interneuron population is vI = C3u0 and of the excitatory

interneuron population is vE = C1u0,
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B.2 Derivation of the Synapse-driven model from Jansen

and Rit equations

We can rewrite the Jansen and Rit NMM focusing on the dynamics each of the synapses

independently, which will allow us to generalize the equations and simplify the definition of

the neural dynamics for the development of more complex models. We will define a new

linear operator, L−1(·), to transform pre-synaptic average firing rate form neuron n, ϕn, into

post-synaptic membrane perturbation of neuron m, um←n:

um←n(t) = L−1m←n
(
Cm←n ϕn(t)

)
Lm←n

(
um←n(t)

)
= Cm←n ϕn(t)

(B.6)

L−1(·) is the inverse of the L(·) operator and can be expressed as an integral (convolution)

operator using the typical h(t) box function,

L−1
(
f(t)

)
=

∫ ∞
−∞

dt′ h(t− t′)f(t′)

Note that, for simplicity, the index s will represent the connection/synapse from one neuronal

population to another m← n, where n,m ∈ [P,E, I, ext] and (m,n) : Cm←n 6= 0}. Then, we

can define the linear operator Ls(·) that represents the synapse dynamics as:

Ls
(
us(t)

)
=

1

As

(
τs
d2

dt2
+ 2

d

dt
+

1

τs

)
us(t) (B.7)

The sum of each pre-synaptic perturbation into neuron n is the membrane potential of the

post-synaptic neuron, vm,

vm(t) =
∑
s

us(t) (B.8)

and the average firing rate of the neural population, ϕm, is the output of the non-linear function,

ϕm(t) = σm
(
vm(t)

)
σm
(
vm(t)

)
=

2ϕ0

1 + er(v0−vm(t))

(B.9)
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Within the synapse-driven formalism, the Jansen and Rit equations specify the dynamics as a

function of the average firing rate for each neural population ϕn, the average membrane potential

for each population vn and the membrane perturbation per each synapse us,

L1

(
u1(t)

)
= C1ϕP = C1σ(vP ) = C1σ

(
u2(t) + u5(t) + u4(t)

)
L2

(
u2(t)

)
= C2ϕE = C2σ(vE) = C2σ

(
u1(t)

)
L3

(
u3(t)

)
= C3ϕP = C3σ(vP ) = C3σ

(
u2(t) + u5(t) + u4(t)

)
L4

(
u4(t)

)
= C4ϕI = C4σ(vI) = C4σ

(
u3(t)

)
L5

(
u5(t)

)
= C5ϕext(t)

(B.10)

The diagram and dynamics of the Jansen and Rit NMM in the Synapse-driven implementation

is represented in Figure 9. Fig.9 C shows the membrane potential of each of the populations

(color-coded) and its PSD profile for an external input noise ϕext with a mean of 200 Hz. Fig.9 D

is the bifurcation diagram of the model with respect to the mean input noise of ϕext (also

color-coded).
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Figure 9: Jansen and Rit Synapse-driven model. A) Illustration of the neuronal populations
with synapse location sites. B) Diagram of the model equations. C) Membrane potential, vn,
of each population and its power spectral density with the mean of the external input noise
given by ϕext = 200. D) Bifurcation diagram with respect to the mean of external input, ϕext,
modeled as pink noise.



Appendix C

Pyramidal Interneuron Gamma model -

PING

The Pyramidal Interneuron Gamma model (PING) involves the combination of a pyramidal

population and a fast inhibitory interneuron (e.g. Basket cells). In the synapse driven formalism,

the parameters are summarized in table Table 4, and the equations are

L1

(
u1(t)

)
= C1ϕP = C1σ(vP ) = C1σ

(
u1(t) + u2(t) + u3(t)

)
L2

(
u2(t)

)
= C2ϕI = C2σ(vI) = C2σ

(
u4(t) + u5(t)

)
L3

(
u3(t)

)
= C3ϕext(t)

L4

(
u4(t)

)
= C4ϕP = C4σ(vP ) = C4σ

(
u1(t) + u2(t) + u3(t)

)
L5

(
u5(t)

)
= C5ϕI = C5σ(vI) = C5σ

(
u4(t) + u5(t)

)
(C.1)

The diagram and dynamics of the PING NMM in the Synapse-driven implementation is

represented in Figure 10. Fig.10 C shows the membrane potential of each of the populations

(color-coded) and its PSD profile for an external input noise ϕext with a mean of 200 Hz.

Fig.10 D is the bifurcation diagram of the model with respect to the mean input noise of ϕext

(also color-coded).
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Figure 10: PING Synapse-driven model. A) Illustration of the neuronal populations with
synapse location sites. B) Diagram of the model equations. C) Membrane potential, vn, of each
population and its power spectral density with the mean of the external input noise given by
ϕext = 200. D) Bifurcation diagram with respect to the mean of external input, ϕext, modeled
as pink noise.

Table 4: Parameters, description and standard values of the PING synapse model. Values taken
from [35]. Here, we have modified the τ parameter so the neural mass oscillates in slow gamma
instead of fast gamma.

Parameter Description Value

As Average excitatory and inhibitory synaptic gain A1,3,4 = 18mV
A2,5 = 22.mV

τs
Time constant of average excitatory and inhibitory post
synaptic potentials

τ1,3,4 = 108 s−1

τ2,5 = 132 s−1

Cs
Average number of synaptic contacts between population
types

C1 = 10
C2 = −560
C3 = 0.6
C4 = 40
C5 = −400



Appendix D

LaNMM dipole and external stimulation

response model

In our framework, we assume that there are two types of dipole generators for a pyramidal

neuronal population n depending on the location of the synapse—basal (znb ) or apical (zna )

dendrites. A dipole, is essentially represented by an orientation (perpendicular to the cortex

here), the current induced by a synapse (I) times the separation between the sink and the

source,

J ∼ I ∆z

If the synaptic input is apical (with location zna ), we assume it has two returns [61]: one in the

basal location, and one in the layer just above, each contributing 1/2 of the return needed for

current conservation (see equation 2.8 or Fig. 3B)). By superposition (Maxwell’s equations are

linear), we can think of this as the sum two dipoles, each contributing its own dipole,

Jna = −1

2
Ina (zna − znb )− 1

2
Ina (zna − (znb + h)) = Ina (zna − znb )− 1

2
Ina h

where h is the layer thickness and the signs for each term are due to the sign of the current in

the neuron.

Notice that here we have switched from a generic synapse index notation to a more convenient

one identifying neuron and apical/basal dendrite, as in s ∼ (n, a/b).
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If the input is basal (znb ), we assume a single return from the layer above, or

Jnb = Inb h

Finally, the total dipole generated by neuron n is the sum of each synpse-return contribution,

Jn = Ina (zna − znb )− 1

2
Ina h+ Inb h (D.1)

We take the total column dipole to be the sum of pyramidal cell dipoles, i.e., with J =
∑

n J
n.

The LaNMM formalism can also be used to represent the effect of an electric field of endogenous

(ephaptic) or exogenous (tES, TMS) origin on the membrane potential, adding the term uE in

Equation B.8,

vm(t) = uE +
∑
s

us(t) (D.2)

uE = λn · E(t) (D.3)

This formulation is called the λE model and it is represented in Fig. 11, see[62].

As a proof of concept, we have simulated the resonance effects of the tACS electric field in

the McLaNMM model and have observed that it is displays the expected frequency-amplitude

Arnold tongue.
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Figure 11: λE model. The pyramidal populations get an extra synapse perturbation proportional
to the orientation of the pyramidal population with respect to the external electric field.

Figure 12: Response to electric field stimulation. A) Schematic representation of the λE
model for the McLaNMM. Connectivity between populations and interneurons not shown. B)
Membrane potential peak PSD of the deep pyramidal population (Jansen and Rit, oscillating in
alpha). C) Superficial population (PING, gamma) depending of the stimulation frequency and
amplitude.



Appendix E

Symbols and units

Table 5: Symbols, descriptions and units.

Symbol Description Units
n,m Neuron index (e.g. P for pyramidal population) -
s Synapse index -

um←n(t), us(t) Synaptic membrane potential alteration mV
vn(t) Average membrane potential of neuronal population mV
ϕn(t) Average firing rate of neuronal population Hz

Ls

(
us(t)

)
Linear synapse operator -

Cs Synapse connectivity constant -
As Average excitatory/inhibitory synaptic gain mV
τs Synapse time constant s−1

σm
(
vm(t)

)
Nonlinear operator of a neuronal population -

e0 Half of the maximum firing rate s−1

v0 Potential when e0 is achieved mV
r Slope of the sigmoid at v0 mV −1

h Column layer thickness m
σ Tissue conductivity S/m

zl, znl
Location along the z axis of each layer (l ∈ [1, 6]).
We use za for the generic location of apical dendrites
and zb for basal for neuron n.

m

Is(zl), Inl
Synaptic current induced by synapse s in layer l ∈
[a, b] of neuron n (positive for current going into cell) A

ηn Voltage to current gain factor A/mV

Rs(z), Rs′ (z)
Distance from source/mirror-source to probe location
along z axis m

V (z) Electric potential mV

En(z)
Normal component of the electric field to cortex (pos-
itive pointing out of cortex) V/m

CSD(z)
Current source density (positive as source, i.e., going
out of neuron) A/m3

J , Jn
Total column dipole density and independent pyra-
midal cell dipole density Jn (positive pointing out of
cortex)

A m/m3
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Appendix F

Additional LFP Data processing

Here we provide additional plots analysing the available macaque data. Figure 13 shows the

same metrics as in Figure 4 but with the voltage re-referenced to the first contact. We find that

the superficial to superficial PAC and MI coupling disappears. Instead, we observe a positive

PAC and MI from deep alpha to deep gamma, which was not find in when the reference was in

the PFC chamber. These findings are similar to the ones reported by Ninomiya 2015 (Fig.9),

which doesn’t find any positive MI between deep alpha oscillations and superficial gamma. No

significant AAC was found in this case either.

We computed the same metrics for the bipolar-LFP (Fig.14A) and CSD (Fig.14B). We found,

in both cases, a significant PAC and MI from superficial alpha to superficial gamma. Again, no

significant AAC was found in either case.
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50 Appendix F. Additional LFP Data processing

Figure 13: Voltage measures with reference in the first contact. Same metrics and information
as in Fig.4



51

Figure 14: A) nE and B) CSD alpha-gamma coupling profiles.
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