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Abstract

Functional MRI (fMRI) and its consequent resting state networks (RSN) have been

widely studied from a functional connectivity (FC) perspective. However, FC met-

rics have not into account statistical temporal dependencies between fMRI signals,

which could be describing causal connectivity and hierarchical relations between

cortical regions. In order to study this phenomena, a recently published information

theoretical statistical criterion (Normalized Directed Transfer Entropy, NDTE) was

applied here to analyze the direction underlying information flowing between prede-

fined cortical regions and particularly those forming the well-known Default Mode

Network. Participants were 254 healthy middle aged subjects from the outgoing

prospective longitudinal study Barcelona Brain Health Initiative (BBHI). BBHI has

the goal of analyzing determinants of brain health and so this study has. Episodic

Memory (EM) maintenance takes part into successful memory aging and thus scores

from the Rey Auditory Verbal Test (RAVLT) were used here to try to find causal

connectivity patterns at rest implicated in EM, both in the whole cortex and in

the DMN. In general, results showed a hierarchical aspect underlying DMN interac-

tions, along with an inverse correlation between immediate and deferred EM, and

the amount of information sent or received by particular regions of the DMN and

the whole cortex.

Keywords: Resting State; Functional Magnetic Resonance; Episodic Memory; Causal

Connectivity; Default Mode Network



1|Introduction

Networks are present in much more aspects of our lives than we are normally aware

of. Without going any further, the system allowing each of us to be aware, among

many other cognitive functions, can be studied at different levels of depth as a

complex network: the brain. The brain and its ability to produce cognition and

behavior has been widely studied in terms of networks (i.e. graph theory) (Sporns,

2018). The brain network could be seen as a composition of cortical regions (i.e.

Regions of Interest, ROIs), a set of nodes interconnected by information flow (i.e.

network edges). This is the point of view that have been taken in this study. Once

the nodes of the network have been defined, the relationship between them has to

be measured. Thus, a central question behind this type of studies is how to analyze

interactions within the brain connectome. This question has two aspects: what (i.e.

from what empirical data) and how (i.e. with which computational technique).

On the what aspect, many different neuroimaging techniques can be used to ob-

tain information about brain connectivity, such as electroencephalography (EEG)

or functional magnetic resonance (fMRI). The latter has been very popular in recent

years, specially its resting-state version (Farahani, Karwowski, & Lighthall, 2019)

(a version discussed here a bit later). fMRI makes use of physical properties such

as magnetism and resonance to capture the brain tissue’s hemodynamic response.

This signal is known as blood-oxygen-level-dependent (BOLD). The idea of compar-

ing BOLD signal with neural signal derives from neuron’s necessity of blood supply

in obtaining oxygen to optimally operate (Huettel, McCarthy, & Song, 2008). Be-

cause of this same reason, this technique has been sometimes very criticized. Some

have doubted to which extent hemodynamic activity can be directly understood as

1



2 Chapter 1. Introduction

neural activity. Nevertheless there are numerous studies analyzing this relationship

with the aim of knowing fMRI’s validity. Between all of them, some have found

that, when removed the abundant physiological noise, there are correlations be-

tween BOLD signal and EEG signal (Birn, 2012). As for EEG, it measures directly

electrical activity between neurons, but has a poorer spatial resolution in compar-

ison to fMRI. Therefore, if BOLD signal contains information correlated to these

electrical signals, we could talk about brain activity captured by fMRI in a great

spatial resolution and in a totally non-invasive way.

There are two conditions in which fMRI can be acquired: resting-state and task-

related. Resting-state fMRI, as already mentioned, has been widely studied. It

consists on the acquisition of fMRI while the subject is asked to remain still, with-

out thinking about anything in particular. The only main variant among fMRI

acquisitions (in terms of experimental design) is whether subjects maintain their

eyes closed or not. Despite the simplicity of this paradigm, which is also an advan-

tage in order to repeat experiments because the set-up is easy, it has provided a lot

of information about brain connectivity in clinical and non-clinical fields. All in all:

rsfMRI poses a highly appropriate technique to study brain connectivity and was

the chosen for this study.

On the how aspect of analyzing brain connectivity, fMRI has been widely used to

measure the interaction and synchrony between cortex regions. To do so, it has

been remarkable the analysis of what is known as functional connectivity (FC). FC

measures coupling between ROI/voxel’s signal with different techniques: Pearson’s

correlation, frequency coherence, transfer entropy, ordinal correlation and so on. As

mentioned before, the resting-state version of fMRI has been very common and so it

is the resting-state version of FC (rsFC). Under the study of rsFC, the discovery of

the well-known large-scale resting state networks (RSN) has been very important.

These comprise a finite set of specific coherent patterns on the cortex. Cortical

regions comprising them are highly functionally connected at rest (i.e. high rsFC

between each other) (Smitha et al., 2017; van den Heuvel & Hulshoff Pol, 2010).

Along with these RSNs, all the studies based on FC are from the perspective of
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temporal synchrony, ignoring the possibility that signal in a region could precede

or proceed in time the signal in another region. These interactions have been nor-

mally studied under the name of effective connectivity (EC) or causal connectivity.

RSN have been also analyzed in terms of EC (e.g. (Sharaev, Zavyalova, Ushakov,

Kartashov, & Velichkovsky, 2016)), although in a much lower extent than rsFC.

Summarizing and in terms of graph theory, it can be said that FC quantifies the

connectivity degree of a weighted undirected graph, while EC does it of a weighted

directed graph. The directionality added causal connectivity requires seeing the

problem from a different point of view in which time has a role. By adding a tem-

poral lag, it is possible to see whether the signal in a region is causing the signal in

another region or not, and quantify this interaction. Thus, brain connectivity could

be analyzed in terms of hierarchy or directed information flows. In this study, a

recently published information theoretical statistical criterion, Normalized Directed

Transfer Entropy (NDTE), was used to quantify these causal interactions.

This study is framed in the Barcelona Brain Health Initiative (BBHI), an ongoing

prospective longitudinal study committed, as its name indicates, to analyzing deter-

minants of brain health (Cattaneo et al., 2018). In consequence BBHI is interested

in successful memory aging among many factors defining brain health. Episodic

memory (EM) is one of the most commonly declined functions in unsuccessful mem-

ory aging conditions and refers to the ability to recall experienced episodes. Its

decline has been shown to become significantly greater around the age of 60 years

old, although it seem to be detectable years before (Nyberg & Pudas, 2019). BBHI

population (approximately ranging from 45 to 65 years old) is on the border of

this range, and hence present a great opportunity to analyze EM just before of its

expected decline. In addition, EM has been already found to be affected by connec-

tivity in one particular RSN: the Default Mode Network (DMN). Although changes

in DMN connectivity has been already correlated to EM (Huo, Li, Wang, Zheng, &

Li, 2018), this has not been done by comparing Causal Connectivity but just rsFC.

By using a time-directed connectivity approach over fMRI data, we wanted to an-

alyze brain activity through the cortex and in particular among DMN regions. In
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addition, we aimed to study how much the brain at rest can tell us about EM in a

pre-decliners group of healthy people in terms of directed information flows.



2|Methods

2.1 Participants

All data analysed in this study come from the ongoing prospective longitudinal study

named Barcelona Brain Health Initiative (BBHI)(Cattaneo et al., 2018), which is

focused on identifying determinants of brain health. In the second phase of this

study, a sub-cohort of 1000 participants were evaluated through different multi-

day in-person assessments. All of them were voluntaries and received no monetary

compensation. 254 subjects from the mentioned sub-cohort were randomly chosen

in order to use part of their neuroimaging and neuropsychological assessments as

the data set analyzed in this master thesis.

All the participants were healthy, with no psychological nor neurological diseases

diagnosed, and their age ranged from 43 to 67 in the moment of assessment. Find

a brief description of participant’s age and gender in table 1.

Women Men Total

Participants N 121 133 254
% 47.64 52.36 100

Age (years)
min-max 43-67 43-67 p-value>0.05

mean 55.15 54.17 54.63
sd 7.01 6.81 6.93

Table 1: Age and gender of the randomly chosen set of subjects. A one-way ANOVA
test was run to test the effect of gender in the participant’s distribution of age. As
specified, there are no significant differences in age because of gender.

5
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2.2 Neuropsychological Assessment

Among all tests belonging to the neuropsychological evaluation battery from BBHI,

we were interested only in the Rey Auditory Verbal Learning Test (RAVLT). This

measures the ability that the subject have to recall recent information (in a listened-

word format), in two conditions: immediate and deferred.

Firstly the subject listened to the recitation of 15 words and is asked to recall the

maximum amount of words he is able to. This is consecutively repeated five times,

maintaining the same list of words. Consecutively, a pause of 30 minutes is given

to the subject. After it, for the last time he/she is asked to recall words from the

list. It is important the fact that the subject has not been warned about being

asked about these words again. Then, immediate and deferred scores are calculated

based on the amount of recalled words in the first part (i.e. before the 30-minutes

pause; immediate memory) and in the second part (i.e. after the 30-minutes pause;

deferred memory).

Since RAVLT is measuring the ability of learning/recalling experienced episodes (i.e.

having listened to a list of words), this test is used to study Episodic Memory.

2.3 Functional Magnetic Resonance Images

The clinical evaluation of BBHI-participants included Magnetic Resonance Imag-

ing (MRI). These data was acquired with a 3 Tesla Siemens PRISMA scanner and

a 32-channel head coil. The MRI session took around one hour and included ac-

celerated multi-band sequences adapted from the Human Connectome Project and

provided by the Center of Magnetic Resonance Research (CMRR) at the University

of Minnesota. The protocol included different high resolution MR Images. Among

them and of our interest, high resolution resting state functional MRI (fMRI) was

acquired with spatial resolution of 2x2x2mm and temporal resolution of 0.8 s. Ad-

ditionally, structural T1- and T2-weighted images were required for preprocessing

fMRI data (Cattaneo et al., 2018).
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2.3.1 Preprocessing

The preprocessing pipeline made use of functions from FMRIB Software Library

(FSL), FreeSurfer and Statistical Parametric Mapping (SPM). To start with, the

first 10 scans were removed to ensure magnetization equilibrium. After that, all

BOLD images were field inhomogeneity corrected (FSL TopUp) and standardized

into native T1-weighed space (SPM Coregister). For nuisance correction, signals

from white matter and cerebrospinal fluid (CSF) were extracted and considered as

nuisance regressors. Other regressors were those correspondent to motion and to

a drift of low frequency oscillations. Motion regressors were 12; six were those of

rotation and translation and the other six were their first derivative. The drift

was estimated by a discrete cosine transform (DCT) as a low-pass frequency filter

(<0.01). All these regressors were regressed out using the FSL function fsl_regfilt.

Finally, cortical and subcortical segmentation and registration to FreeSurfer stan-

dard space (fsaverage) was performed in order to being able to compare subjects’

fMRI data.

2.4 Parcellations and Time Series Extraction

In order to obtain the set of ROIs in the cortex to be analyzed in this study, we

made use of two existent cortical atlases: HCP-MMP1.0 and Yeo7.

The HCP-MMP1.0 atlas is referred here as Glasser360. This atlas consists in 360

cortical Regions of Interest (ROIs), obtained by using multi-modal MRI from the

Human Connectome Project (HCP) and taking into account changes in cortical

architecture, function, connectivity, and/or topography (Glasser et al., 2016). This

atlas was used here to study, in a very precise spatial detail, causal connectivity on

the whole cortex and on a particular RSN (i.e. DMN).

On the contrary, the Yeo atlas is not that spatially precise. It splits the cortex into

7 or 14 networks (i.e. group of ROIs) according to their rsFC (Yeo et al., 2011). In

our study we focused on the version with 7-networks, since one of these can be seen

as the one we are interested in (i.e. DMN).
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Figure 1: DMN-limited atlas, result of combining Glasser360 and Yeo-7networks.
(A) This DMN-limited atlas is composed by 88 regions from Glasser360. Here these
regions are randomly colored. (B) Regions grouped by five network nodes.

As we wanted to study in further detail causal connectivity in the mentioned DMN,

a custom-made atlas was created as the intersection between Glasser360 and the

DMN-Yeo network. One ROI among the 360 ROIs was considered as part of the

new DMN-limited atlas when most of its voxels belong to the corresponding Yeo

ROI. This resulted in a set of 88 regions (44 per hemisphere) grouped by five DMN-

nodes: temporal, parietal, parahippocampal, precuneus+cingulate and frontal (see

figure 1).

Summarizing, in this study two parcellations were used to extract the cortical BOLD

signal of each participant. These two were i) a whole cortex atlas, Glasser360, and

ii) a DMN-limited atlas. Both have the same spatial precision as they share 88

Glasser360 regions and the signal extracted per each region was the mean across all

the voxels forming the region.

2.5 Normalized Directed Transfer Entropy (NDTE)

We aimed to analyze the directionality of the connectivity between brain regions.

This directionality can be seen as the direction in which information is flowing

between regions. To analyze this, we compared BOLD signals from different brain

regions. BOLD signals can be seen as time-series, consequently we used the time
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dimension to make a distinction between past/present signal, and future signal, by

adding a temporal lag. In this way we can detect if the past/present of a region,

X, is helping to predict the future of another region, Y . Which means that if there

is information flowing from X to Y , the past of X would be helping to predict

the future of Y (i.e. applying the concept of Granger Causality (Granger, 1969)).

Note that adding this temporal lag, and thus comparing past and future of different

region’s signals, it is what makes it possible to analyze directionality (i.e. from X

to Y , and from Y to X).

In order to measure this phenomenon, we used an information theoretical statistical

criterion, which was introduced by (Deco, Vidaurre, & Kringelbach, 2019) as Nor-

malized Directed Transfer Entropy (NDTE). The NDTE from a region X to another

region Y can be mathematically expressed as:

NDTEX→Y =
I(Yi+1;X

i|Y i)

I(Yi+1;X i, Y i)
. (2.1)

In the numerator, I(Yi+1;X
i|Y i) is the mutual information between the future of the

region Y (i.e. Yi+1) and the past and present of the region X (i.e. X i). Note that the

past and present signals are denoted by i, which represent all the temporal values

in a range i − T (i.e. the temporal lag). This mutual information can be framed

in terms of Information Theory. Also known as Transfer Entropy, it measures the

degree of statistical dependency between two random variables and can be estimated

as a difference of Shannon’s Entropies:

I(Yi+1;X
i|Y i) = H(Yi+1|Y i)−H(Yi+1|X i, Y i), (2.2)

These entropies, denoted here by H, measure the amount of uncertainty in a random

variable given other variable (e.g. H(Yi+1|X i, Y i) is the amount of uncertainty in

the future of Y given the past of Y and X). In consequence, equation 2.2 describes

how much uncertainty is reduced in the future of Y when we additionally know the

past of X. If the past of X is not helping to predict Y ’s future, then there will be
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no change of uncertainty by knowing X and NDTEX→Y would be zero.

In the denominator of equation 2.1, I(Yi+1;X
i, Y i) is the mutual information be-

tween the future of the region Y and the past and present of both region Y and

X.

I(Yi+1;X
i, Y i) = I(Yi+1;Y

i) + I(Yi+1;X
i|Y i), (2.3)

The objective of adding this term to the NDTE framework is the one of normalizing

the transfer entropy in the numerator, and thus allowing comparison among all the

NDTE values obtained from different pairs of region’s signals.

Once NDTE is computed, it is necessary to study the significance of the obtained

statistic. As in (Deco et al., 2019), we used the circular time shifted surrogates

method to compute the p-values of the hypothesis testing. This method was firstly

proposed by Quiroga et al, and it is well suited for causality analyses. This method

simply consist on moving the m first values of a time-series (e.g. X) to the end of

it. Being n the length of the time-series to be shifted, m is a random integer within

the range [0.05n 0.95n]. In the case of applying this to compute the significance of

an obtained NDTEX→Y , we shifted X with a random mx and Y with a different

random my, and then calculate the new NDTEX′→Y ′ with the shifted versions of

X and Y . We repeated this 100 times for each pair X and Y , and afterwards the

p-value of NDTEX→Y is calculated about these 100 surrogated values (i.e., null

hypothesis) and the original NDTE.

2.6 Information flow analyses

2.6.1 Incoming and outgoing flow

Once we had divided the cortex into the Glasser360 regions, the NDTE framework

was applied for each participant to obtain the causal interaction between each pair of

regions. This resulted in a matrix, G, of dimensions 360x360 (i.e. causal connectivity
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matrix) per subject. Each element of the matrix Gij is understood as the amount of

information flowing from region i to region j. Because of this directionality, there is

no symmetry in these matrices (i.e. Gij 6= Gji), as there is in FC matrices. Thus, if

we sum the elements of G horizontally, we obtain the total outgoing information flow

(Gout) of each i region, and if we sum them vertically, we obtain the total incoming

information flow (Gin) of each j region. Gin and Gout are then originally vectors of

length 360. Additionally, if we sum together all 360 elements in those vectors, we

obtain the total information flow in the studied network.

2.6.2 Networks definition

These G matrices and their consequent Gin and Gout vectors were studied under

three different conditions. The first and more general is the whole-cortex network.

This is a fully connected network of the 360 cortical nodes, whose edges are weighted

by their causal interactions (Gij). Nevertheless, the remaining two conditions are

based on the DMN-limited atlas. As already explained, this atlas is composed by

88 ROIs from Glasser360. Because of this, the remaining conditions are obtained

by masking G to only maintain the values of interest to study the DMN. These

two ways of analyzing DMN are named within DMN and outside DMN. Under the

within DMN condition, we aimed to analyze causal connectivity between all regions

forming the DMN (i.e. DMN-limited atlas). Then, this network was composed by 88

fully connected regions (see figure 2-A), this means all possible interactions within

DMN regions. Finally, we also wanted to analyze how DMN interact with the rest

of the cortex. This is the purpose of the last remaining condition: outside DMN.

Here, only interactions between DMN regions and regions outside the DMN were

taken into account (see figure 2-B).

2.6.3 Group and subject-level analyses

After G, Gin and Gout have been obtained for every condition and participant, group

and subject-level analyses can be performed. At the group-level, Gin and Gout are

transformed z-scores vector. This means that each region’s Gin/out is, at the group
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Figure 2: Two possible ways of analyzing DMN. (A) represents intra-DMN interac-
tions, while (B) represents DMN interactions with the rest of the cortex.

level, its mean divided by its standard deviation across subjects. This is done instead

of using just the mean operation in order to take into account the variance between

subjects. Furthermore, differences between group Gin and Gout were tested by a

one-way t-test.

At the subject-level, our only purpose was to find a correlation between subject’s

DMN causal connectivity (i.e. Gin and Gout) and episodic memory. This was done

simply by running a Pearson’s correlation test between each region’s total incom-

ing/outgoing flow (on each of the three conditions) and the two RAVLT scores,

and between each total incoming/outgoing flow at the network and the two RAVLT

scores. Correlations with age were also analyzed because of its possible effect over

these memory scores.

For both types of analyses, statistical results were only considered as significant

after correcting their p-values by Bomferroni’s Multiple Comparison Correction and

these corrected-p-values being lower than 0.05 (i.e. 95% of confidence).
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3.1 Information flows

3.1.1 Whole cortex

First of all, it was analyzed the direction (i.e. incoming or outgoing) of the informa-

tion flowing between all possible connections through the cortex. As shown in figure

3, regions that provide the biggest amount of information to the rest of the cortex

match with sensory areas and those receiving it to a larger extent are integrative

trans-modal areas. These results perfectly fits with results in (Deco et al., 2019),

particularly it replicates figure S1 in that paper.

3.1.2 DMN

As shown in figure 4, frontal and parietal DMN nodes are dominants both in relation

to other regions in DMN and to the rest of the cortex. These are known to be

dominant as significantly result in a negative t value after running a one-way T-test,

which was formulated as In minus Out (i.e. negative means Out>In and vice versa).

Likewise, parahippocampal nodes are only significantly dominant when delivering

information to the rest of the cortex and not within DMN. Regarding temporal and

precuneus+cinguate, these nodes are more likely to be receivers in terms of within-

DMN interactions. However, these did not showed consistent results regarding node

behavior in terms of DMN external communication (i.e. regions in the same node

produce information flows in opposite directions; In or Out), in exception to the

right temporal node, which seems to be dominant when sending information to

13
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Figure 3: Mean information flowing between all cortical ROIs across subjects, in the
two possible directions; incoming and outgoing, and the sum of these two (total).

outside-DMN regions. Inconsistencies about the predominant direction inside the

same node also occur in some other nodes (e.g. right frontal node, region p24 or

posterior Brodmann area 24) but always on the borders of the node, which possibly

represents an overestimation on the node’s spatial definition.

3.2 Correlation between Causal Connectivity and

Episodic Memory

3.2.1 Whole Cortex

When analyzing total information flow between whole cortex regions, significant

correlations were found between them and age, and immediate memory. Both total

incoming and total outgoing showed an inverse effect over immediate memory, with

a slightly higher effect of outgoing than incoming. Regarding age, this correlation

was direct and only in terms of total incoming. See table 2 for numerical details.

At the region level, there was no significant effect of age but of immediate and

deferred memory. All these resulting regions had an inverse correlation between

directional information flow and memory scores, with an effect size of around 0.2.

Particularly, and as shown in figure 5, part of the left Brodmann area 8 (left 8C), left

Lateral Belt Complex (LBelt), right Middle Belt Complex (MBelt) and right Tempo-
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Figure 4: Information flowing between DMN-regions (i.e. Within DMN ) and be-
tween DMN and non-DMN-regions (i.e. Outside DMN ). In and Out rows shows the
amount of information flowing from/to each region of the network, on average and
adjusted by the effect of its standard deviation (Z-score). The bottom row, In-Out
shows which regions have, on average, a significantly higher amount of Incoming
information than Outgoing (i.e. red regions), or vice versa (i.e. blue regions). This
effect is plotted by a statistical T-test and only those regions with a p-value<0.05
are colored in these plots.

ral Area 1 middle (TE1m) exhibited correlation between incoming from other cortex

regions and immediate memory. In the case of outgoing to other cortex regions, these

correlations were significant in the left Perhinal Ectorhinal cortex (PeEc) and left

Brodmann area 43. However, deferred memory only showed correlation to amount

of outgoing information and one single region, the left Perhinal Ectorhinal cortex

(PeEc). Thus, outgoing information from this region is affecting both immediate

and deferred memory.

3.2.2 Within DMN

When analyzing total information flow between DMN regions, no significant correla-

tions were found between them and age, neither between them and memory scores.

See table 2 for numerical details.

At the region level, there was no significant effect of age nor deferred memory, but

of immediate memory. All resulting regions had an inverse correlation between

directional information flow and immediate memory score, with an effect size of

around 0.2. Particularly, and as shown in figure 5, these were left and right Temporal

Areas 1 middle (TE1m) and right anterior Superior Temporal Gyrus (STGa), which
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Figure 5: Significant correlations (p-value<0.06 after Bonferroni Correction) be-
tween information flowing and RAVLT scores. These come from three different con-
ditions, within DMN interactions, interactions between DMN regions and outside-
DMN regions and interactions between whole cortex regions. Significant regions are
labelled according to Glasser360 atlas: TE1m, Temporal Areas 1 middle; STGa,
Superior Temporal Gyrus anterior; STSvp, Superior Temporal Sulcus ventral pos-
terior; 10d, part of Brodmann area 10; 31pv part of Brodmann area 31, 7m, part of
Brodmann area; 8C, part of Brodmann area 8; MBelt, Middle Belt Complex; LBelt,
Lateral Belt Complex; PeEc, Perihinal Ectorhinal cortex; 43, Brodmann area 43

exhibited correlation between incoming from other DMN regions and immediate

memory. In the case of outgoing to other DMN regions, these correlations were

significant in the right Superior Temporal Sulcus ventral posterior (STSvp) and

part of the right Brodmann area 10 (10d). All mentioned regions were located

within the temporal DMN-node, except for 10d which is in the frontal.

3.2.3 Outside DMN

When analyzing total information flow between DMN regions and other cortical re-

gions, no significant correlations were found between them and age, neither between

them and memory scores. See table 2 for numerical details.

At the region level, there was no significant effect of age but of immediate and

deferred memory. All these resulting regions had an inverse correlation between

directional information flow and memory scores, with an effect size of around 0.2.

Particularly, and as shown in figure 5, right Temporal Area 1 middle (TE1m) and
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Pearson’s
Correlation p-value p-value<0.05

Whole
cortex

In vs age 1.37e-01 2.96e-02 *
Out vs age 1.05e-01 9.36e-02
In vs Immediate Mem. -1.69e-01 6.96e-03 *
Out vs Immediate Mem. -2.08e-01 8.63e-04 *
In vs Deferred Mem. -1.04e-01 9.68e-02
Out vs Deferred Mem. -1.12e-01 7.53e-02

Within
DMN

In vs age 4.33e-01 1.95e-01
Out vs age 1.23e-01 2.77e-01
In vs Immediate Mem. 6.60e-02 2.17e-01
Out vs Immediate Mem. 2.24e-01 2.21e-01
In vs Deferred Mem. 2.41e-01 4.65e-01
Out vs Deferred Mem. 1.68e-01 1.30e-01

Outside
DMN

In vs age 2.21e-01 1.38e-01
Out vs age 1.38e-01 2.24e-01
In vs Immediate Mem. 4.25e-01 1.71e-01
Out vs Immediate Mem. 2.25e-01 2.85e-01
In vs Deferred Mem. 2.61e-01 3.74e-01
Out vs Deferred Mem. 2.05e-01 1.41e-01

Table 2: Pearson correlation between age or memory scores (RAVLT) and total
information flows in the three studied networks.

right anterior Superior Temporal Gyrus (STGa) exhibited correlation between in-

coming from other cortex regions and immediate memory. In the case of outgoing

to other cortex regions, these correlations were significant in part of the left ventral

Brodmann area 31 (31pv), part of the right Brodmann area 7 (7m) and right Su-

perior Temporal Sulcus ventral posterior (STSvp). However, deferred memory only

showed correlation to amount of outgoing information and one single region, the

same part of the right Brodmann area 7 (7m) that whose outgoing information was

also affecting immediate memory.
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4.1 Discussion

In a general way and as it has been already exposed in the result’s section, in this

study part of the results of Deco et al. (2019) has been replicated. Sensory areas

have higher amount of information flowing to the rest of the cortex and integrative

areas have higher amount of information flowing into them from the rest of the

cortex. This sounds trivial since one of the main goals of the brain is to allow us to

constantly communicate with the external world. In doing so, we need to provide

our brain with information collected by the senses. Thus, these sensory regions

represent, as checked here, a main input of information to the rest of the cortex.

After receiving all this external information, it is of no use if we are not able to

integrate it. Here integrative areas come into play. These are also expected and

seen to receive the biggest amount of information from the rest of the cortex, as

can be hypothesized, in the attempt of making sense of information from different

modalities together. Having replicated these results allow us to start from a reliable

baseline. This help us to trust even more on the results of analyzing a different

situation by using this same framework.

Regarding whole-cortex interactions, regions with a significant correlation between

information sharing and EM are related to audition (MBelt and LBElt), memory in

itself (PeEc), verbal selection (Brodmann Area 43) (Gabrieli, Poldrack, & Desmond,

1998), uncertainty processing (8C) (Volz, Schubotz, & von Cramon, 2005) and non-

verbal processing (right TE1m). These seem to be very intuitive results, as RAVLT

implies all these functions. Since all these correlations are negative, it could be in-

18



4.1. Discussion 19

tuited that less information entering to sensory and processing areas (MBelt, LBelt,

8C and TE1m) and exiting from memory and decision making (PeEc and 43), at

rest, lead to better memory in the task. It can not be known from this resting data,

but it could be hypothesized an opposite effect while performing the task; i.e. higher

information flowing in those directions would lead to better memory performance.

One of the main objectives in this thesis was to study the DMN from a directional

point of view. As it has been seen, most of the nodes in the network act as compact

nodes despite the variability across subjects. This can be guessed here as they

mainly have a particular role in terms of directionality. Within DMN interactions

showed that frontal and parietal nodes act as information givers to the rest of the

DMN, while precuneus+cingulate and temporal nodes act as information receivers

and parahippocampal nodes have a neutral role. At the view of this, we could be

talking about a hierarchy underlying DMN at rest. Precuneus area has been seen as

a important hub (i.e. information giver) in many other studies such as the already

mentioned here Deco et al. (2019). The fact that it has a different role here is

contraintuitive and may be caused by the effect of limiting interactions in terms

of DMN nodes, but not necessarily means that it has not an important role inside

the network. On the other hand, DMN nodes have been widely demonstrated to be

functionally connected at rest and disconnected when performing a task. A question

that arises but cannot be answered here is whether this hierarchy would also change

in the presence of a task.

Although DMN nodes have in general a specific role regarding direction in informa-

tion sharing, the fact of having a better or worse performance in a EM task is related

to concrete and smaller regions inside these nodes (most specially in temporal DMN-

nodes). These results were possible because we used a finer parcellation of the DMN

by merging Glasser360 and Yeo7. Then, it seems important to study behavior inside

DMN-nodes in spatial detail, instead of using a compact-node approach. The same

applies to all the other well-known large scale networks. Not doing it like that could

lead to false negatives (e.g. no correlation between the studied network, nor part of

it, and a particular cognitive aspect or disease).
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As shown in the results, DMN regions whose interactions inside the network correlate

to immediate memory performance are found mainly in the temporal DMN-node.

These regions have a role as information givers inside the network. As commented,

mostly all regions in the temporal nodes have this role. Losing this balance in the

temporal DMN-nodes in those significant regions (TE1m, STGa and STSvp) makes

the subject to have worse or better immediate memory performance. Nevertheless,

there is no significant effect of these regions nor any others within DMN over deferred

memory.

Here, it could be interesting to remark the bilateral effect of TE1m within DMN. At

the view of it, both verbal and non-verbal areas seem to be important for immediate

recall performance at RAVLT. This effect disappears when interactions are between

DMN and outside-DMN regions, or even between all whole cortex regions. In these

cases, there is only effect of the right temporal lobe, indicating no differences in the

amount of verbal information sent to the rest of the cortex and no effect of language

over memory performance, which seems contraintuitive. Along with these right tem-

poral effects in the outside-DMN condition, precuneus+cingulate nodes come into

play. More precisely, one region of each node (i.e. left and right) is affecting im-

mediate memory performance by having a different amount of outgoing information

to the rest of the cortex. Regions in these nodes have not an unified role regarding

Outside-DMN condition. Finally it seems interesting and again contraintuitive that

the hippocampal DMN-nodes have no effect over these memory scores, since it is

an important area for memory. However, this could be caused by an insufficient

parcellation of the area.

4.2 Conclusions

The main conclusion of this study is that temporal statistical dependencies among

BOLD signal can describe very interesting phenomena in terms of brain activity. As

it has been shown here, there is an hierarchical aspect underlying DMN interactions.

In this hierarchy, frontal and parietal DMN nodes play a temporal dominant role

over both the rest DMN nodes and the rest of the cortex, while precuneus+cingulate
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and temporal areas are under the dominance of the rest of DMN nodes.

Regarding EM, the causal connectivity perspective taken here is able to reveal direc-

tional implications in regions related to functions needed to correctly complete the

EM test used here (i.e. RAVLT), such as audition, memory and verbal processing. In

addition, it has also revealed changes in the directional role of very spatially precise

regions of the DMN (particularly in temporal and precuneus+cingulate areas).

All in all, causal connectivity analyses provide a very potential and not really ex-

plored approach to describe cortical interactions and patterns of activity which could

improve the understanding about cognition in healthy and clinical paradigms.
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