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Can Fit Indices  be used to evaluate Structural Equation Models? 

 

Abstract 

 

In recent years, many different fit indices have been formulated as an alternative for the 

standard likelihood ratio test (LRT) of Structural Equation Models (SEM). These fit indices 

were developed to solve specific problems associated with the LRT namely, sensitivity to 

sample size; the problem that no SEM will ever be an exact representation of reality; and the 

problem of deviation from the assumptions of the standard test. There is, however, one 

problem related to using the LRT that has been largely ignored by the developers of fit 

indices and this is the LRT’s varying sensitivity to the different characteristics of a model and 

different types of error. Because of this problem, it is impossible to use the LRT to test the fit 

of models with a fixed critical value. Since most new fit indices are functions of the fitting 

function or the test statistic itself, it was expected that the fit indices would have the same 

sensitivity problems as the LRT statistic. In the present paper, we confirm this by means of a 

Monte Carlo experiment. We also show that fit indices do not provide a simple instrument to 

test the fit of models. We conclude that the current practice of evaluating the fit of a model on 

the basis of the value of fit index and a general specified threshold is not justified.  

 

Keywords: Structural Equation Models (SEM), Likelihood Ratio Test (LRT), chi-

square goodness-of-fit test, power, sensitivity analysis, goodness-of-fit indices  
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Introduction 

An essential aspect of Structural Equation Modeling is assessing how well the model fits. For 

some time, the standard Likelihood Ratio Test (LRT) has been the most commonly used 

statistic to test the fit of a model. The LRT test, also referred to as the Χ2 test, tests the null 

hypothesis that the analyzed model is true against the alternative general model that the 

variables are just freely correlated.  

 Many authors have argued that there are problems associated with the use of the LRT 

statistic1 (among them Bentler and Bonett, 1980; Anderson and Gerbing, 1984; Long, 1983; 

Marsh and Hocevar, 1985; Saris and Satorra, 1988; Saris, Satorra and Sörbom, 1988; Saris, 

den Ronden and Satorra, 1984; Cudeck and Henly, 1991; Browne and Cudeck, 1992, Hu, 

Bentler & Kano, 1992).  

 First of all, the assumptions underlying the test are seldom fully met in practice. For 

example, the LRT tests whether the hypothesized model fits the data exactly within the 

bounds of sampling error. Yet, a hypothetical model is by definition an approximation of 

reality. Many researchers have, therefore, asked what is the point of a test for exact fit when 

we already know that a model can never be an exact reflection of reality (Cudeck and Henly, 

1991; Browne and Cudeck, 1992). 

 Another problem is that of the violation of distributional assumptions, such as 

multivariate normality of the data. Asymptotic distribution-free  X2 goodness-of-fit tests 

(Browne, 1984) and other robust Χ2 goodness-of-fit test statistics, such as the scaled test 

statistic by Satorra and Bentler (1994), have been developed to deal with this problem.  

                                                 
1 and the Χ2 difference test 
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 In addition, many researchers have emphasized how great the influence of sample size 

is on the Χ2 goodness-of-fit test; that is, the probability of rejecting a model with an irrelevant 

specification error tends to 1 as sample size increases. However, this is quite a desirable 

characteristic for a statistical test. In fact, a test statistic without this characteristic would not 

satisfy what is recognized to be the basic requirement of a test, the so-called property of 

consistency, which implies that the power should tend to 1 when sample size tends to infinity.  

 The problems encountered in applying the LRT to SEM models are well known. 

However, the fact that in the standard use of the LRT the power of the test is not taken into 

account is less often recognized as a problem, although there have been some exceptions 

(Saris and Satorra, 1988; Saris, Satorra and Sörbom, 1987; Saris, den Ronden and Satorra, 

1987). Saris and Satorra (1988) and Saris, Satorra and Van der Veld (2009) showed that the 

power of the test varies with the characteristics of the model such as the number of indicators 

per factor, the size of the loadings and the size of the correlation between the factors. They 

showed that the power of the 5% level test for the same kind and size of error can vary from 

.05 to 1.00. As a consequence, under certain conditions misspecification can lead to rejection 

of the model whereas under other conditions the same error will pass undetected.  

 Saris, Satorra and Sörbom (1987) showed that the LRT is generally applied as a test 

for the whole model even though the test has a different sensitivity to different kinds of error. 

That is to say, the LRT does not weight specification errors associated with various 

restrictions of the model equally. There are some restrictions for which the test is more 

sensitive. It is therefore debatable whether it is possible to test the fit of a whole model only 

by means of the LRT. 

 The conclusion that can be drawn from the properties of LRT mentioned above is that 

standard procedures to test goodness-of-fit which ignore the power of the test, are too simple. 

If a SEM model is tested and the test statistic is significant at the 5% level, the model is 
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usually rejected. However, if the power of the test is high, i.e. the test statistic is very 

sensitive to minor specification errors, it is not clear whether the significant value of the test 

statistic is due to large or small specification errors in the model and, therefore, the simple 

rejection of the model is no longer justified. On the other hand, when the test statistic is not 

significant at the 5% level, one tends not to reject the model. However, when the power of the 

test is also low, even large specification errors have a low probability of being detected. For 

this reason, Saris, Satorra and Sörbom (1987) concluded that making decisions on the basis of 

the LRT test statistic is not justified unless the power of the test is taken into account.  

 To cope with the problem of the sample size and with the test of exact fit, alternative 

measures of fit have been developed and put forward. However, since most of these indices 

are based on the fitting function or on the LRT statistic, we expect these indices to display the 

same problems as the LRT i.e. vary according to the characteristics of the model. The 

problems will be analogous to those of the LRT if one uses a fixed critical value for the fit 

index, as is normally done: some misspecifications will be detected while others will not, 

depending on the characteristics of the model and the type of misspecification. This would 

imply that these fit indices can not be used in a simple way, that is, evaluating the fit of a 

model by comparing the value of the fit measure with a fixed threshold level. This means that 

the routine use of fit indices in this simplistic way is unjustified; ,The sensitivity of these 

indices to the characteristics of the model and the types of errors should always be taken into 

account when using fit indices. Saris, Satorra and Van der Veld (2009) have shown this for 

some simple but fundamental models. Here we would like to illustrate that this phenomenon 

is very general i.e. it holds for many more models and fit indices. 

 We begin with a brief description of well known and routinely used goodness-of-fit 

indices. Next, we will address the problems in the application of these fit indices and pay 

some attention to other studies on this subject. Then, we describe our own study design. After 
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that, we present the results of the Monte Carlo experiments which show that the same 

specification error under different circumstances can lead to considerably different values for 

the fit indices. Finally, the consequences of our results are discussed.  

 

Goodness-of-fit indices 

To overcome the effects of sample size on the LRT, several researchers proposed alternative 

goodness-of-fit indices which they claimed did not vary with the size of the sample. Most of 

these indices depend indirectly on the minimum value of the fitting function. They are 

usually classified either as stand-alone indices or incremental fit indices2 (Bollen, 1989; 

Gerbing and Anderson, 1993; Marsh et al., 1988; Tananaka, 1993). Stand-alone indices are 

based on the results of one hypothesized model and assess the degree to which the model 

accounts for sample covariances. Examples include Χ2 divided by its degrees of freedom, 

Hoelter’s CN, the information criterion of Akaike (AIC) and the modification of Akaike’s 

criterion by Schwartz (SK). 3 

 Incremental fit indices4 compare the hypothesized model under study with a baseline 

model. Usually the baseline model is a null model in which all indicators are specified as 

being uncorrelated, although other baseline models have also been suggested (Sobel & 

Borhnstedt, 1985). The Bentler-Bonett Index, the Relative Fit Index, the Tucker-Lewis index 

and the Bollen’s Δ2 indicator are all examples of this type of indicator. 

                                                 
2 Also other classifications are used. For example, Fan, Thompson and Wang (1999) distinguish  

 three types of fit indices; Tanaka (1993) suggested categorising fit indices along 6 dimensions. 
3 For recent discussion on fit indices, see the March 2000 Special issue on Model Selection in the Journal  

 of Mathematical Psychology. 
4 It is common use to subdivide these incremental fit indices into two (see for example Marsh,  

 Balla and McDonald (1988) or three subtypes (Hu and Bentler, 1999).  
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 There are also two fit measures that do not use the independence model as the 

baseline model but use a model that assumes that all elements of the covariance matrix are 

zero, not only the off-diagonal elements. These two measures are the Goodness-of-Fit Index 

(GFI) and the Adjusted Goodness-of-Fit-Index (AGF).  

 To deal with issues of deviation from an exact fit (since all the LRT tests are 

concerned with the null hypothesis that a model exactly fits the population covariance 

matrix), Bentler (1990) put forward three fit indices - Δ, FI and CFI -based on non-centrality. 

These three fit indices are also incremental fit measures. Browne and Cudeck (1992) 

introduced the RMSEA test of close fit which is a stand-alone measure5 based on a so-called  

non-centrality parameter. 

 All fit indices mentioned so far are based on value(s)-of-fit functions, the LRT 

statistic(s) or non-centrality parameter(s). There is, however, also a fit measure that is not 

based on any of these statistics but on the residuals between observed and reproduced 

covariances. It is called the Standardized Root Mean Square Residual (SRMR). 

 Table 1 gives an overview of the names, references, cut-off values and formal 

definitions of the most commonly used fit indices that will be evaluated in this study.   

 

Table 1 about here 

 

Problems in the application of fit indices 

Hu and Bentler (1998) mention four important problems in assessing the fit of a model by 

means of goodness-of-fit indices: 1) sensitivity to model misspecification, 2) small-sample 

bias, 3) effects of the estimation method and 4) effects of violation of normality and 

                                                 
5 There have been many more fit indices developed along this line. For example, MCDonald and Marsh (1990) 

suggested the RNI index; McDonald (1989) introduced the index μh; Cudeck and Henly (1991) introduced F0 ;  
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independence. Another important aspect is the interpretation of the value of the fit indices, in 

other words, determination of the cut-off criteria, above or below  which a model is 

considered as being a correct model. 

 Several studies have shown that a lot of the goodness-of-fit indices are still 

substantially affected by sample size (Anderson and Gerbing, 1984; Bollen, 1986, 1989, 

1990; Bentler, 1990; Bollen and Liang, 1988; Browne and Cudeck, 1992; Cudeck and 

Browne,1983, Hu and Bentler, 1998; Marsh, Balla and McDonald, 1988; Marsh, Balla and 

Hau, 1996; McDonald and Marsh, 1990). As a consequence, researchers with different 

sample sizes could come to different model choices. The effect of sample size varies 

according to the data set and the fit index (Marsh, Balla and McDonald, 1988). 

 Sobel and Bohrnstedt (1985) have argued that the baseline model recommended by 

Bentler and Bonett is not appropriate, except in purely exploratory cases. They claim that the 

choice of a baseline model should depend on theoretical considerations and prior knowledge 

about the concepts being studied.  

 Weng and Cheng (1997) emphasise that relative fit indices that use the null model as a 

baseline model, differ with respect to their estimation methods because the function values 

and the X2 test statistic  vary across the methods of estimation. Therefore, they claim that a 

fixed cut-off criterion for such indices, independent of the estimation method, is not 

advisable. 

 Finally, James et al. (1982) suggested adjusting (incremental) fit indices for loss of 

degrees of freedom, by multiplying them by the ratio dh/d0, where dh represents the degree of 

freedom of the hypothesised model and d0 the degree of freedom of the baseline model. The 

importance of parsimony is also addressed for example by Mulaik et al. (1989) and Bentler 

and Mooijaart (1989).  
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 McDonald and Marsh (1990), although acknowledging the importance of parsimony, 

claimed that there ‘does not appear to be any mathematical basis for deciding what function 

of the parsimony ratio and the badness-of-fit ratio would weight them appropriately’. 

Williams and Holahan (1994) showed that the efficiency of the parsimony correction index 

(the one considered by them) is influenced by the type of the model and the number of 

indicators per latent variable. 

 

Fixed critical values of fit indices   

As we have shown, a lot has been said about fit indices, which are currently so popular, but 

the sensitivity of these indices with respect to other aspects of the model is not mentioned. 

 As can be concluded from the goodness-of-fit indices shown in Table 1, most fit 

indices are somehow based on the minimum of the fitting function or on the LRT. Therefore, 

to a certain extent they should display the same application problems as the LRT. If this is 

correct, one can also not use fixed critical values or cut-off points for the different fit 

measures as is currently common practice. 

 There are, nevertheless, fixed cut-off criteria specified for most of the fit indices. The 

commonly used cut-off criteria for the different indices are shown in Table 1. Marsh (1995) 

emphasized that no rationale has been given for these values. Because many severely 

misspecified models are considered acceptable on basis of a cut-off value of .90 for CFI, 

Mulaik et al (1989) suggested raising this value to 0.95. Marsh and Hau (1996) found that the 

use of conventional cut-off criteria may be appropriate in some situations but not in others. 

Hu and Bentler (1999) investigated the number of rejections of true and misspecified models 

at several cut-off values for fit indices. Their results led them to propose higher cut-off values 

than are commonly required for model selection. They suggest a cut-off value of .95 for the 

ML-based TLI, Δ2 (BL89), RNI and CFI; a value close to .08 for SRMR and a value close to 
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.06 for RMSEA. These values seemed to result in lower Type-II error rates with acceptable 

Type-I error rates. Recently, several papers have appeared that suggest that fixed critical 

values can not be used in order to evaluate the fit of models (Beaducel and Wittmann 2005, 

Fan and Sivo 2005,   Marsh and Hau 1996 and Marsh, Hau and Wen 2004, Yuan 2005). This 

does not mean that the procedure for evaluation of models has been changed in practice. 

In this paper we want to show that the problem of the fit measures in the same as the problem 

of the X2 test with respect to the sensitivity of the indices to other characteristics of the model 

than the size of the misspecification. This is also the reason why evaluation with fixed critical 

values can not work. 

 

 

The design of the study 

To assess the influence of a model’s characteristics on the fit indices, we start with a 

population study. This enabled us to see how, in our study-design, the non-centrality 

parameter and power of the X2 test statistic vary in relation to the characteristics of the 

model. Based on our results and the outcome of a previous study by Saris and Satorra (1988), 

we formulated hypotheses on the influence of the model’s characteristics on the value of the 

fit indices. Next, we used Monte Carlo simulations to investigate the performance of fit 

indices under a variety of conditions related to the model’s characteristics in order to evaluate 

whether our predictions were correct.  

 

 

Model misspecifications 

For our study on population data and our Monte Carlo experiment we used the same 

confirmatory-factor analysis model used by Saris and Satorra (1988) for all generated data 
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sets. The path diagram of this model is presented in Figure 1. In this model there are two 

latent factors (η1 and η2) and eight observed variables (y1 to y8). It is assumed that each latent 

variable (or construct) affects only four observed variables: η1 affects y1 to y4, whereas η2 

affects y5 to y8. It is also assumed that the error terms are independent of each other and of 

the latent variables.  

 

Figure 1 about here 

 

Figure 1 The model tested for each data set  

 

The model in Figure 1 is a special example of the more general confirmatory factor analysis 

model for which the following model covariance structure specification holds:  

 

Σ = ΛΨΛ’ + Θ,          (1) 

 

where Σ is the variance-covariance matrix for the observed variables, Ψ is the variance-

covariance matrix for the common factors, Θ is variance-covariance matrix for the unique 

factors or measurement errors, and Λ is the matrix of the loadings from the common factors 

on the observed variables.  

 

The model in Figure 1 specifies several restrictions in the three matrices that feature in 

equation (1), as shown by the matrix expressions in (2):  
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The parameters presented by a symbol represent the free parameters that have to be 

estimated. All the restrictions (zeros) introduced in a model are potential miss-specifications. 

This means that in the model presented in Figure 1, three different kinds of misspecifications 

can be distinguished: 

 

• One or more omitted effects of latent variables on observed variables. For example, it 

is possible that λ51≠0. In this case we speak of a model with an indicator flaw (Figure 

2). 

• An omitted correlation between the error terms of observed variables of one construct: 

omitted within-correlated error. For example, θ21≠0 (Figure 3). 

• An omitted correlation between the error terms of observed variables of two different 

latent variables: an omitted across-correlated error. For example, θ51≠0 (Figure 4). 



 13

 

Naturally, if one makes other restrictions with regard to the model in Figure 1, other 

misspecifications are also possible. In fact, there is one case where we fitted a model 

restricting the correlation among the two factors to be 1 (i.e., we fitted a one factor model 

with eight indicators) when in fact the true population value of this correlation was 0.9 (see 

Figure 5).  

 

Figure 2, 3, 4 and 5 about here 

Figure 2 The model used to generate the data with an indicator flaw 

Figure 3 The model used to generate the data with a correlated error within a construct 

Figure 4 The model used to generate the data with a correlated error across constructs 

Figure 5 The model used to generate the data with a factor correlation of 0.9 which is  

 analyzed assuming that the correlation is 1 

 

The four kinds of misspecifications described above imply that four models have been used 

to generate the data. The model 2 - 5 are presented in figures 2 to 5. The purpose of the 

experiment was to show that the value of fit indices in the misspecified model varied 

depending on the different circumstances. So, we examined the behavior of fit indices for 

each misspecification, separately, to reduce the influence of the kind and size of the 

misspecification. After all, it is hard to determine when different misspecifications are of the 

same size, for example, is an indicator flaw of 0.1 the same size as an omitted error term of 

0.1?  

 We did not vary the size of the sample because many researchers have already 

addressed the influence of sample size on the value of fit indices. Nor did we vary other 

aspects, such as the distribution of the variables, the kind of fitting function and so on, which 
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have been studied by other researchers (see for example Hu and Bentler, 1998). This was not 

the goal of our study.  

 In our Monte Carlo experiment, all data were generated from a multivariate normal 

distribution; a fixed sample size of n=1000 was used, while the Maximum Likelihood 

approach was also used in all the cases. 

 To demonstrate the effect of the size of parameters within a specific model context, 

we varied the size of the loadings and the size of the correlation between the constructs. The 

values of the parameters were chosen as typical values occurring in practice. Because we 

wanted to highlight the problem rather than to go into detail, we did not include a complete 

range of values in our study but selected  the extremes. When there was an indicator flaw or 

an omitted correlated error (models 2 to 4), the sizes of the loadings were 0.9 or 0.5 and  the 

correlation between the factors was either 0.3 or 0.7 respectively. Thus, four different 

combinations can be made for each model. In the case of a misspecified correlation between 

the constructs (model 5), only the loadings between the latent and the observed variables 

were varied. They could be 0.9, 0.7 or 0.5. 

 Misspecification size was 0.1 in the case of an indicator flaw and 0.15 in the case of 

an omitted correlated error. With regard to the correlation between the factors, this 

correlation was specified as 0.9 in the data generation. In the model estimation, however, this 

correlation was fixed as 1, assuming a one factor model. 

 

Study of population data 

On the basis of parameter values, one can calculate the population covariance matrices 

associated with the Models 2 to 5 (see figures 2 to 5). For each of the Models 2 to 4 (see 

figure 2  to 4), four population covariance matrices were calculated. For Model 5 (see Figure 

5), we calculated three population covariance matrices. Next, we analyzed all these matrices 
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using the incorrect (misspecified) model shown in  Figure 1. In case of model 2, we assumed 

in our analysis that λ51 was equal to zero, while in the data generation λ51 was set at 0.1. For 

model 3, θ21 was set as 0.15 for the computation of the population covariance matrices , while 

in the analysis this parameter was restricted to 0. With regard to model 4, the same applies to 

θ51. In case of model 5, in the generation of the data the correlation among factors was 

assumed to be 0.9, while in the analysis it was restricted at the value 1. So the analyzed 

model differed from the true (population) models that had generated the data in just one 

dimensional misspecification.  

 These analyses provided values for the test statistic. The deviation from zero for these 

test statistics can only be explained by misspecification of the model. As Satorra and Saris 

(1985) have shown, the value of the LRT statistic in this population study is equal to the non-

centrality parameter associated to the non-central chi-square distribution of the statistic for 

the incorrect model.  Using the non-centrality parameter values obtained in this way,  the  

degrees of freedom of the model and  a chosen significance level  the power of the test can be 

obtained from the tables for the non-central Χ2 distribution.  

 

Table 2 about here 

 

Table 2 shows the non-centrality parameters obtained for the specific hypothesized model Hh 

and the baseline independence model Hb. It can clearly be seen that the non-centrality 

parameters, and as a consequence also the power of the LRT, vary according to the 

characteristics of the model. The derived power estimates for these models will be presented 

in tables 3, 4, 5 and 6 together with the results form the simulation study.  

 In general, the results found are in agreement with the study of Saris and Satorra 

(1988). The size of the loadings has a strong effect on the power of the test. With high 
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loadings the probability that the error will be detected is substantially larger than with low 

loadings. This holds for all kinds of errors in this study.  

 The effect of the size of the correlation between the factors varies according to the 

type of error. With an indicator flaw, the power becomes smaller as correlation between the 

factors increases. On the other hand, where there is an omitted correlated error term within 

constructs, the power increases when the correlation increases, at least when the loadings are 

high. With low loadings there is hardly any effect. For an omitted correlated error across 

constructs, the power is hardly affected by the size of the correlations.  

 On the basis of the results of this study of population data and the fact that the stand-

alone fit index RMSEA is a function of the non-centrality parameter, we expect the same 

effects of model characteristics that we found for the X2 test.  

With respect to the Incremental Fit Indices (INFI), the power of rejecting the model 

will depend on how severely misspecified the “base-line” model underlying the specific INFI 

used is. The general formulae of the incremental fit indices is:  

INFI = (X2
b - X2

h )/ X2
b = 1- X2

h / X2
b     (3)  

where X2
h and X2

b stands for the chi-square goodness-of-fit of the analyzed and baseline 

model respectively. Rejection of the analyzed model will occur when the INFI of (3) is 

smaller than a typical threshold value, usually .95, i.e. when:  

(X2
b - X2

h )/ X2
b < .95; 

that is, when:  

X2
h > .05 X2

b         (4) 

 

Clearly, when the base-line model is highly misspecified, the value .05 X2
b will be a very 

large number and the inequality (4) will be hard to hold, even if the analyzed model happens 

to suffer from relevant substantial misspecification, i.e. the power of the test will be very low 
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in this case. However, when the baseline model is almost correct, the right hand side of the 

equation (4) will be small, and therefore even extremely small misspecifications of the 

analyzed model will lead to its rejection by the INFI approach, that is, the power will be high. 

It follows that with very “noisy” data (i.e., data that has a lot of measurement error and lack 

of substantial structure), the baseline model specifying the independence of all the variables 

will be close to the true model, so small deviations from the true model may lead to rejection 

of the analyzed model.  

 Furthermore, in cases of highly structured data, the baseline model of independence 

among variables will be greatly  misspecified and  will thus have an associated high value for 

.05 X2
b. This means that in such cases there will be a lack of power to detect misspecification 

of the analyzed model. This explains the differential behavior of the INFI when compared 

with the standard chi-square goodness-of-fit model approach. Due to the influence of the 

baseline model, the power of the incremental fit indices will often be opposite to the power of 

the X2 and stand alone tests. This can be seen in the tables below. 

 It is clear that incremental fit measures can attract the same kind of criticism that is 

directed at the standard chi-square test, which says that certain misspecifications always lead 

to rejection of the model (eg. large samples, high power) but not in other cases (small 

samples, low power). For unstructured data with high background noise, the power of a test 

based on incremental fit indices will be high whereas for extremely structured data, the power 

of a test will be low. This means that these fit measures can not be used in a simple way with 

a fixed critical value if the power of the fit statistic is not taken into account in each specific 

case. 

 Note that the predictions mentioned above don’t apply to the SRMR because this fit 

measure is not a function of LRT statistic. We still included this statistic because we wanted 

to see how it behaves in the different models. 



 18

 Note also that we can view the GFI and AGFI as incremental fit indices, where the 

baseline model is the model that sets variances and covariances equal to zero (and using a 

GLS estimator). Thus, we expect the behavior of an INFI (described above) for GFI and 

AGFI even though the baseline model is now different than the independence model and the 

fit function is not ML but GLS.  

Finally, it is simple to predict that the PNFI will always lead to rejection of the models in our 

models. This is so because for the Model Hh, df=19 whereas df= 28 for the Model Hb, while 

PNFI is equal to (dfh/dfb) NFI. Therefore, even if NFI was maximal, that is to say 1, the value 

of the PNFI would be 19/28 = .67 which is always lower than the critical value (.80) required 

for the PNFI. Although we included the PNFI in our Monte Carlo experiment, we have 

omitted this index because using this index will always lead to rejection of these models 

under all circumstances. Rejections arise due to the specific value of the ratio of the degrees 

of freedom and not due to incorrectness of the model. 

  

 

The Monte Carlo experiment  

 

In our study, we included two “stand-alone fit indices”: RMSEA, SRMR, and several 

“incremental fit indices”: GFI and AGFI, NFI , NNFI, RFI, IFI, PFNI and CFI . For each of 

these fit indices, a cut-off value or threshold was specified, above or below which a model is 

declared to be acceptable (see Table 1).  

 For each of the population covariance matrices (15 in total) that were computed on the 

basis of the values of the parameters (see the paragraph on population data), we generated 

300 samples of size n=1000 cases from the associated multivariate normal distribution. For 

each sample, models Hh and Hb were fitted and the above mentioned fit measures were 
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calculated. This means that for each population covariance matrix and for each fit index, an 

empirical Monte Carlo distribution (300 values) of the index was obtained.  

 Next, on the basis of the conventional cut-off criteria for the fit indices, we examined 

the model rejection rates associated with each of the different fit measures: that is, the power 

of the test under the different circumstances (i.e. how often the wrong model was rejected). 

These rejection rates, the mean of the Monte Carlo distribution, and the population value of 

the index, are presented in tables 3 to 6. The population value of the fit index is the value of 

the fit index when the population covariance matrix is used as input matrix in the estimation 

procedure.  

The tables also show the non-centrality parameters for the Models Hh. The power of the X2 

test was calculated on the basis of these values using the non-central X2 distribution for an α 

level of 5%. Furthermore, the non-centrality parameters for the Models Hb are given. The 

power of the INFI statistic in (3) was approximated on the basis of the non-centrality 

parameter associated to the models Hh and Hb..  We consider the approximation conditional to 

the value of X2
b obtained when fitting Hb, and using a non-central chi-square approximation 

for X2
h.      We added the power of the X2 test and the incremental fit index INFI to these 

empirical results to facilitate comparisons. 

 

Results of Monte Carlo experiment 

The results are summarized in Tables 3 to 6. We will show that for most fit indices the results 

are in line with what is observed for the power of either the X2 test or the incremental fit 

index INFI. This means that these indices also depend on the characteristics of the model. We 

say that these results will be ‘in line’ because in most cases the fit indices are nonlinear 

functions of the value of the fitting function, the non-centrality parameter or the X2 test 

statistic. This means that it is not feasible to expect a perfect relationship.  
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The results for data with an indicator flaw 

Table 3 gives the results of estimating the model of equation (2) (Figure 1) on data generated 

with the model with an indicator flaw across the constructs presented in Figure 2.  

 

Table 3 about here 

 

 

The most striking aspect shown in Table 3 is that for this type of error and the population 

values of the parameters, most fit indices are incapable of detecting the misspecification in 

the model. Yet with three fit measures, the results clearly show the influence of the size of the 

loadings and of the size of the correlations between factors on the percentage of cases in 

which the model is rejected. When the RMSEA is used as an index of fit, the percentage of 

model rejections is higher with high loadings than with low loadings. In addition, when the 

loadings are .9, the model is rejected more often when the correlation between factors is 

lower. This result is in line with our expectations on the basis of the power of the X2 test.  

 In the case of the RFI, the opposite occurs for the different values of the loadings. In 

the case of the NFI, the model characteristics affect the value of the index in the same way as 

with the RFI, although the effect is much smaller. This result is in line with the predictions of 

the power of the INFI index presented at the bottom of the table. 

 Although the percentage of model rejections on the basis of the other fit indices seems 

not to be influenced by the model characteristics, this does not mean that the value of the fit 

indices does not also vary. However, the variation is small and the mean values are always 

greater than the conventional cut-off criteria. For example, the mean value of the AGFI varies 

between .97 and .99. So the power can not vary from one model context to the next.  
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The results for data with a correlated error within a construct 

Table 4 presents the results of estimating the model of equation (2) (Figure 1) on data 

generated with a correlated error term within a construct (Figure 3). 

 

Table 4 about here 

 

The influence of the size of the loadings and of the factor correlation on the value of the fit 

indices is clear if one looks at the results in Table 4, although the effect does not operate in 

the same direction and is not equally strong for all the fit indices.  

 In the case of the RMSEA, the percentage of model rejections decreases as the 

loadings decrease. These findings are in line with our expectations on the basis of the power 

of the LRT. In addition, with the RMSEA, the size of the correlation between the constructs 

seems to be of no real influence.  

 With most of the other indices, the effect operates in the opposite direction. In the 

case of the RFI, the percentage of model rejections increases when the loadings decrease and 

the percentage rejections seems to increase with the size of the factor-correlation. This also 

applies to the NFI and the NNFI although the effect is much smaller. These results are again 

in line with the power predictions for the INFI index presented at the bottom of the table. 

 The CFI, IFI and the SRMR seem unable to detect misspecification whatever the 

circumstances, since the percentage of model rejections is nearly always 0%. However, as 

already shown in Table 3, this does not imply that the value of this index is constant. For 

example, the mean value of the IFI and CFI range from .93 to .98; the mean value of the 

SRMR varies between .02 and .04. However, because the values of the IFI and CFI are nearly 
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always greater and the value of the SRMR smaller than the conventional cut-off criteria, the 

percentage of model rejections is always around 0%.  

 The results for the GFI and AGFI are particularly striking. Contrary to what we 

expected, here we also see high power for the highest loadings, with the influence of factor 

correlation being considerable in this case.  Such discrepancy, however,  between GFI and 

AGFI and the other INFI’s could just be another instance of the severe effect of the 

estimation method on the INFI fit indexes as described in Sugawara and MacCallum (1993) 

(see also Fan, Thompson and Wang, 1999).  As mentioned before, GFI and AGFI can be 

viewed as an INFI with respect to a baseline model  that sets the covariance matrix equal to 

zero (a “zero model”),  which is a highly misspecified model when the loadings are high.    

However, in computing GFI and AGFI, the X2  for such a “zero-model” is obtained    using a 

GLS fitting function, in contrast to the ML fitting function used to evaluate the independence 

model of the other INFI’s.   Again, in this case we see a value of the goodness of fit indexes 

being  affected by other factors than the correctness or not of the model.   

 

The results for data with a correlated error across constructs 

Table 5 presents the results of estimating the model of equation (2), presented in Figure 1, on 

data generated with a correlated error term across constructs (Figure 4).  

 

Figure 4 and Table 5 about here 

 

Figure 4. The model used to generate the data with a correlated error across constructs  

 

In the case of a correlated error across constructs, the influence of model characteristics is 

also obvious (Table 5). Here, the effect of the size of the loadings on the percentage of model 
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rejections works in the same direction for all indices: the smaller the loadings, the smaller the 

percentage of model rejections, which is in line with the expected power for the stand-alone 

and incremental fit indices. Furthermore, when using the NFI, NNFI, CFI or IFI, we see that 

with loadings of .5 the model is more frequently rejected with a low factor correlation than 

when the correlation between factors is high. This is also in line with the predictions for the 

incremental fit indices.  

 This result is not obtained for the GFI and AGFI although the same pattern can be 

seen in the mean values of these indices but in absolute value the values of the indices are too 

high to lead to differences in power for the different models. Again, in the case of the SRMR 

the model is accepted in all circumstances, yet the mean values of the fit indices differ again 

with the characteristics of the model. Although the variation in the mean values is not large in 

absolute terms in relative terms it is. Furthermore, when one uses the RFI to determine the fit 

of the model in the case of a correlated error across constructs, the model is nearly always 

rejected under various characteristics. Even though we see some variation in the mean values 

of this fit index, in this case this variation is not large in contrast to the outcome shown in the 

previous table. 

 

Results for data with a factor correlation of .9 

Table 6 shows the outcomes resulting from estimating the model of equation (2), presented in 

Figure 1, on data generated with a misspecified correlation between the latent variables 

shown in Figure 5. 

 

Figure 5 and Table 6 about here 
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Figure 5. The model used to generate the data with a factor correlation of .9 which is 

analyzed assuming that the correlation is 1. 

 

If one assumes a one-factor model when this is not the case (i.e., the data come from a two 

factor model with correlation .9), the model characteristics (i.e., values of the parameters) 

influence the decisions taken on the basis of the fit indices. With loadings of .9, the model is 

nearly always rejected. When the loadings are .7 or .5, the model is practically always 

accepted. Exceptions are the RMSEA and the RFI. In the case of the RMSEA the model-

rejections is 45 percent when the loadings are 0.7 and decreases to 0%with loadings of 0.5. 

This is in line with our predictions but the effect is much stronger than expected. With the 

RFI the opposite occurs: with loadings of 0.7 the model is almost never rejected, when the 

loadings are 0.5 the model is rejected in 20% of the cases. This result is also in line with the 

expectations but much stronger than expected. When the model is evaluated on the basis of 

the SRMR, again it is never rejected. Still, the mean value of the SRMR varies with the 

model characteristics.  

 

 

Conclusions 

We come to the following conclusions on the effect of model characteristics. The percentage 

of rejections on the basis of fit indices changes substantially when the loadings and the 

correlations between the constructs are varied even though the type and the size of the error 

are kept constant. The model characteristics effect does not work in the same direction and is 

not of equal magnitude for all fit indices. In addition, the effect varies with the kind of 

misspecification. The RMSEA, used so frequently nowadays, seems to be particularly 

sensitive to model characteristics. 
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 In the case of an indicator flaw, many of the fit indices in this study seem to be 

unaffected by the characteristics of this model context, at least in terms of the percentage of 

model rejections. However, when we look at the mean value of the fit indices, we see that 

they vary with the model characteristics, even though this variation is not very large. It would 

not be difficult to create more variation, for example by increasing the size of the indicator 

flaw to .2. 

The percentage of model-rejections does not vary at all when the SRMR is used to evaluate 

the fit of the model. However, the mean value of this indicator varies with the model 

characteristics. This means that the SRMR is also influenced by the characteristics of the 

model, just as the other fit indices. The fact that, in almost all cases, the value of the SRMR is 

lower than .05 (the standard cut-off value) is probably due to the way this index is calculated. 

The errors in our experiments are not very large and the SRMR is the sum of the squared 

residuals divided by the number of distinct variances and covariances. The latter part of the 

formula can reduce the value of the SRMR considerably. 

 As we have mentioned above the results for the PNFI were omitted in the tables. In 

the case of the PNFI, the percentage of cases in which a wrong model was accepted seemed 

not to be influenced by the characteristics of the model. In all cases, the wrong model was 

rejected. One could assume that this means that the PNFI is a better fit-index than the others. 

Yet when one looks at the formula of the PNFI and the value of the conventional cut-off 

criterion, it becomes clear that the 100% rejection is due to the ratio of the degrees of 

freedom and has nothing to due with the lack of fit of the model.  

 One might say that the fluctuating percentage of model rejections is due to the 

conventional cut-off criteria value, but this is not the case. As we have seen in this paper, the 

population value itself of the indices is substantially affected by the model characteristics. 
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Fixing the cut-off criteria at other values is no solution for the dependency of the value of the 

fit indices on the model characteristics. 

 

Discussion 

 

Saris and Satorra (1988) have shown that the  X2 statistic used to test structural equation 

models is not only affected by the misspecifications in the model but also by other 

characteristics of the model. Since most of the current fit indices are based in some way on 

the fitting function or on the LRT, we expected these indices to show the same kind of 

problems as the LRT. For two fundamental but simple models this phenomenon was shown 

in Saris, Satorra and Van der Veld (2009). In this paper  their study is extended to more 

models and fit indices. Keeping the kind and the size of the error constant, we showed that 

the percentage of model rejections varied with the characteristics of the model. It was also 

obvious that the kind of error influences the decision one would take on the basis of the fit 

indices.  

 One could assume that it would be justified to use these indices in the standard way to 

compare the fit of similar models, but this is also not the case. After all, as is obvious from 

our Monte Carlo experiment, the fit indices have a different sensitivity to different kinds of 

errors. This means that we cannot use fit indices in the standard way to evaluate the fit of the 

model. Of course one could look at the size of the fit index or the X2. If the index is very 

large this might be an indication for misspecifications in the model. However it is possible 

that these large values are due to very small misspecification for which the test statistic or fit 

index is very sensitive. If the fit index of X2 is very small one can assume that the model does 

not contain misspecifications. However, as we have shown above it can also be that there are 

large misspecifications for which the fit statistic is not sensitive.  
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 In 1987 Saris, Satorra and Sorbom suggested to use the Expected Parameter Change 

(EPC) to detect misspecifications in SEM. This solution is re-iterated and illustrated again in 

Saris and Satorra (forthcoming). For the moment we think that the use of the EPC is the best 

option for the detection of misspecification because it gives a direct estimate of the possible 

misspecifications in the model. In the paper of Saris, Satorra and Van der Veld (2009) the 

authors adjust this approach by suggesting taking into account the test statistic (MI) and the 

power of the test. For further details we refer to this paper. 
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TABLE 1 

Fit Indices included in the study 

Fit index Formula1) Reference Cut-off 

value 
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Table 1 Fit Indices included in the study - continued 

Fit index Formula Reference Cut-off 

value 
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1) Meaning of subscripts and symbols: 

− F is the fitting function, Χ2 = n*F 

− n=N-1, N is the sample size 

− ‘h’ refers to the hypothesized model 

− ‘u’ refers to the ultimate null model in which all estimations are fixed at zero 

− ‘b’ refers to the baseline model, which is usually the null model in which no common 

factors for the input measures and no covariances among these measures are specified. 

This is usually done by setting all of the covariances among the measures at zero 

while allowing their variances to be estimated as free parameters. 

− p: number of observed variables 

− t: number of free parameters 

− λ is the non-centrality parameter 

− )0,~max(ˆ hh λλ = ; hdfhnFh −=λ~  

− )0,0
~max(0ˆ λλ = : 000

~ dfnF −=λ  
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TABLE 2 

Non-centrality parameter (ncp) and power of the 5% level LRT for the four types of 

misspecified models.  

kind of misspecification loadings correlation ncp 

    model  

       Hh 

ncp 

Base model  

Hb 

indicator flaw .9 .7 32.07 8824 

 .9 .3 43.33 7879 

 .5 .7 1.7 835 

 .5 .3 6.5 676 

correlated error within a construct .9 .7 221.76 9271 

 .9 .3 169.84 8781 

 .5 .7 8.55 853 

 .5 .3 10.88 720 

correlated error across constructs .9 .7 481.93 8585 

 .9 .3 457.03 8037 

 .5 .7 28.51 821 

 .5 .3 29.26 669 

misspecified factor correlations .9 .9 521.0 8780 

 .7 .9 50.7 2937 

 .5 .9 4.7 929 
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 TABLE 3 

For indicator flaw data and misspecification error of .10, the table shows the percentage of model rejection (dark 
stripe), and the mean and population values of the fit index. (df=19). 

loadings .9 loadings .5 *)  
correlation .7 correlation .3 

 
correlation .7 correlation .3 

RMSEA     
% rejection 22 45 0 0 
mean value .0402 .0479 .0090 .0122 
population value .026 .036 0*) 0*) 

SRMR     
% acceptance 0 0 0 0 
mean value .0159 .0259 .0186 .0224 
population value .014 .024 0*) 0*) 

GFI     
% rejection 0 0 0 0 
mean value .9870 .9844 .9949 .9943 
population value .99 .99 1*) 1*) 

AGFI     
% rejection 0 0 0 0 
mean value .9753 .9704 .9903 .9893 
population value .98 .98 1*) 1*) 

NFI     
% rejection 0 0 1 7 
mean value .9942 .9919 .9765 .9666 
population value 1.00 .99 1*) 1*) 

NNFI     
% rejection 0 0 0 0 

mean value .9917 .9916 .9974 .9914 
population value 1.00 1.00 1*) 1*) 

CFI     
% rejection 0 0 0 0 
mean value .9964 .9943 .9961 .9926 
population value 1.00 1.00 1*) 1*) 

IFI     
% rejection 0 0 0 0 

mean value .9964 .9943 .9982 .9942 
population value 1.00 1.00 1*) 1*) 

RFI     
% rejection 0 0 9 43 
mean value .9915 .9831 .9654 .9508 
Population value .99 .99 1*) 1*) 

 
Power analysis     
ncp  Hh  (df=19) 32 43 1.7 6.4 
Power of the X2 test .96 .99 .09 .25 
ncp Hb 8824 7896 835 676 
Power INFI statistic  0 0 0.004 .12 
     

*) The program LISREL does not give the values of the fit indices in case of perfect fit. The values reported are 
just presumed. 
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TABLE 4 
For correlated error within a construct and misspecification error of .15, the table shows the percentage of model 
rejection, and the mean and population values of the fit index. 

loadings .9 loadings .5 *)  
correlation .7 correlation .3 

 
correlation .7 correlation .3 

RMSEA     
% rejection 100 100 1 0 
mean value .1077 .0953 .0293 .0198 
population value .10 .089 .0 .0 
SRMR     
% rejection 2 0 0 0 
mean value .0405 .0270 .0262 .0228 
population value .04 .025 .019 .015 
GFI     
% rejection 93 18 0 6 
mean value .9395 .9551 .9905 .9330 
population value .94 .96 1.00 1.00 
AGFI     
% rejection 84 9 0 6 
mean value .8853 .9150 .9820 .9268 
population value .89 .92 .99 .99 
NFI     
% rejection 0 0 26 25 
mean value .9742 .9781 .9577 .9029 
population value .98 .98 .98 .98 
NNFI     
% rejection 1 0 15 12 

mean value .9648 .9709 .9684 .9198 
population value .97 .97 1.00 1.02 
CFI     
% rejection 0 0 3 7 
mean value .9761 .9803 .9785 .9258 
population value .98 .98 1.00 1.00 
IFI     
% rejection 0 0 3 7 

mean value .9761 .9803 .9788 .9265 
population value .98 .98 1.00 1.01 
RFI     
% rejection 2 0 73 65 
mean value .9619 .9678 .9376 .8853 
population value .96 .97 .97 .98 
 
Power analysis 

    

ncp  Hh 223 170 18.1 10.6 
Power of X2 statistic 1 1 .73 .44 
ncp. Hb 9271 8781 853 720 
Power of INFI statistic 0.00 0.00 .24 .18 
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TABLE 5 
For a correlated error across construct and misspecification error of .15, the table shows the percentage of model 
rejection, and the mean and population values of the fit index. 

loadings .9 loadings .5 *)  
correlation 

.7 
correlation .3 

 
correlation .7 correlation .3 

RMSEA     
% rejection 100 100 9 6 
mean value .1590 .1551 .0378 .0387 
population value .16 .15 .022 .023 
SRMR     
% rejection 0 0 0 0 
mean value .0244 .0262 .0278 .0306 
population value .023 .024 .021 .023 
GFI     
% rejection 100 100 0 0 
mean value .9069 .9118 .9882 .9880 
population value .91 .92 .99 .99 
AGFI     
% rejection 100 100 0 0 
mean value .8236 .8329 .9776 .9774 
population value .83 .84 .99 .99 
NFI     
% rejection 96 97 62 88 
mean value .9419 .9409 .9441 .9305 
population value .94 .94 .97 .96 
NNFI     
% rejection 100 100 49 72 

mean value .9174 .9161 .9489 .9351 
population value .92 .92 .98 .98 
CFI     
% rejection 91 93 15 37 
mean value .9440 .9431 .9653 .9560 
population value .95 .95 .99 .98 
IFI     
% rejection 90 93 14 24 

mean value .9440 .9432 .9657 .9565 
population value .95 .95 .99 .98 
RFI     
% rejection 100 100 94 100 
mean value .9144 .9130 .9177 .8977 
population value .92 .92  .95 .94 
      
Power analysis      
ncp Hh 482 457  28.6 29.3 
Power of the X2 test 1 1  .93 .94 
ncp Hb 8585 8037  821 669 
Power of INFI  .95 .96  .64 .86 
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TABLE 6 
For factor correlation data, misspecification error of .1, the table shows the percentage of model rejection, and 
the mean and population values of the fit index. 

loadings  
.9 .7 .5 

RMSEA    
% rejection 100 45 0 
mean value .1624 .0489 .0166 
population value ,16 ,038 ,0 
SRMR    
% rejection 0 0 0 
mean value ,0358 ,0247 ,0209 
population value ,035 ,021 ,011 
GFI    
% rejection 100 0 0 
mean value ,8303 ,9812 ,9931 
population value ,83 ,99 1,00 
AGFI    
% rejection 100 0 0 
mean value ,6945 ,9661 ,9877 
population value ,70 ,97 1,00 
NFI    
% rejection 97 0 2 
mean value ,9375 ,9767 ,9709 
population value ,94 ,98 ,99 
NNFI    
% rejection 100 0 0 

mean value ,9154 ,9766 ,9889 
population value ,92 ,99 1,02 
CFI    
% rejection 93 0 0 
mean value ,9396 ,9833 ,9914 
population value ,94 ,99 1,00 
IFI    
% rejection 93 0 0 
mean value ,9396 ,9833 ,9922 
population value ,94 ,99 1,01 
RFI    
% rejection 100 1 20 
mean value ,9125 ,9674 ,9593 
population value ,92 ,98 ,99 
    
Power analysis    
ncp Hh 521 50.7 4.7 
Power of the X2 test 1 .99 .19 
ncp Hb 8780 2937 929 
Power of INFI  .99 0.000 .004 
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Figure Captions 
 

FIGURE 1. The model tested for each data set 

FIGURE 2. The model used to generate the data with an indicator flaw. 

FIGURE 3. The model used to generate the data with a correlated error within a  

 construct  

FIGURE 4. The model used to generate the data with a correlated error across  

 constructs  

FIGURE 5. The model used to generate the data with a factor correlation of .9 which is  

 analyzed assuming that the correlation is 1  
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Figure 1   
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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