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Abstract

Protein–protein interactions (PPIs) are crucial in many biological processes. The first step towards the
molecular characterisation of PPIs implies the charting of their interfaces, that is, the surfaces mediating the
interaction. To this end, we present here iFrag, a sequence-based computational method that infers possible
interacting regions between two proteins by searching minimal common sequence fragments of the interacting
protein pairs. By utilising the sequences of two interacting proteins (queries), iFrag derives a two-dimensional
matrix computing a score for each pair of residues that relates to the presenceof similar regions in interolog protein
pairs. The scoring matrix is represented as a heat map reflecting the potential interface regions in both query
proteins. Unlike existing approaches, iFrag does not require three-dimensional structural information or multiple
sequence alignments and can even predict small interaction sites consisting only of few residues. Thus, predicted
interfaces range from short fragments composed of few residues to domains of proteins, depending on available
information on PPIs, as we demonstrate in several examples. Moreover, as a proof of concept, we include the
experimental validation on the successful prediction of a peptide competing with the aggregation of β-amyloid in
Alzheimer's disease. iFrag is freely accessible at http://sbi.imim.es/iFrag.

© 2016 Elsevier Ltd. All rights reserved.
Introduction

To understand the mechanisms that give rise to
protein–protein interactions (PPIs) and their regula-
tion, it is important to know the molecular details of
an interaction. The first step towards this end is
usually to define the regions that mediate the PPI,
that is, the interface(s). Several experimental tech-
niques help to determine the interacting regions of
PPIs, such as conducting domain deletion experi-
ments, site-directed mutagenesis to disrupt the
er Ltd. All rights reserved.
interaction, domain-based yeast two-hybrid mapping
[1], or footprinting [2], among others. The interface
between two proteins is the result of the specific
interaction between residue pairs playing a structural
and functional role for the interaction. The properties
exhibited by protein interfaces are unique and
distinct from other non-interacting surfaces, and
these are exploited to predict them. For example,
evolutionary constraints lead to higher conservation
of residues involved in interactions [3], to different
amino acid composition propensities [4], or to a
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co-evolving behaviour of residues located in the
interface [5]. Many of these features are present in
specific sequence fragments of the proteins involved
in a specific interface. Thus, the preservation of an
interaction between homolog proteins, which has been
customarily used to predict PPIs [6], implies the
preservation of the local sequence fragments. 3D
information has also been exploited, such as the useof
atomic solvation parameters [7] or the extraction of
structural interacting sequence patterns [8,9]. Correla-
tions found between structural features (structural
loops) and PPIs were similarly applied to predict
interacting regions [10]. Other methods developed to
predict PPI interfaces include DOMINE [11], focused
ondomain–domain interaction predictions by scoring a
comprehensive collection of known and predicted
domain–domain interactions; PIPE-Sites [12] and
SLIDER [13], which infer potential interfaces by
detecting recurring polypeptide sequences or overrep-
resented pairs of patterns in sequences of interacting
proteins; PPIPP [14], based on a two-stage neural
network trained with known interacting residue pairs
from the Docking Benchmark 4.0 [15]; and VORFFIP
[16] and M-VORFFIP [17], based on Random Forest
classifiers integrating evolutionary, experimental,
structure, and energy-based information. Also, sever-
al groups attempted to predict binding interfaces
by means of sequence co-evolutionary approaches
[18], although most servers and programs are still
exclusively committed to protein structure prediction
(e.g., PconsC [19]). For further information, see the
recent review by Esmaielbeiki et al. [20].
Here, we present iFrag, a computational tool that

searchesminimal sequence similarity betweenpairs of
interacting proteins to predict their binding region. iFrag
makes no assumptions about protein domain compo-
sition, neither does it use protein structural information
nor multiple sequence alignments. iFrag scores pairs
of residues, one from each protein partner of a PPI, to
unveil the smallest common sequence fragment of
homolog pairs of interacting proteins. iFrag output
consists on a heatmapwith the scores of residue pairs
that potentially highlights the interacting regions
between two proteins. iFrag also predicts putative
interfaces based on sequence similarity with protein
complexes with known 3D structure (i.e., templates) if
they are available (named BlastPDB in iFrag server).
iFrag-BlastPDB approach requires a minimum per-
centage of sequence identity on the alignment with the
templates (30%). The output is complemented with
sequence feature annotations from Uniprot database
[21] and PFAM domains [22], helping the user to
identify or discard regions of interest useful for
designing validation experiments.
The method is evaluated and compared with other

state-of-the-art applications using a non-redundant
set of proteins for which the interface is known.
Using a non-redundant set for evaluating PPI site
prediction methods is essential since failure to do so
results in overly optimistic applicability measures.
The methods that predict protein–protein interfaces
based only on sequence information typically have
lower accuracies than methods incorporating evolu-
tionary and structural information. Nevertheless,
they are still widely used. Furthermore, the need
for these methods is becoming more important with
the increase of our knowledge on network rewiring
produced by either mutations or alternative forms of
proteins [23,24]. To demonstrate their use, methods
based on sequence information are usually com-
pared with random predictions that tend to have
intrinsically very low accuracies. In this work, we also
show an example of successful application of iFrag
when one of the partners is a small peptide such as
the β-amyloid, with only 42 aa, detecting a potential
peptide able to prevent its aggregation.

Results

Performance and comparison of iFrag predictions
with other methods

The prediction of protein interfaces using only
sequence information is challenging; the probability
of finding a limited set of pairs of contacting residues
(interface) among all possible combinations of pairs of
two sequences is extremely low. It is then not surprising
that the overall performance of iFrag is low, but so are
the rest of the current methods analysed in the work
(Table 1). Most results obtained in the human
interactome benchmark correspond to predictions of
domains. In this sense, iFrag results are comparable in
many examples to DOMINE, as it predicts the domains
involved in a PPI. However, the combination of
accuracy and applicability results in improved AUC-
ROC and AUC-PR of iFrag with respect to DOMINE.
iFrag is also competitive in terms of accuracy and
applicability with the rest of approaches (SLIDER,
PIPE-Sites, and PPIPP). Only the approach of BLAST
(simple search of similarity among complexes with
known structure; iFrag-BlastPDB) is better. This is
highlighted as well by the improvement ratio, which is
the highest for the iFrag-BlastPDBapproach. Certainly,
finding homologs involved in interactions in a known
complex has the best performance; such data,
however, are not always available (the exceptionally
high applicability in Table 1 is caused by a bias in the
validation set, because the knowledge of 3D structure
is a requisite for the validation). Also, failing to obtain a
prediction was only considered in the calculation of the
applicability; for the rest of statistic measures, the
prediction was neglected (i.e., neither as true nor false
on negative and positive predictions). Only the PPIPP
method achieved 100% applicability.
Theother aspect that influences the level of success

is to define how a prediction can be considered
successful. We should consider that the probability of



Table 1. Summary of comparison of sequence-based prediction methods

Method AUC
ROC

AUC
PR

MCC F1 PPV Applicability (%) Improvement ratio

DOMINE 0.66 0.00141 0.0192 0.0032 0.0016 47 1.97
BLAST 0.67 0.05150 0.2222 0.0204 0.1422 78 155.45
PIPE-Sites 0.55 0.00158 0.0204 0.0101 0.005 70 6.11
PPIPP 0.53 0.00680 0.0105 0.0165 0.0087 100 1.29
SLIDER 0.50 0.00057 0.0028 0.0034 0.0025 6 4.52
iFrag 0.74 0.00241 0.0107 0.0023 0.0011 52 1.45

AUC-ROC, AUC-PR, MCC, F1, PPV stand for area under the ROC curve, area under the precision-recall curve, Matthew's correlation
coefficient, F1-scores, and positive prediction value, respectively. The applicability is calculated as the percentage of protein pairs in the
validation set in which each method can be applied (i.e., it returns a prediction), and the improvement ratio is calculated as the ratio
between the total of residue pairs of the interfaces and the total of possible residue pairs summed for all PPIs.
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finding a limited set of pairs of contacting residues
among all possible combinations of pairs of two
sequences is extremely low. Thus, several criteria
have been used to evaluate the quality of a prediction.
In PIPE-Sites, a predictionwas considered successful
if the predicted residues were in a range near the real
solution using a neighbouring distance-measure
criterion. In DOMINE, a prediction was successful if
the residues of the interfacewerewithin themargins of
the predicted PFAM domain. In our comparison, we
have only used the native interface of residues
(as defined by the 3D structure), which decreases
the probability of success and produces low accuracy.
Consequently, we should also compare the results of
all approaches with a random prediction (i.e., by
means of the improvement ratio; see Table 1). All
approaches perform better than random, but the
largest improvement is obtained when running the
iFrag server using the BlastPDB approach; when
searching for domains, iFrag improvement ratio is
comparable to that of DOMINE.

Examples of predicted interfaces: from short
fragments to entire domains

iFrag is a versatile approach to predict interfaces that
can be domains or sequence fragments, that is,
predictions are done at residue level. In Fig. 2, we
show the results for the predictionof the binding regions
between E3 ubiquitin-protein ligase (RING2_HUMAN)
andPolycomb complex protein BMI-1 (BMI1_HUMAN)
and the dimerisation of nucleoplasmin-2 (NPM2_
HUMAN). In both examples, the region corresponds
to the size of two interacting domains, but the sequence
fragments involved in the interface are distributed
along their sequence. Still, for the dimerisation of
nucleoplasmin-2 (Fig. 2b), the prediction with iFrag
helps to better define the actual interface, providing an
accurate higher resolution than just the PFAMdomains
involved in the interaction (i.e., such as the prediction of
DOMINE).
As mentioned above, iFrag can also predict

smaller regions such as peptide fragments when
the information on interactions is available. One of
such examples is illustrated in the case of the study
of the interaction between the amyloid beta peptide
(amyloid beta peptide (Aβ), with length of 42 Aas)
and clusterin (APOJ, also named CLUS_HUMAN,
with length of 449 Aas) and serum albumin
(ALBU_HUMAN, with length of 609 Aas). In this
example, iFrag predicts several short-length regions
with high score, two from clusterin (at the N-tail and
the C-tail regions) and several from albumin (1 at the
C-tail region and 3–4 distributed in the middle). The
question is then whether these short peptides can
indeed bind to the amyloid beta peptide and prevent
its aggregation. This provides an opportunity to
check the potential application of iFrag with an
experimental validation. First, we extract the se-
quence fragments of albumin and clusterin with
predicted high scores for their interactions with
amyloid beta peptide. Then, we compare the
sequences of these regions with an alignment,
using ClustalW [27], and select the best patterns
that include at least one fragment from each
interactor (clusterin and albumin). After searching
for common sequence patterns with the extracted
sequences, only three regions show a potential good
alignment. Supplementary Figure S1A shows the
approach taken to select the best candidate se-
quences (two regions of albumin, in the middle and
the C-tail regions, plus the N-tail region of clusterin).
The three peptide fragments were synthetised, and we
confirmed experimentally, using Bitan and Teplow
protocol [28] and the Thioflavin T (ThT) aggregation
assay, that at least one, the C-tail region of albumin,
interferes with the aggregation of solubilised Aβ40
peptide (see Supplementary Fig. S1B).
Discussion and Conclusion

In this work, we have presented iFrag, a computa-
tional approach to predict binding regions between two
proteins based on minimal stretches with similar
sequence of known interacting proteins. The predicted
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interfaces range from short fragments, composed by
few residues, to complete domains or proteins. iFrag
provides a user-friendly interface and a comprehen-
sive results page. Traceability of sequence alignments
and known PPIs allows the user to comprehend the
results and devise new experiments that could be
relevant for an interaction. For example, predictions on
the interacting region could be useful to design
experiments for disrupting an interaction or increasing
the binding affinity or could be useful to combine with
other computational techniques such as alanine-
scanning methods to detect potential hot-spots in
predicted binding sites.Wehave included one of these
examples on the application to infer a potential peptide
region binding the amyloid beta peptide. We have
compared iFrag with other approaches that predict
specific binding sites of two interacting proteins, such
as DOMINE (or a similar approach, DIMERO [29], not
included here because the evaluation yields the same
results), PIPE-Sites, PPIPP, and SLIDER. Domain-
based predictors such as DOMINE include large
regions of the protein, while PIPE-Sites, PPIPP, and
SLIDER exploit PPI networks to infer shorter frag-
ments of sequences limited to the interface region.
We have proved that iFrag is versatile to be applied

for the prediction of short and large regions with
competing accuracy [i.e., iFrag obtains the larger
AUC-ROC compared to other methods and similar
percentages of positive predictive value (PPV) and
applicability]. One of the problems faced by iFrag, as
any other method of prediction of protein–protein
interfaces based on sequence, is the value of the
statistic measures used to evaluate them: we used
classical statistical metrics such as accuracy, PPV,
Matthew's correlation coefficient (MCC), F1, the area
under the ROC curve (AUC-ROC), or the area under
the precision curve (AUC-PR) as a measure of the
quality of the prediction. However, results of these
classical measures would discourage the potential
use of ours and similar approaches, while these
methods can still help experimentalist on the selection
of potential binding regions specific of a PPI (i.e., see
example above). This is because classical statistic
metrics can lead to incorrect interpretation of the
results when applied to contact map predictions. First,
because they assume that individual predictions
(residue–residue pairs) are independent, which is
not true, once a residue–residue contact is predicted,
its sequence neighbours should be affected and
increase its probability as well. Second, this is also
true for the structural neighbours of a residue, which is
a property hidden in the sequence but still applies in
the corresponding sequence prediction. Third, as the
size of proteins varies, the chances of obtaining a
correct prediction by random vary too; large proteins
imply lower probabilities by random and vice versa
[30]. The statistical metrics to evaluate the quality of
these predictions are affected by the nature of the
problem. Therefore, we have introduced in the supple-
mentarymaterial a newmetric to evaluateandcompare
these heterogeneous approaches, proving that iFrag is
comparable to PPiPP and confirming the best perfor-
manceofBlastPDB in iFrag (seeSupplementaryData).
In our conclusion, iFrag is a useful tool that can help
experimentalists to select the regions that may be
involved in specific PPIs for further tests or synthesis of
function-specific peptides.
iFrag computational approach can be used by a

user-friendly web server that provides a platform to
analyse the predictions presented on a comprehen-
sive and intuitive web page with the results. Traceabil-
ity of sequence alignments and known PPIs allows the
user to comprehend the results and devise new
experiments that could be relevant for an interaction.
For example, predictions on the interacting region
could be useful to design experiments for disrupting an
interaction or increasing the binding affinity or could be
useful to combine with other computational techniques
such as alanine-scanning methods to detect potential
hot-spots in predicted binding sites. As anexample,we
have proved a direct biological application of iFrag in
helping to select a peptide that hinders the aggregation
of the amyloid beta peptide.

Materials and Methods

Sources of PPIs

PPIs were integrated with BIANA [31], downloading
the data from IntAct [32], DIP [33], BioGRID [34], HPRD
[35], MINT [36], and MPact [37]. iFrag server also
includes sequence annotation from Uniprot [21] and
assigns domains from PFAM [22] using HMMER [38].

Minimal common fragments search and scoring
(iFrag computational approach)

Query protein sequences are compared and aligned
against all sequences in the BIANA database [31]
(i.e., with all integrated PPIs) using BLAST [39]. The
alignments provide a similarity measure based on the
percentage of identical residues aligned, the percent-
age of the sequence covered by the alignment, and
the E-value. We use BLAST to find short-fragment
alignments by using low percentages of sequence
similarity or high E-value thresholds selected by the
user. To avoid unnecessary repetitions of BLAST
searches, iFrag uses a local database of similarity
measures already stored.
The resulting alignments from the BLAST searches

are then used to score pair of residues to define
putative interfaces. Sequence fragments of proteins
aligned with the queries are paired if they belong to
proteins with a known interaction (template interac-
tions). We filter out template interactions reducing the
set to pairs with less than 40% of sequence identity (in
agreement with a previous work [40], close homologs



Fig. 1. iFrag outline of the method and the evaluation of a contact map. (a) Two query proteins are compared with
sequences known to have reported interactions using BLAST [39]. Matches are grouped by paired sequence fragments
that belong to known interacting proteins (template interactions). The set of template interactions is filtered to avoid
redundancies, so that it does not contain any pair of template proteins with more than 40% of sequence identity. (b) The
iFrag score is calculated as the proportion of matches from BLAST covering two residues, one in each protein, over the
total number of known interactions. (c) Example of the contact map for the interaction between RB_HUMAN and
E2F1_HUMAN used for evaluation. The interaction between retinoblastma (RB_HUMAN) and transcription factor E2F1
(E2F1_HUMAN) is produced by different interfaces. The contact map between them is represented in a grid. Grey areas of
the contact map show the protein regions found in the PDB structures. Blue areas show specific residue–residue contacts.
The complete contact map between these two proteins is composed by the union of all interface regions, which is obtained
with the structures with PDB codes 2AZE (chains B and C) and 1O9K (chains, A, B, and P).
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with 30–40% or higher sequence identity almost
invariably interact the same way). The score of a pair
of residues, one in each query protein, is calculated as
the proportion of matches of template interactions
over the total. The E-value of an alignment is used as
criterion for including a template interaction. Sequence
fragments of template interactions matching large
parts of the query proteins are less informative than
those covering short regions. Thus, the user can also
restrict the set of template interactions by the
percentage of the query sequences covered by
the templates. An outline of the method is explained
in Fig. 1.

Evaluation dataset on the human interactome

To evaluate the performance of iFrag and com-
pare it to current state-of-the-art methods, we use a



Fig. 2. iFrag server heat map examples. (a) Prediction on the interaction between RING2_HUMAN and BMI1_HUMAN;
blue and red indicates low and high scores, respectively, while indicated in white are the real interface contacts as defined
from the 3D structure of the protein complex (PDB code 2CKL [25]). (b) The homo-dimerisation of NPM2_HUMAN is done
through its nucleoplasmin domain (Pfam PF03066). Red indicates high iFrag scores, green indicates the domain–domain
interaction as predicted by DOMINE, and grey is a null prediction. Interface residue pairs as defined from the 3D structure
of the dimer (PDB code 3T30) are showed in white [26].
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set of validated interactions. The evaluation dataset
is composed of a non-redundant set (less than 40%
of sequence identity) of human protein complexes
extracted from Uniprot database [21] for which the
3D structure is known and deposited in the PDB
databank [41]. In order to avoid the possible bias
produced by hub proteins [42], the sequence identity
was calculated at the protein level, so that no protein
in the dataset has more than 40% sequence identity
with any other protein in the dataset. In this dataset, we
use the whole sequence of the protein as defined in
Uniprot andweexclude protein complexes that include
functional complexes such as tandem affinity purifica-
tion or co-sedimentation, that is, those which interac-
tions between partners are not necessarily physical
and direct.We consider only the biological assembly of
structures obtained from the PDB database to exclude
crystal contacts and non-biologically relevant com-
plexes. One protein complex can be represented by
more than one structure and we define the interface of
each interaction as the set of contacting residues (we
define that two residues are in contact if the distance
between their carbon-β atoms is shorter than 12 Å).

iFrag web server

A server has been implemented to facilitate the
use of iFrag. The input of iFrag is two sequences in
FASTA format (query proteins). The user can modify
the BLAST search conditions by specifying the
maximum E-value threshold and coverage of the
alignments with the query. The set of template
interactions can also be selected by the method of
experimental detection (e.g., by excluding co-complex
methods).
Upon computing the predictions, iFrag outputs an
interactive bidimensional heat map representing a
scored contact map. The user can inspect the score
of specific residuepairs andselect regionsof interest by
browsing on the heat map. The output is complemen-
ted with sequence feature annotations described in
Uniprot database [21] and matches with PFAM
domains [22]. These are useful features that, in a real
case scenario, can help the user to identify or discard
regions of interest for the design of experiments. The
alignments of the query proteins with the template
interactions are also provided as part of the output. The
server also shows the database and detection method
of each template interaction. The traceability of
sequence alignments with known PPIs allows the
user to comprehend the results in a more rational way
and help him decide on the relevance of the findings.
The user can optionally select the potential region of
binding and extract the multiple sequence alignment of
the sequences found by BLAST in this region. This is
retrieved in the form of a motif or sequence pattern for
each of the interacting proteins, and it can be used to
filter the fragments predicted as interface (see further in
Experimental validation and Supplementary Fig. S1).

Comparison with other methods

Standard statistical metrics such as PPV, MCC, F1-
measure, AUC-ROC, and AUC-PR are used to assess
and compare the performance of iFrag and other
current approaches (see Supplementary Table S1 for
details). The evaluation set described above is used to
identify the interfaces of PPIs and define the true and
false positives and negatives of each prediction in the
form of a contact map (see example in Fig. 1c). To
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obtain iFrag predictions, we used only binary PPIs as
templates (i.e., co-complex-derived interactions were
excluded). We used an E-value threshold of 0.01 and
none for sequence identity (0%), allowing for short
fragments.
We have compared iFrag with PIPE-Sites [12],

PPIPP [14], SLIDER [13], and DOMINE [11] using
high confidencepredictionsbetweendomainsofPFAM
(see Supplementary Table S2 for details). It is worth
mentioning that some of these web servers might have
been trained with proteins included in the validation
dataset (e.g., PPIPP). This implies that some methods
may perform better than expected and consequently
better than iFrag. Still, most of them used the Docking
Benchmark 4.0 [15] for training, while we selected a
specific human interactome to try to reduce this
potential overfitting. Additionally, we have also com-
pared with the simplest approach based on sequence
comparison (BLAST); the interface between two query
proteins is based on their similarity to known structure
complexes, that is, the same strategy as in homology
modelling of protein complexes. For this test, we
require a minimum of 30% identical residues aligned.
This method is also available in iFrag (iFrag-BlastPDB,
see above). Methods that were not accessible as
servers, like a similar approach that uses functional
motifs as alternative to BLAST [43], could not be
considered in our comparison. We compared all
methods with the random prediction of binding sites
by means of the improvement ratio (i.e., the ratio of
correct amino acid pair predictions over the total
number of residue pairs available in the benchmark).

Experimental validation: Aβ40 aggregation assay

We predicted several peptides that could interact
with the amyloid beta peptide Aβ40 using iFrag.
Among them, we selected the C-tail peptide of
albumin for experimental validation on a ThT aggre-
gation assay. The experiment was defined as follows:
lyophilised Aβ40 (Anaspec) was solubilised as previ-
ously described by Bitan and Teplow [28]. Briefly,
1 mg of Aβ40 was dissolved in 250 μL of MilliQ water,
and pH was adjusted to ≥10.5 using 1 M NaOH
solution. Then, 250 μL of 20 mM phosphate buffer
(pH 7.4) was added. The preparation was placed for
1 min in a bath-type sonicator (Bioruptor, Diagenode)
and immediately used for experiments. A 1-mM stock
ThT (Sigma-Aldrich) solution was prepared by
dissolving the dye in phosphate-buffered-saline
solution (PBS). The solution was filtered through
a 0.22-mm filter. Aβ40 peptide (10 μM) was
incubated with or without albumin C-tail peptide
(20 μM C-term;Peptide Synthesis Facility, UPF;
AETFTFHADICTLSEKERQIKKQTALVELVKHKPK-
amide) and 10 μM ThT in a Nunc-96-well flat bottom
black polystrol microplate (Thermo Scientific) at
37 °C. ThT fluorescence was measured at 0, 24,
and 48 h using excitation and emission wavelengths
of 430 and 470 nm, respectively, using a multiplate
reader fluorimeter (FLUOstar optima, BMG labtech).
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