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Peptide vaccine candidates against classical
swine fever virus: T cell and neutralizing
antibody responses of dendrimers displaying
E2 and NS2–3 epitopes
Marta Monsó,a† Joan Tarradas,b† Beatriz G. de la Torre,a Francisco Sobrino,c

Llilianne Gangesb and David Andreua∗

Three peptide-based systems integrating B and T antigenic sites of CSFV and displaying the B epitopes in fourfold presentation
have been designed and produced, and shown to bring about significant enhancements in immunogenicity over the peptides
in monomeric form. Of the different strategies tested for producing the dendrimeric constructs, stepwise SPPS using 3,6-
dioxaoctanoic acid as flexible, PEG-like spacer units at the branching points is clearly advantageous, in particular over ligation
in solution. The constructs have been used for immunization of domestic pigs, in order to evaluate the protective response
induced by each peptide constructs, and to characterize the B- and T-cell response against CSFV in the natural host. Copyright
c© 2010 European Peptide Society and John Wiley & Sons, Ltd.
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Introduction

Multimerization has long been recognized as an effective
strategy for enhancing the response of peptides in immunization
experiments [1–3]. Among the different approaches such as simple
polymerization [4], or conjugation to sequential oligopeptide
carriers [2,5], or display on lysine scaffolds [6,7], incorporation into
dendrimeric systems such as the MAP platforms pioneered by Tam
[1,8,9] has proven particularly successful for immunological and
microbiological applications [9–12]. In an extension of the MAP
paradigm, we have recently shown that dendrimeric constructs
(named B4T) combining B and T epitopes of FMDV can elicit
immune responses far superior to those of the constituent
linear epitopes and result in complete protection in challenge
experiments [13].

CSF is a highly contagious viral infection affecting domestic
and wild pigs. It is considered to be one of the most devastating
diseases for the pig industry throughout the world, from both
the economic and sanitary points of view [14]. Protection against
CSFV is associated with the induction of neutralizing antibodies;
however, the role of the cellular response elicited upon viral
infection is not fully understood [15]. The induction of specific
T lymphocytes in infected animals has been described, and
there is increasing evidence on the role of the T-cell responses
in protection against CSFV [15–18]. Antibodies against CSFV
elicited by infected swine mainly target structural proteins Ern

and E2, plus nonstructural protein NS2-3. Glycoprotein E2, which
is regarded as the most immunogenic of CSFV proteins, is
mainly responsible for the induction of neutralizing antibodies
[19]. Live attenuated vaccines against CSFV, introduced some
60 years ago and based on glycoprotein E2, induce high titers
of neutralizing antibodies and are the only vaccine candidate

that can confer protection when administered alone [20–22].
However, although they guarantee high protection rates, such
CSFV vaccines have the serious disadvantage of not being marker
or DIVA vaccines, i.e. their antibody patterns are very similar to
those observed in naturally infected animals, making it extremely
difficult to differentiate vaccinated animals from infected ones.
This has prompted the search for new DIVA vaccine strategies
against CSFV, including DNA [15,23–29], viral vector [20,22,30–33],
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chimeric pestivirus [34–36], and peptide [14,37–42] vaccines.
Because peptide vaccines contain no genetic component, no risk
of pathogen replication by any vaccine component exists, thus
making them practically, by definition, DIVA vaccine candidates.

In the search for peptide-based CSFV vaccines, several immuno-
genic peptides corresponding to different regions of the A or B-C
domains of E2 have been proposed and used in either mono- or
multi-peptide formulations [38–42] which have been evaluated in
immunization and challenge experiments. Although some peptide
mixtures have been reported to induce CSFV-specific neutralizing
antibodies as well as protective activity against CSFV challenge
infection, in most cases they have failed to provide complete pro-
tection from clinical signs, viraemia, and virus shedding [38,39].
Thus, the need for safer CSFV marker vaccines remains.

As all CSFV candidate vaccines hitherto described are based
on linear peptides, in our approach to novel peptide-based CSFV
marker vaccines we have chosen a multimerization strategy similar
to that of our B4T vaccine [13] for FMDV. Using a library of
overlapping peptides spanning the main antigenic domain of
glycoprotein E2, Dong et al. [38] identified residues 693–716 as
those inducing the best protective response on an individual basis
[39]. Other in vitro studies have proposed residues 829–837 [43]
as B-cell epitopes of E2, and several epitopes inducing CTL/helper
responses have been identified in the nonstructural protein NS3
of CSFV [44]. This information provides a basis for a first generation
of dendrimeric, B4T-type CSFV vaccine candidates.

Materials and Methods

Peptide Synthesis

Fmoc-protected amino acids and chemicals were obtained from
Iris Biotech (Marktredwitz, Germany). Solvents for synthesis were
obtained from SDS (Peypin, France). Automated syntheses were
performed in an ABI433 peptide synthesizer (Applied Biosystems,
Foster City, CA) running standard Fmoc (FastMoc) protocols [45].
For simple linear peptides, 0.1-mmol resin batches of Fmoc-Rink-
amide ChemMatrix (Matrix Innovation, Montreal) were used. For

dendrimeric peptides of the general structure shown in Table 1,
the linear (T epitope) region was built as above and branching was
introduced by means of Fmoc-Lys(Fmoc) residues. The resulting
resin was then processed in one of the two possible ways: (i) Fmoc
deprotection and coupling of chloroacetic acid to each branch
to give a tetra-chloroacetyl (Cl4Ac) peptide used in the ligation
experiments (see Section on Results) or (ii) elongation by standard
SPPS. In this case, the resin was divided into three portions (ca
130 µmol of amino groups), one for each of the constructs in
Table 1, and on each portion a 3,6-dioxaoctanoic acid (O2Oc)
unit was introduced at each of the four branches by means of
the corresponding Fmoc derivative (Iris Biotech), followed by the
chosen B epitope sequence (one copy at each branch), again built
by the FastMoc program in systematic double coupling fashion
(reaction scheme, Figure 1). The side-chain functionalities were
protected with tBu (Asp, Glu, Ser, Thr, Tyr), Boc (Lys, Trp), Pbf
(Arg), and Trt (Asn, Gln, His) groups. Couplings were done with an
eightfold molar excess of Fmoc-amino acid, HBTU, and HOBt, in
the presence of double that amount of DIEA, in DMF as solvent.
Peptide resins were deblocked with 20% piperidine/DMF before
full deprotection and cleavage by acidolysis with TFA/H2O/EDT/TIS
(94 : 2.5 : 2.5 : 1 v/v, 90 min, RT). Cleaved peptides were precipitated
by the addition of chilled diethyl ether, taken up in aqueous AcOH
(10% v/v), and lyophilized.

Analysis and Purification

Analytical reversed-phase HPLC was performed on C18 columns
(4.6 × 50 mm, 3 µm, Phenomenex, Torrance, CA) in a model LC-
2010A system (Shimadzu, Kyoto, Japan). Elution was done with
linear gradients of solvent B into A over 15 min (Figures 2–4
legends for further details) at a flow rate of 1 ml/min, with
UV detection at 220 nm. Preparative HPLC was performed on
C18 (10 × 250 mm, 10 µm, Phenomenex) in a Shimadzu LC-8A
instrument. Solvents A and B were 0.1% TFA (v/v) in water and
acetonitrile, respectively, and elution was again done with linear
gradients of solvent B into A over 30 min, at a flow rate 5 ml/min,
with UV detection at 220 nm. Preparative fractions of satisfactory

Table 1. Dendrimeric peptide vaccine candidates used in this study

No. Structurea
B

epitope
T

epitope

Massb

(calcd.)
(Da)

Massc

(found)
(Da)

1 B-C domain of E2
(aa 694–712)

Nonstructural
protein NS2-3
(aa 1446–1460)

11 239.56 11 283

2 B-C domain of E2
(aa 712–728)

Nonstructural
protein NS2-3
(aa 1446–1460)

10 470.37 10 505

3 A domain of E2
(aa 829–842)

Nonstructural
protein NS2-3
(aa 1446–1460)

8 909.32 8 935

a O stands for 3,6-dioxaoctanoic acid, O2Oc.
b Calculated for the [MH]+ ion.
c Determined by MALDI-TOF MS in the linear mode.
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Figure 1. Reaction schemes for the two synthetic approaches (ligation in solution and fully stepwise) to constructs 1– 3.
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Figure 2. Analytical HPLC characterization of construct 1: (a) synthetic product, 20–50% linear gradient of eluent B into A over 15 min. Solvent A: 0.045%
(v/v) TFA in water, solvent B: 0.036% (v/v) TFA in acetonitrile. (b) Purified product, tR = 5.5 min (elution conditions as above). (c) MALDI-TOF MS (expected
mass, single- and double-charged ions).
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Figure 3. Analytical characterization of construct 2: (a) synthetic product, 15–50% linear gradient of eluent B into A over 15 min. Solvents and elution
conditions are as given in Figure 2. (b) Purified product, tR = 5.0 min. (c) MALDI-TOF MS (expected mass, single- and double-charged ions).
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Figure 4. Analytical characterization of construct 3: (a) synthetic product, 15–40% linear gradient of eluent B into A over 15 min. Solvents and elution
conditions are as given in Figure 2 (b) Purified product, tR = 6.2 min. (c) MALDI-TOF MS (expected mass, single- and double-charged ions).

purity by analytical HPLC were pooled and lyophilized. The purified
peptides (linear or dendrimeric) were further characterized for
identity by MALDI-TOF MS in a Voyager DE-STR instrument
(Applied Biosystems) operating in the linear mode and using
α-hydroxycinnamic acid matrices.

Immunization

To evaluate the immune response induced by the dendrimeric
peptides, four groups of six domestic pigs were placed in four
different sections of the CReSA BSL3 animal house. Three groups
were inoculated twice, at days 0 and 21, by intramuscular injection
of a 1.4-mg dose of constructs 1, 2, and 3 (Table 1), respectively.
Each peptide dose was dissolved in 1 ml of physiological serum

and emulsified with an equal volume of Montanide V206 adjuvant
(Seppic, Puteaux, France). The fourth group of animals was used as
non-vaccinated control. Ten days after the last immunization, all
pigs were challenged with a lethal dose (105 TCID50) of CSFV (strain
Margarita) [15]. Clinical signs of disease (fever, anorexia, diarrhea,
petechiae, nervous disorder, prostration) were scored daily for the
15 days following challenge infection (d.p.c.). Score values ranged
from 0 (no clinical signs) to 6 (major clinical signs). In addition, pigs
were bled weekly to monitor the induction of specific neutralizing
antibodies.

Assays

Peptide-specific antibodies were detected by indirect ELISA.
Neutralizing antibodies were determined in a peroxidase-linked

J. Pept. Sci. 2011; 17: 24–31 Copyright c© 2010 European Peptide Society and John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/psc
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neutralization assay (NPLA) [46] and titers were expressed as
the reciprocal dilution of serum that neutralized 100 TCID50 of
strain Margarita in 50% of the culture replicates. Evaluation of
γ -interferon (IFN-γ )-producing cells was performed by enzyme-
linked immunosorbent spot (ELISPOT) as described [47].

Results and Discussion

Immunogen Design and Synthesis

The general structure of the three CSFV dendrimeric (B4T) peptide
constructions used as immunogens is shown in Table 1. The
constructions are designed to display four copies of B-cell epitopes
from the E2 protein in a single molecule [construct 1: (694–712)4,
construct 2: (712–728)4, construct 3: (829–842)4,], joined to a
T-cell epitope from the NS2-3 protein (1446–1460) through a
Lys tree [1,8] and also two additional Lys residues defining a
putative cleavage site for cathepsin D [4], a protease suggested
to be involved during in vivo major histocompatibility complex
class II antigen processing [48]. Two synthetic approaches to the
dendrimeric constructions were used. In line with our previous
expertise in MAP synthesis, a convergent approach (Figure 1, left
panel) was first chosen for B4T, based on the chemoselective
thioether ligation [8] of (i) a tetravalent peptide reproducing the
T-cell epitope, N-terminally elongated with two Lys (cathepsin D
site) plus three more Lys residues making up the dendrimeric core,
of which the two outer residues had their α- and ε-amino groups
functionalized as 2-chloroacetyl (ClAc) derivatives; (ii) the three B-
cell epitope peptides, acetylated at the N terminus and C-terminally
elongated with a Cys residue. The chemical ligation at pH 7 was
monitored by HPLC and MALDI-TOF MS. Several drawbacks were
found with this method because the linear peptides were difficult
to obtain in desirable amounts and purity, and even when available
they were quite insoluble in solvents useful for the conjugation
process. The difficulties encountered in these three syntheses
are not infrequent [49], and in our case they eventually led to
the convergent approach being discarded in favor of stepwise
SPPS (Figure 1, right panel). Previous work in our laboratory had
demonstrated that the introduction of flexibilizing spacer units
(e.g. aminohexanoic acid, Ahx) at each branch of the B4T dendrimer
substantially increased the quality of the end products [49]. In our
case, and given the considerable difficulties in solubility observed
for the individual B epitopes, we deemed it wise to optimize the
global water solubility of the constructs by inserting PEG-like O2Oc
flexible spacer units (instead of Ahx) between the Lys core and
the B epitopes. Like PEG, O2Oc has a dynamic conformation and is
well hydrated in aqueous media, which should result in improved
water solubility of the resulting PEG-like molecule [50]. Additional
synthetic improvements included the use of ChemMatrix solid
support [51,52] and double couplings throughout the buildup of
the B epitope, deemed advisable in view of the difficulties observed
in their assembly as linear peptides for the ligation approach (data
not shown). Despite these preventive measures, the synthetic
process was not devoid of complications, to judge from the
crude products obtained after TFA cleavage (Figures 2(a), 3(a), and
4(a)). Thus, for constructs 1 and 3, the main peaks observed in
the preparative HPLCs were either accompanied by a substantial
satellite (crude 1) or suggested microheterogeneity (crude 3). For
construct 2, substantial levels of two slower eluting by-products
(partially characterized as Fmoc adducts) accompanied the main
peak. Difficult end products like these should be expected to be
more the norm than the exception in the synthesis of large MAP

systems of this type, given the potential synthetic pitfalls posed
by multimeric targets of such structural complexity, although
analytical details tend to be minimal, if any, in most accounts
of MAP synthesis [49]. Nonetheless, even with complex crudes
such as those of constructs 1–3, HPLC purification allowed us to
satisfactorily obtain homogeneous products (ca 90% by analytical
HPLC for construct 1, >90% for constructs 2 and 3, Figures 2(b),
3(b), and 4(b)). MALDI-TOF MS analysis (Table 1 and Figures 2(c),
3(c), and 4(c)) showed a difference of 25–44 Da between theoretical
(M + H+) and experimental masses. As spectra were acquired in
the linear TOF mode, such differences were within expectations
(resolution is insufficient for telling apart [M + H+] from [M + Na+]
or [M + K+] satellites) and the purified products were thus judged
to be satisfactory for the immunization experiments.

Vaccination Trial

The dendrimeric B4T-type constructs 1–3 were tested as vaccine
candidates in experimental immunization trials of domestic pigs.
The aim of the trials was to characterize the B- and T-cell responses
against CSFV in its natural host (pig) and to evaluate the protective
response induced by the constructs. Each of the 1–3 dendrimers
was administered to six animals at a 1.4-mg intramuscular dose,
with an equal boost dose and serum conversion controls by ELISA
14 d.p.i. All three immunogens induced, from 14 d.p.i. on, ELISA-
detectable humoral responses that for construct 1 (B epitope from
the B–C domain) translated into globally higher titers than those
for constructs 2 and 3 (Figure 5).

At 36 d.p.i., all the 18 vaccinated animals as well as 6
unvaccinated controls were challenged with a dose of CSFV that is
known to have lethal effects [15], and were monitored for clinical
signs of the disease during the following 15 days. At 3 d.p.c., the
three control animals developed typical clinical signs of CSF, which
reached severe enough levels (scores >5) to justify euthanasia
between 6 and 13 d.p.c. In contrast, the immunized animals,
overall, showed better clinical profiles, particularly the group that
was administered with construct 1, in which pigs 1 and 6 had
the lowest clinical scores of the entire trial (Table 2). These two
animals had also, at 13 d.p.i., developed neutralizing antibody titers
well above the 1 : 50 value that is considered significant in terms
of protection against CSFV [46,53–55]. For a few other animals

Table 2. Neutralizing peroxidase-linked assay (NPLA) titers and
clinical scores at 13 days after CSFV challenge infection

NPLA titers

Dendrimer Piga
Margarita

strain
Alfort
strain

Score of
clinical signs

1
1 1 : 160 1 : 20 0

6 1 : 80 1 : 10 1

7 0 0 5

2
8 0 0 5

9 0 0 5

12 1 : 20 1 : 20 2

3
15 1 : 20 0 2

17 1 : 20 1 : 10 2

Control 21 0 0 6

a Vaccinated and non-vaccinated pigs not listed above were humanely
euthanized when showing first signs of nervous disorder.
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Figure 5. Antibody responses after vaccination with synthetic dendrimeric peptide constructs and challenge with CSFV. Pigs 1–6, 7–12 and 13–18 were
vaccinated with constructs 1, 2 and 3, respectively; pigs 19–24 were non-vaccinated controls. Absorbance values above 0.2 were considered positive.

Figure 6. Specific CSFV IFN-γ -producing cells after challenge in vaccinated and non-vaccinated animals (stimulated with CSFV).
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that were vaccinated with peptides 2 and 3 (Figure 5), some
neutralization was also observed, though with titers below 1 : 50
(Table 2) that correlated with their worse clinical scores. It must be
kept in mind that the specific pathogenicity of CSFV, particularly
its immunosuppressive effects, typically ensures a fatal outcome
for any infection. Therefore, the finding of substantial neutralizing
antibody levels after a lethal dose of CSFV is characteristically
interpreted as a telling sign that the animal has successfully built
up an effective immune response that may eventually help it
survive the infection.

A third observation corroborating the superior immunogenic
properties of construct 1 (again on pigs 1 and 6) was provided
by ELISPOT analysis, which showed these two animals to have
the highest values of IFN-γ -producing cells after CSFV challenge
(Figure 6). The induction of specific IFN-γ -secreting cells is known
to have a characteristic effect against CSFV infection [15,47],
possibly by contributing to an early control of CSFV replication until
a neutralizing, eventually protective, antibody response builds up
[47]. In any event, it seems clear that, in addition to a globally higher
antibody response, dendrimer 1 (by means of its T-cell epitope
sequence and/or otherwise) can induce an efficient T-cell response
in pigs 1 and 6, which eventually translates into protection against
CSFV. IFN-γ -producing cells were also found by ELISPOT in some
pigs that were immunized with dendrimer 2 or 3, but always at
much lower levels than that found for animals in the construct 1
group.

In conclusion, on the basis of these preliminary results, construct
1 appears as a promising CSFV vaccine candidate. Its partial (2/6)
protecting effect is fully consistent with the neutralizing antibody
titers elicited by the two protected animals, and coherent with the
induction of anti-peptide antibodies, and of IFN-γ -producing cells
even in the absence of neutralizing antibodies before challenge.
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