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A novel class of cell-penetrating, nucleolar-targeting peptides (Nr'TPs), was recently developed from the rattle-
snake venom toxin crotamine. Based on the intrinsic fluorescence of tyrosine or tryptophan residues, the parti-
tion of NrTPs and crotamine to membranes with variable lipid compositions was studied. Partition coefficient
values (in the 10%-10° range) followed essentially the compositional trend POPC:POPG < POPG <POPC < POPC:
cholesterol. Leakage assays showed that NrTPs induce minimal lipid vesicle disruption. Fluorescence quenching
of NrTPs, either by acrylamide or lipophilic probes, revealed that NrTPs are buried in the lipid bilayer only for
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Nucleolar-targeting peptide negatively-charged membranes. Adoption of partial secondary structure by the NrTPs upon interaction with
Crotamine POPC and POPG vesicles was demonstrated by circular dichroism. Translocation studies were conducted using

a novel methodology, based on the confocal microscopy imaging of giant multilamellar vesicles or giant multi-
vesicular liposomes. With this new procedure, which can now be used to evaluate the membrane translocation
ability of other molecules, it was demonstrated that Nr'TPs are able to cross lipid membranes even in the absence
of a receptor or transmembrane gradient. Altogether, these results indicate that NrTPs interact with lipid bilayers
and can penetrate cells via different entry mechanisms, reinforcing the applicability of this class of peptide as
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therapeutic tools for the delivery of molecular cargoes.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Some specific cationic peptides and proteins, usually rich in lysine
and arginine residues and with the ability to translocate cell mem-
branes, have found use as intracellular delivery agents. Due to their
translocating properties, they were named cell-penetrating peptides
(CPPs) more than two decades ago [1-4]. CPPs can be covalently conju-
gated or complexed with a variety of payloads, such as nucleic acids,
proteins, nanoparticles or quantum dots [5-7], enabling their use in a

Abbreviations: Ahx, 6-aminohexanoic acid; AMP, antimicrobial peptide; CD, circular
dichroism; CF, 5,(6)-carboxyfluorescein; CPPs, cell penetrating peptides; DLS, dynamic
light scattering; DPPE, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine; Fmoc,
9-fluorenylmethoxycarbonyl; GUV, giant unilamellar vesicles; HEPES, 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid; HPLC, High-performance liquid chromatography; LUV,
large unilamellar vesicles; NBD, nitro-2-1,3-benzoxadiazol-4-yl; NMR, nuclear magnetic
resonance; NrTPs, nucleolar-targeting peptides; 5-NS, 5-doxyl-stearic acid; 16-NS,
16-doxyl-stearic acid; POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; POPG,
1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(19-sn-glycerol); RhB, rhodamine B
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broad range of applications, including transfection, siRNA technology,
organelle imaging or delivery of low-permeability drugs [8-10]. The
most studied CPPs in terms of cell translocation and effectiveness as bio-
medical agents are the HIV-1 transcriptional activator (Tat) [1], the
antennapedia homeodomain from Drosophila (Antp) [11], and the
VP22 protein from the Herpes simplex virus [12]. More recently, Kerkis
etal. [13] reported the cell-penetrating ability of crotamine, a 42-amino
acid cationic defensin-like polypeptide from the venom of South
American rattlesnake (Crotalus durissus terrificus), and described, among
other properties, its uptake by proliferating active human and murine
embryonic stem cells in vitro and mouse cells in vivo. The NMR solution
structure of crotamine [14] revealed as main features a short N-terminal
a-helix (residues 1-7) and two anti-parallel (3-sheets (residues 9-13
and 34-38), giving rise to an o3P fold stabilized by three intramolecular
disulfide bonds. This type of fold was previously identified on other
membrane-active peptides, such as the human antimicrobial peptide
B-defensin 2 [15], platypus defensin-like peptide [16], scorpion
a-toxins [17] and anemone anthopleurin-B [18]. Based on such structur-
al data, a molecular dissection of crotamine allowed to define a minimal
CPP pharmacophore [19] involving the splicing of the 1-9 and 38-42
segments (Fig. 1) and giving rise to a novel class of CPPs whose unex-
pected localization led to their naming of nucleolar targeting peptides
(NrTPs). NrTPs retain the cell-penetrating peptide property of crotamine
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Fig. 1. Crotamine structure (PDB ID: 1299), showing the spliced regions, N-terminal
residues 1-9 (orange) and C-terminal residues 38-42 (green), disulfide bonds
(yellow), Trps, and Trps4 (red), and H-bond between Tyr; and Aspag (- - - -).

and present several improvements, such as reduced toxicity, preferential
nucleolar localization and reduced synthesis cost [18,19]. We have
recently reported their ability to deliver large cargoes (e.g., the 465 kDa
[-galactosidase tetramer) into mammalian cells [20].

To gain insight into the biophysical aspects of the interaction of
NrTPs with lipid bilayers, we carried out a systematic study of the mo-
lecular determinants underlying the CPP behavior of NrTPs, particu-
larly concerning the involvement of specific types of lipids. The
extent of NrTPs and crotamine partition into model membranes (in-
cluding zwitterionic and anionic lipids), as well as their ability to
translocate lipid bilayers, have been evaluated. The presence of aro-
matic amino acid residues on NrTPs and crotamine allowed the use
of fluorescence spectroscopy to assess peptide:membrane interac-
tion. Fluorescence quenching by acrylamide and lipophilic quenchers
informed about peptide location on the membrane. Vesicle leakage
was studied by monitoring the release of the fluorescent probe
5,(6)-carboxyfluorescein (CF) induced by NrTPs or crotamine. On
the translocation studies, the uptake of rhodamine B-labeled NrTPs
by giant lipid vesicles was examined by confocal microscopy.

2. Materials and methods
2.1. Materials

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-nitro-2-1,
3-benzoxadiazol-4-yl (DPPE-NBD), 1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-
phospho-(19-sn-glycerol) (POPG) were obtained from Avanti Polar
Lipids (Alabaster, AL). 5,(6)-Carboxyfluorescein, cholesterol,

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), NaCl
and Triton X-100 were from Sigma (St. Louis, MO). Acrylamide,
tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl),
L-tryptophan, L-tyrosine, sucrose and glucose were from Merck
(Darmstadt, Germany). 5-Doxyl-stearic acid (5-NS) and 16-doxyl-
stearic acid (16-NS) were obtained from Aldrich (Milwaukee, WI). All re-
agents were used without further purification.

2.2. Peptides

The synthesis of NrTP1 (YKQCHKKGGKKGSG), NrTP2 (with a
6-aminohexanoic acid spacer between GG and KK) and NrTP5 (as
NrTP1, but with D-amino acid residues) was described earlier [19].
Similar protocols were used for the synthesis of NrTP6 (Cys residue
replaced by Ser, see Table 1), NrTP7 (all 5 Lys residues changed to
Arg) and NrTP8 (Tyr replaced by Trp). Amino acid sequences, molar
extinction coefficients, quantum yields and molecular masses are
also given in Table 1. All peptides were prepared both with free and
rhodamine B (RhB)-labeled N-termini, the latter versions to be used
in translocation experiments.

Synthetic crotamine in the native folding pattern was prepared from a
linear precursor made by Fmoc solid phase synthesis methods as de-
scribed before for similar multiple disulfide peptides [21]. Oxidative fold-
ing of the HPLC-purified hexathiol precursor, dissolved at 5 pM
concentration in 0.1 M ammonium acetate, pH 7.8, was done in the pres-
ence of 1 M guanidinium chloride and reduced (GSH) and oxidized
(GSSG) glutathione (1:100:10 peptide:GSH:GSSG molar ratio), under Ar
atmosphere, for 48 h. A single oxidation product was obtained with the
expected molecular mass and HPLC retention time of a natural crotamine
sample. Further details are given as Supplementary Information.

2.3. Characterization of crotamine and NrTPs in solution

UV-vis absorption and fluorescence (both excitation and emission)
spectral characterization of Nr'TPs (25-97 uM) and crotamine (7.7 uM)
were carried out in 10 mM HEPES with 150 mM NaCl, pH 7.4. This buff-
er was used in all experiments, except when mentioned otherwise.
Quantum yields were calculated as described by Fery-Forgues et al. [22].

2.4. Lipid vesicle preparation

Large unilamellar vesicles (LUV) with ~100 nm diameter were
obtained by extrusion of multilamellar vesicles, as described elsewhere
[23]. LUV of pure POPC and POPG, POPC:POPG 70:30 (mol%) and POPC:
cholesterol 67:33 (mol%) were used on the peptide-membrane interac-
tion and translocation studies. Giant unilamellar vesicles (GUV) were
prepared by the electroformation method, as described elsewhere
[24,25]. POPC and DPPE-NBD stock solutions were mixed to a final lipid
concentration of 1 mM (1% NBD-DPPE) and hydrated with ~1 mL of
200 mM sucrose. After GUV preparation, the vesicles suspension was
kept at room temperature in the dark until use. Independent of the
method used to prepare GUV (gentle hydration or electroformation), a
small percentage of non-unilamellar vesicles is formed [26]. These
vesicles can be either multilamellar (when the entrapped vesicles are
concentric; hereafter named giant multilamellar vesicles, GMLV) or
multivesicular (when the entrapped vesicles are non-concentric and sig-
nificantly smaller; hereafter named giant multivesicular liposomes,
GMVL). Translocation experiments were conducted using these two
types of non-unilamellar giant vesicles.

2.5. Extent of partition to membranes

Membrane partition studies were carried out using an Edinburgh In-
struments steady-state fluorescence spectrophotometer Xe 900 (Livingston,
UK). NrTPs and crotamine solutions concentrations were checked by
UV/Vis absorption using the extinction coefficients on Table 1, and
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Table 1
Sequence, molecular mass, molar absorptivity (&) and fluorescence quantum yield (¢) of crotamine and crotamine-derived NrTPs.
Peptide Sequence® Molecular mass” e(M~'em™1)° ¢ Description
Crotamine YKQCHKKGGHCFPKE 4883.86 (4883.80) 10,400
KICLPPSSDFGKMDCR
WRWKCCKKGSG
NrTP1 YKQCHKKGGKKGSG 1505.53 (1505.76) 1506 0.019 (1-9)-(38-42) residues of crotamine
NrTP2 YKQCHKKGGXKKGSG 1619.01 (1618.92) 1086 0.028 Insertion of 6-aminohexanoic acid (X)
NrTP5 ykqchkkGGKkGsG 1505.49 (1505.76) 1882 0.059 NrTP1 with p-amino acid residues
NIrTP6 YKQSHKKGGKKGSG 1489.26 (1489.70) 827 0.052 NrTP1 with Cys— Ser replacement
NrTP7 YRQSHRRGGRRGSG 1629.16 (1628.84) 963 0.033 NrTP6 with Lys — Arg replacement
NrTP8 WKQSHKKGGKKGSG 1511.83 (1511.75) 3143 0.123 NrTP6 with Tyr— Trp replacement

¢ All peptides are C-terminal carboxyls, with a net charge of + 5 at physiological pH (assuming ca. 50% protonation of His). The N-terminal rhodamine B-labeled versions of the

six NI'TPs were also available.
b Determined by MALDI-TOF mass spectrometry; theoretical mass in parenthesis.
¢ Determined at 275 and 280 nm for Tyr- and Trp-containing peptides, respectively.

varied between 7.7 uM and 97 puM (Abs,gp nm~0.08-0.1). Small volumes
of LUV suspensions (15 mM) were successively added to the peptide or
protein samples. After 10 min incubation, the fluorescence spectra were
recorded using an excitation wavelength (Nexc) of 280 nm (5 nm band-
width) and emission wavelengths (Aep) in the interval from 295 nm to
500 nm (5 nm or 10 nm bandwidth). All spectra were corrected for the
response of the fluorescence detecting system, Raman scattering and di-
lution effect. Tryptophan and tyrosine fluorescence quenching at high
lipid concentrations was corrected as described elsewhere [27]. All mea-
surements were repeated at least twice.

Partition coefficients, K, were calculated assuming two models
(for reviews on these and other formalisms see [28-30]): (i) simple
partition; and, (ii) peptide self-quenching [7]. In the simple partition
model experimental fluorescence intensity data (I) were fitted with
[28]:

1 1+Ky gt :
hw = 15Ky, )
where I, and I, are the fluorescence intensities with all the
fluorophores in aqueous solution or inserted in the lipid membrane,
respectively, 7. is the molar volume of the phospholipid and [L] the
lipid concentration. For the peptide self-quenching model, experi-
mental data were fitted with [7]:

I Kyyi 1= L] 1
—= +
Iy~ 1K, yilL] + kKD, 1+ Ky, L]

(2)

where k; is proportional to the ratio between the bimolecular
self-quenching rate and the radiative decay rate.

2.6. Fluorescence quenching experiments

Acrylamide was used as a peptide fluorescence quencher in
steady-state experiments. 5-NS and 16-NS were used both in
steady-state and time-resolved measurements. The quenching ex-
periments mediated by acrylamide were performed using a Varian
Cary Eclipse fluorescence spectrophotometer (Mulgrave, Australia).
Experimental settings were Nexc=284 nm or 295 nm (5 nm band-
width), to minimize the quencher light absorption and inner-filter
effect, and Nejy =303 nm or 355 nm (5 nm or 10 nm bandwidth), for
Tyr and Trp containing peptides, respectively. Acrylamide was added
to the peptide solution up to 226 mM. Peptide solutions were
prepared using Absy;shm=0.1 for Tyr containing peptides and
Abs;gonm = 0.06 for the Trp containing ones. Experiments were con-
ducted in the presence and absence of lipid vesicles (up to 1 mM).
Control experiments were preformed with free Tyr and Trp, with or
without lipid vesicles. Fluorescence intensity data were corrected

using the formalism presented by Coutinho et al. [31], in order to ac-
count for the inner-filter effect.

Acrylamide is a collisional quencher; therefore, the quenching
process can be described by the Stern-Volmer relationship [32]:

b1k 3)

where I and I are the fluorescence intensities in the absence and
presence of a concentration of quencher [Q], respectively. K, is the
Stern-Volmer constant, which is related to kg the bimolecular
quenching rate constant, and T, the fluorophore fluorescence life-
time in the absence of quencher, by:

Kgy = kg7 4

Stern-Volmer plots with negative deviations from linearity were an-
alyzed using the Lehrer model (for reviews see, [31,33]):

I (1T+Kgy[Q)(1—fp) +fp
where:
_Io
fo=12 (6)

is the fraction of initial fluorescence intensity emitted by the fluorophores
accessible to the quencher.

5-NS or 16-NS quenching experiments were conducted by adding
small aliquots of the quencher stock solutions (70 mM in ethanol) to so-
lutions with 35 M NrTP8 and 3 mM POPC or POPG vesicles, after a
10 min incubation. The final ethanol concentration was kept below 2%
(v/v) to avoid lipid bilayer perturbations [34]. On steady-state measure-
ments, emission spectra were recorded from 305 nm to 500 nm (10 nm
bandwidth), with excitation at 290 nm (5 nm bandwidth) in order to
minimize the quencher to tryptophan absorption ratios. Raman scatter-
ing, dilution and inner-filter effects were taken into account on the spec-
tral correction. Positive deviations from linearity in Stern-Volmer plots
were analyzed using the quenching sphere-of-action model [35]:

I
T =1+ KeQe" (7)

where V is the static quenching constant.

Time-resolved intensity decays were obtained by pulse excitation
at 280 nm (vertically polarized) and fluorescence acquired at 350 nm
(20 nm bandwidth, at magic angle, 54.7°), using a 20 ns time span
and 1024 channels in a multichannel analyzer. These measurements
were performed in a time-resolved fluorescence equipment LifeSpec
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Il from Edinburgh Instruments, using a picosecond pulsed LED for
excitation.

The fluorescence lifetimes were obtained from intensity decay fits
with a sum of exponentials and using a nonlinear least-squares meth-
od based on the Marquardt algorithm [36]. The quality of the fits was
evaluated from y? values, distributions of the residuals and autocor-
relation plots. Time-resolved quenching data was analyzed using
the same equations and assuming:

Iy _
[eV@

*h“;]

8)

where 7 is the average fluorescence lifetime, and e"'9 =1 in the ab-
sence of static quenching. On the studies of quenching by the lipophilic
molecules 5-NS or 16-NS, the effective quencher concentration in the
membrane was calculated as previously described [37], using the parti-
tion coefficients of the quenchers Kp5.ns= 12570 and K, 16.ns = 3340
[38].

2.7. Dynamic light scattering studies

Dynamic light scattering (DLS) measurements were conducted on
a Malvern Zetasizer Nano ZS (Malvern, UK) with a backscattering de-
tection at 173°, equipped with a He-Ne laser (A =632.8 nm), at 25 °C,
using disposable polystyrene cells. Pure POPG was diluted to a final
concentration of 50 pM and then filtered through a sterile 0.45 pm
pore size filter (Whatman, Florham Park, NJ). Nr'TP1 was added to
the lipid vesicles at the final concentrations of 3.3 uM and 5.0 M
(lipid:peptide ratios 1:15 and 1:10, respectively). Normalized intensi-
ty autocorrelation functions were analyzed using the CONTIN method
[39-41], yielding a distribution of hydrodynamic diameters (Dy). A
set of 15 measurements (~13 runs each) was carried out for
the lipid vesicles in the absence and presence of each NrTP1
concentration.

2.8. Lipid vesicle leakage assays

NrTP-induced lipid vesicle leakage experiments were done as de-
scribed elsewhere [23,41,42], using a Varian Cary Eclipse fluorescence
spectrophotometer. Briefly, the release of 5,(6)-carboxyfluorescein
(CF) entrapped in LUV was monitored by fluorescence dequenching.
Different concentrations of NrTPs (0-20 uM) or crotamine (0-4 pM)
were incubated with CF-entrapping LUV (10 pM, in 20 mM Tris-HCl
with 150 mM NaCl, pH 7.4.), at 25 °C. Fluorescence was recorded con-
tinuously during 30 min, with constant stirring, using Nexc =492 nm
and Nery =517 nm. After 27 min, 1% (v/v) Triton X-100 was added to
the vesicles for complete disruption. The percentage of leakage was
determined by [42]:

Ie—I
%leakage = —- 0 9)
F.100x —IF0

where Ir and Ir, are the fluorescence intensities in the presence and
absence of peptides, respectively, before the addition of Triton
X-100, and Igj00% is the fluorescence intensity after Triton X-100
addition. All fluorescence intensities were corrected for dilution.

2.9. Circular dichroism

Circular dichroism (CD) spectra were obtained using a JASCO spectro-
polarimeter model J-815 (Tokyo, Japan), at 25 °C, in the 195-260 nm
wavelength range, with a bandwidth of 2 nm and 0.1 cm quartz cells. So-
lutions of 70 uM NrTP8 were used in the absence or presence of 6 mM
POPC or POPG LUV. Peptide samples were scanned at different

concentrations in order to detect eventual aggregation effects. Results
were expressed in terms of mean residue ellipticity, [6], according to [43]:

0

0] = N1
where 6 is the observed ellipticity, N is the number of amino acids in
the peptide, I is the path length and c is the peptide concentration.
The final spectra were the average of ten measurements after subtraction
of buffer or vesicles baselines. Spectra analysis, to predict the peptide
secondary structure, was done using the K2d software (http://www.
embl.de/~andrade/k2d/) [44].

(10)

2.10. Translocation assays

Translocation experiments were carried out using a Zeiss confocal
point-scanning microscope model LSM 510 META (Jena, Germany).
Argon (488 nm; 45 mW) and diode-pumped solid-state (DPSS;
561 nm; 15 mW) lasers were used with a 63 x oil-objective of 1.4 nu-
merical aperture. For these assays, 15 M rhodamine B-labeled pep-
tides (NrTPs-RhB) were used and tested with GUV, GMLV and
GMVL of POPC with 1% NBD-DPPE. Giant vesicles were diluted 1:2.6
(v/v) in 200 mM glucose and placed in 8-well plates for 30 to
60 min (p-slide 8 well, uncoated, from Ibidi, Munich, Germany),
where they were allowed to sediment by gravity. Plates were placed
under the microscope, where they stabilized for 10-15 min before
measurements start upon peptide addition. The method to detect
and quantify translocation was based on the detection of rhodamine
B inside the vesicles and on the co-localization of labeled peptides
with inner giant vesicle membranes (Fig. 2). RhB labeling of these
membranes occurs only when the peptide is able to translocate across
the external vesicle bilayer, accessing the inner bilayers. Images were
processed using Zeiss software and Image ] (rsbweb.nih.gov/ij/).

3. Results and discussion
3.1. Crotamine and NrTPs spectral characterization

At room temperature and pH 7.4, crotamine and NrTP8 peptide
absorption maxima are at 280 nm due to the Trp residues. Their fluo-
rescence emission spectra have maxima at 345 nm (Fig. 3), typical of
Trp exposed to the aqueous environment. In fact, both crotamine
tryptophan residues have their indole rings fully exposed to the sol-
vent (Fig. 1). For NrTPs 1-7, the absorption maxima are at 275 nm.
When excited at 280 nm, the fluorescence emission spectra of these
peptides have maxima at 302 nm, except for NrTP5, where an emis-
sion maximum at 306 nm was observed (Fig. 3). These values are typ-
ical for Tyr fluorescence on proteins and polypeptides without Trp
residues [45].

Fig. 2. Giant unilamellar vesicle (left) and giant multilvesicular liposome (right) used
for NrTPs translocation studies. Membranes of POPC labeled with NBD (1%). Green
fluorescence is detected by confocal microscopy upon excitation with 488 nm laser.
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Fig. 3. Normalized fluorescence emission spectra of crotamine 7.7 uM and NrTPs (25-97 uM)
obtained at Nexc =280 nm, pH 7.4, 25 °C.

3.2. Molecular partition assays

Table 2 summarizes the values obtained for the partition coeffi-
cients (Kp), ratios between the fluorescence intensities in aqueous so-
lution and in lipid (I;/I,,) and models used to fit the partition data.
Fig. 4 presents the partition curves obtained for crotamine and
NrTP1. The partition curve patterns of the other NrTPs are similar
and can be found as Supplementary Information.

Two types of zwitterionic lipid bilayers were used in these studies:
pure POPC and POPC:cholesterol 67:33 (mol%). Pure POPC bilayers
are in the liquid disordered state. The addition of cholesterol
increases the lipid acyl chain ordering, leading to the formation of a
liquid ordered phase [46-49]. These zwitterionic lipid systems were
used to mimic the outer leaflets of mammalian cell membranes.
POPC is a 1-saturated, 2-unsaturated phosphatidylcholine (PC), a
common motif in the naturally occurring phospholipids, being the
major component in PC isolated from several natural sources [50].
Negatively charged lipid bilayers, such as those of pure POPG or
POPC:POPG 70:30 (mol%), were used to simulate bacterial mem-
branes [51] and to analyze the contribution of charge effects for the
peptide-membrane interaction. The content of anionic phospholipids
on bacterial membranes is within the 30-40% range [52]. Pure POPG
was used for the sake of comparison and to assess the effect of an
increase on the percentage of negatively-charged phospholipids.

Crotamine partition curves are well described by the simple parti-
tion model and were fitted with Eq. (1) (Table 2 and Fig. 4A). The
protein-lipid interactions are characterized by high partition coeffi-
cients and I /I,y ratios below 1 for all the lipid systems tested. Crotamine
global net charge at pH 7.4 is 4+ 10. However, this charge, seems not to
be the major determinant for the crotamine-lipid interaction, as the K,
values obtained for the interaction with POPG-containing bilayers are
only slightly higher than those obtained for zwitterionic membranes.
Furthermore, crotamine extent of partition is higher for the POPC:

Table 2
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POPG mixture than for pure POPG, probably as a result of both hydro-
phobic and electrostatic forces acting together. The high K, values
obtained for POPC and POPC:cholesterol vesicles agree well with
crotamine high capacity to interact with mammalian cells [13].
The 7 nm blue shift on the emission maxima at [L]>0.2 mM and
the decrease on I;/I,, observed for the crotamine partition to
POPG vesicles are due to a change on crotamine tryptophan resi-
dues micro-environment, which becomes more hydrophobic upon in-
teraction with the bilayer. No spectral shifts were observed on other
crotamine-lipid partitions, indicating that on these cases Trp residues
are partially exposed to the aqueous environment upon membrane
binding. The addition of cholesterol to the POPC bilayers had no signif-
icant effect on the partition coefficient, showing that crotamine has no
particular preference to (or exclusion from) cholesterol-rich membrane
domains. The decrease in Trp quantum yield upon peptide interaction
with lipid vesicles (opposing to the most common increase of the quan-
tum yield), gives rise to the observed downward partition curves. The
same behavior has been previously observed for human and plant
defensins, which fold similarly to crotamine [53,54]. The three disulfide
bonds on the Trp vicinity may account for most of its quenching, since
cystines are strong Trp emission quenchers [55]. Upon protein-
membrane interaction, crotamine structure rearranges and cystines
should come closer to the Trp residue quenching its fluorescence more
efficiently.

As crotamine, NrTP1 shows high affinity for zwitterionic mem-
branes, with and without cholesterol (Table 2 and Fig. 4B). These results
agree with the observations of Radis-Baptista et al. [ 19], describing the
interaction and translocation of this and other NrTPs into HeLa cells.
The partition is reduced in approximately one order of magnitude for
negative LUV (Kp,POPG =1.5x 103 and Kp,POPC:POPG =23x% 103), despite
the peptide positive net charge (+5). However, it is important to bear
in mind that, even with such a decrease, the peptide still presents a con-
siderably high partition for these membranes. The NrTP1-POPG interac-
tion is also characterized by an upward curvature (I >I,y), at variance
with the observed for all crotamine partitions and NrTP1 partition to
zwitterionic membranes. Tyr residues quantum yield can be affected
by several quenching mechanisms regarding their local environment
in the peptide [45]. During the partition process, the residues on vesicles
interface undergo distance and space orientation changes, affecting ty-
rosine emission. In the present case, the most probable quenching
agents are: (i) the hydrated peptide carbonyl group; and, (ii) the sulfhy-
dryl group of cysteine. The protonated charged forms of nearby Lys res-
idues have no significant effect on Tyr fluorescence.

All NrTP1 partition curves were well fitted with Eq. (1), except for
POPC:POPG, in which the more complex self quenching model
(Eq. (2)) was necessary (Fig. 4B). In this case, a decrease on the pep-
tide fluorescence quantum yield at low lipid concentrations was first
observed, followed by an increase. High fluorophore concentrations
in the membrane at low lipid concentrations usually account for
this self-quenching phenomenon [7].

Adding a flexible 6-aminohexanoic acid (Ahx) spacer onto NrTP1
structure (NrTP2), to connect the peptide N- and C-terminal amino

Crotamine and NrTPs partition coefficients (K,) and ratio between the fluorescence intensities in aqueous solution and in lipid (I/l,), for partitions to POPC, POPG, POPC:POPG
70:30 and POPC:cholesterol 67:33 LUV. Models used to fit the experimental results: SP—Simple Partition; SQ—Self Quenching (marked with *). Data are presented as the best fit

value + standard error.

K,/10° I/l Model
POPC POPG POPC:POPG POPC:chol POPC POPG POPC:POPG POPC:chol
Crotamine 22+4 31+4 4447 25+4 0.69+0.01 0.57+£0.01 0.80+0.01 0.69+0.01 SP
NrTP1 55+17 1.5+0.2 23407 3049 0.9040.01 1.5340.03 1.2540.03 0.93+0.00 SP; SQ (*)
NrTP2 1243 1.6+£04 3.9408* 2344 0.91+£0.00 1.5640.05 1.2940.03 0.89+0.00 SP; SQ ()
NrTP5 724+18* 3.04+0.7 9.24+1.0 1094+19* 0.81+£0.01 1.574+0.07 1.5940.01 0.78 +£0.00 SP; SQ ()
NrTP6 1445 1.8+£0.2 0.16+£0.04 170455 0.96+0.00 1.98 +-0.04 1.4140.07 0.94 +0.00 SP
NrTP7 31+£12 1.9+04 0.15+£0.02 56421 0.95+0.00 2.06 £0.06 2.30+£0.15 0.95+0.00 SP
NrTP8 18+6 24404 3.1+1.1% 18+5 0.84+0.01 1.5940.02 1.174+0.05 0.834+0.01 SP; SQ(*)
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acid residues, does not increase the membrane partition of this pep-
tide. In fact, the partition coefficient of NrTP2 to POPC membranes de-
creases, while the I;/I,, ratio is maintained. For POPG and POPC:POPG
bilayers, the observed K, and I;/l,, values are similar to those obtained
for NrTP1. In the case of NrTP5, the amino acid chirality factor is sig-
nificantly relevant only for the interactions with POPC:cholesterol
and POPC:POPG membranes, where Kj, values are 4-fold higher than
for NrTP1. Partition curves for POPC and POPC:cholesterol vesicles
are better characterized by the self quenching model. In these cases,
the higher K, values lead to higher peptide local concentrations in
the bilayer, and consequently to Tyr fluorescence quenching. For
NrTP6, the Cys residue replacement by Ser reduces the partition ex-
tent to POPC and POPC:POPG bilayers, relative to Nr'TP1. The peptide
partition into POPC:cholesterol, on the contrary, is highly favored. A
similar trend was observed for the arginine-rich NrTP7 peptide parti-
tion curves. For NrTP8 (replacement of Tyr by a Trp residue), the ex-
tent of partition into POPG or POPC:POPG is lower than for POPC or
POPC:cholesterol vesicles, as observed for NrTP1. Blue shifts of 9 nm
and 16 nm, for NrTP8-POPC:POPG and NrTP8-POPG interactions, re-
spectively, were observed, as noticed for crotamine. This clearly indi-
cates that the Trp region interacts with the membrane, reducing its
exposure to the aqueous environment and, thus, increasing its quan-
tum yield.

For all the studied NrTPs, the partition curve patterns vary be-
tween negative and zwitterionic bilayers, suggesting that the nature
of the peptide-lipid interaction is different. Results for zwitterionic
membranes show very high K, values, associated with I; <l (indica-
tive of quenching upon membrane binding), while partition into neg-
ative membranes seem to be associated with lower (but still high) K,
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Fig. 4. (A) Crotamine 7.7 pM partition curves, fitted with Eq. (1), for POPC ((J), POPG

(x), POPC:POPG 70:30 (O) and POPC:cholesterol 67:33 (A) LUV. (B) NrTP1 53 uM
partition curves, fitted with Egs. (1) or (2), for LUV with the same lipid composition.

values, with the most common relation I; > Iyy. The peptide residues
involved on the interaction with the bilayers vary with the ionic char-
acter of the membranes, zwitterionic or anionic. In fact, the peptides
undergo conformational changes that dictate their affinity and loca-
tion in the vesicles, at surface or buried on it. This observation is par-
ticularly highlighted by the experiments with NrTP8, where the Trp
residue emission maximum is shifted, in a clear indication of medium
polarity change. Also, the different I;/l,, ratio values obtained for the
POPC and POPG containing bilayers, points out for peptide conforma-
tional changes occurring upon interaction with the lipid surface. The
significant differences among I; /I, ratios for the lipids tested, togeth-
er with the decrease in K, observed for zwitterionic lipid vesicles, re-
flect the preference of NrTPs to stay adsorbed in this lipid membrane.
On the other hand, in POPG containing vesicles the extent of interac-
tion was greater, indicating membrane penetration, driven mainly by
electrostatic forces.

3.3. Fluorescence quenching experiments

Fluorescence quenching by acrylamide experiments were con-
ducted for all peptides, in aqueous solution and in the presence of
LUV (Table 3; Fig. 5). Acrylamide is often used to study the accessibil-
ity of peptide fluorophores to the aqueous environment. If the fluo-
rophore of the peptide is fully shielded in the membrane, it becomes
inaccessible to this aqueous quencher, which possesses a low capacity
of penetration into lipid bilayers [56]. In solution, the Stern-Volmer
plots of all studied peptides are linear (Fig. S8), indicating that there
are no major aggregates in solution [57]. Acrylamide quenching in the
presence of POPC vesicles revealed almost no variation in the Ksy
value for all Nr'TPs, suggesting that the peptide fluorophore remains ac-
cessible to the quencher. The fraction of light emitted from the pep-
tides that interact with the membrane (fi) can be calculated from
the K, [37]:

LKy L]

fi=—"r"——
1+7-Kyy (L)

(11)

In the case of NrTP5 with 1 mM POPC vesicles, f; is 99.8%. This re-
sult indicates that all the peptides are interacting with the membrane.
On the other hand, fg (fraction of light from flurophores accessible to
the quencher; Eq. (6)) is 91% for the same system. This means that al-
most all peptide is accessible to the quencher (Table 3). Also for
NrTP5, but with 1 mM POPG vesicles, f; is reduced to 78%, with a fg
of 41%, indicating that approximately half of the peptide is shielded
from acrylamide, i.e., stays buried in the membrane. Thus, there is
more peptide interacting with POPC than with POPG vesicles, but
while for POPC the peptide is at the membrane surface, in
POPG-containing systems it stays buried in the bilayer, protected
from the quenching by acrylamide (Fig. 9). The same conclusions
apply to NrTP8 and remaining peptides. The distinct behavior be-
tween NrTP5 and NrTP8 regarding POPC:POPG vesicles was also
detected in the partition studies. NrTP8 interacts to a less extent
with POPC:POPG compared to NrTP5, in agreement with the high
values of fz (~1) and Ksy. In general, only the presence of negatively
charged vesicles induced a decrease in Ksy, which can be considered
as an indication of membrane penetration.

To obtain more information on the in-depth location of NrTPs upon
binding to a lipid membrane, 5-NS and 16-NS lipophilic probes were
used to quench NrTP8 fluorescence in the presence of POPC or POPG
vesicles (Fig. 6 and Table 4). The quencher doxyl moiety of 5-NS is locat-
ed in a shallower position (closer to the lipid-water interface) than in
16-NS; therefore, 5-NS is a better quencher of molecules located near
the membrane interface [58]. The quenching by both in-depth probes
is more pronounced in the NrTP8-POPG system, where higher Ksy
values were obtained. This agrees well with the results obtained using
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Table 3

Quenching of NrTPs fluorescence by acrylamide in the presence and absence of lipid vesicles. LUV of POPC, POPG, POPC:POPG 70:30 and POPC:cholesterol 67:33 were used. Ksy and
fs were calculated using Eq. (3) (linear Stern-Volmer plots) or Eq. (5) (Stern-Volmer plots with negative deviation). Data are presented as the best fit value from two independent

experiments + standard error.

Quenching in solution

Peptide NrTP1 NrTP2 NrTP5 NrTP6 NrTP7 Tyr NrTP8 Trp

Ksv (M™") 7.4840.12 7.00+0.05 13.84+0.05 8.3940.15 8.34+0.06 24.82+0.66 20.81+0.18 23.94+0.27
Quenching in the presence of lipid vesicles

Peptide NrTP5 NrTP8

Lipid POPC POPC:Chol POPG POPC:POPG POPC POPC:Chol POPG POPC:POPG
Ksy (M™1) 14.30+0.86 12.75+1.40 6.154+0.75 6.414+1.39 19.43 +£0.68 2494047 6.7540.66 15.9540.46
fp 0.9140.02 0.9240.03 0.4140.03 0.4440.05 1 1 0.5240.02 1

acrylamide, where it was found that ~50% of the peptide population
was buried in the POPG bilayer. In the case of POPC vesicles, the Ksy
value for 16-NS is higher than for 5-NS, which seems to be at odds
with the previous results (partition and acrylamide quenching) that
show the peptides’ preference to be adsorbed to the lipid—-water inter-
face upon interacting with zwitterionic membranes. However, it should
be noted that the 16-NS quencher group has a broader transversal dis-
tribution in the membrane than the same moiety in 5-NS, with some of
the 16-NS quencher groups transiently locating close to the lipid—water
interface [59,60]. As a result, 16-NS (despite a low quenching efficiency)
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Fig. 5. Stern-Volmer plots of Nr'TP5 53 pM (A) and NrTP8 19 uM (B) quenching by ac-

rylamide, in the absence (@), or presence of POPC (O), POPC:cholesterol (V), POPC:
POPG (¢) or POPG (x) LUV.

may quench more efficiently than 5-NS a fluorophore located at this
interface.

The differences between the Ksy values obtained by steady-state and
time-resolved fluorescence spectroscopy measurements account for
static quenching effects. The close proximity between the fluorophore
and the quencher molecule is the main cause for this phenomenon. In
the steady-state experiments using 5-NS, data were fitted with the
sphere-of-action model (Eq. (7)), from where a value for the static
quenching constant, V, can be recovered (Table 4). The V values
obtained, 444 M~ for POPC and 1.08 M~ for POPG, are consistent

14} A
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[QlL, (M)

0.0 0.1 0.2 0.3 0.4 05
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Fig. 6. Stern-Volmer plots of Nr'TP8 35 uM quenching by 5-NS (M,[]) or 16-NS (®,0), in
LUV of POPC (solid symbols) or POPG (open symbols), by using steady-state (A) and
time-resolved (B) fluorescence spectroscopy data. Quencher concentrations are
expressed as effective concentrations in the membrane [37].
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Table 4

Stern-Volmer constant (Ksy), fraction of fluorophore emission accessible to the quencher
(fs), radius of the sphere of action (rs4) and static quenching constant (V) for NrTP8 in
POPC or POPG LUV, quenched by 5-NS or 16-NS. These values were obtained using
Eq. (3) (linear Stern-Volmer plots) or Eq. (7) (Stern-Volmer plots with positive deviation;
marked with *) to fit the experimental data.

POPC POPG

Steady-state  Time-resolved Steady-state Time-resolved

Ksy, s.ns (M) 0.75+0.53* 1.04+0.06 7.18£0.44* 1.724+0.10
rsa, s-ns (A) 12244544 - 7.64+357 -
Vsns (MT1) 4444039 - 1.08+0.11 -
Ksv, 16.0s (M™')  2.18+£0.03  0.5740.03 466+0.07  1.43+0.06

with a random distribution of quencher around the fluorophore, as it is
in the aqueous phase [61]. For the NrTP8-POPC systems, most of the
peptide rest in the vesicles surface. As a result, fluorophore quenching
by both in-depth probes is much less efficient than by acrylamide,
where higher Ksy values were observed (Table 3).

3.4. POPG aggregation in the presence of NrTPs

Light scattering studies were performed in order to test the possi-
ble aggregation of negatively charged lipid vesicles, promoted by the
positively charged peptides. Results showed that the addition of
NrTP1 to POPG vesicles promotes aggregation in a concentration de-
pendent manner, as the peak of the size distribution histogram is
shifted to the right (Supplementary Information; Fig. S10). Although
the peptide:lipid ratio of 1:10 is the one yielding more and larger ag-
gregates, for the ratio of 1:15 an increased polydispersion is already
visible, which per se is a sign of the beginning of the aggregation pro-
cess [62]. The aggregation of negatively charged vesicles triggered by
NrTPs suggests that these peptides may also have antimicrobial activ-
ity. POPG vesicles can be seen in this context as an approximate
model to bacterial membranes, once bacterial membranes are typical-
ly more anionic than mammalian cells membranes. Such an antimi-
crobial behavior would not be unexpected, since several CPPs
possess also antimicrobial peptide (AMP) activity and vice-versa
(for a review see [4]). Although the antimicrobial activity of NrTPs
is out of the scope of the present work, it is definitely a worthwhile
route for further studies. Also, the interaction with anionic mem-
branes indicates that NrTPs may not be suitable for cargo delivery in
prokaryotic cells, impairing their potential use as carriers for bacterial
transformation.

3.5. Membrane leakage

Studies of membrane disturbance leading to leakage of an entrapped
fluorescent probe from LUV were conducted for crotamine (up to 4 M)
with POPC vesicles, as well as for Nr'TP1 and NrTP5 (up to 20 pM) in the
presence of POPC and POPG vesicles. These studies ruled out membrane
disruption, as no significant leakage induced by crotamine or by the
NrTPs was observed (percentage of leakage <2%; Fig. S11).

3.6. Circular dichroism

CD spectra were obtained for Nr'TP8 free in solution and in the pres-
ence of POPC or POPG LUV (Fig. 7). NrTP8 CD spectrum shows a unique
negative band centered at 200 nm, characteristic of random-coil struc-
tures. Upon interaction with lipid vesicles, this large negative band, as-
sociated with the amide transition of disordered peptides, is replaced by
another negative band, at 206 nm, typical of amide parallel transitions
in the a-helix. A smaller positive band at 229 nm was also observed.
A detailed spectral analysis of the CD spectra was made using the soft-
ware K2d (http://www.embl.de/~andrade/k2d/; Table 5). The acquisi-
tion of secondary structure is evident within both POPC and POPG
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Fig. 7. Circular dichroism spectra of Nr'TP8 70 uM in solution (—), or in the presence of
POPC (....) or POPG (——) 6 mM LUV.

membrane vesicles. The observed structural change should be associat-
ed with the establishment of Trp-phospholipid hydrogen bonds. In-
deed, the short N-terminal a-helix in crotamine (residues 1-7) is
stabilized by several hydrogen bonds, namely those between Tyr or
Trp H; and Aspyg lateral chain (Fig. 1). We hypothesize that, upon inter-
action with the lipid, this bond can be restored, helping to stabilize the
residues 1 to 9 region of the peptide. Possible hydrogen bond acceptors
include lipid carbonyls and interfacial water molecules present near the
phospholipid head-groups region [63].

3.7. Translocation assays

Translocation was tested for rhodamine B-labeled NrTP1 (NrTP1-RhB)
and NrTP5 (NrTP5-RhB). The objective was to detect eventual transloca-
tion into the interior of lipid vesicles, as well as translocation across
multiple lipid membranes. For both synthetic peptides, entry into the
vesicles and accumulation in the membranes were clearly detected by
confocal microscopy after approximately 20 min of incubation (Fig. 8).
The co-localization of fluorescence spikes from NBD with those from
RhB-labeled peptides in intravesicular membranes demonstrates an ef-
fective peptide translocation, as the labeled peptides crossed the external
vesicle membrane in order to reach the inner membranes (smaller vesi-
cles entrapped in the larger ones). From the approximately 60 vesicles an-
alyzed (captured images), around 80% showed fluorescence in all the
inner layers due to peptide internalization. Nr'TPs are soluble in water,
and this property explains the higher values of background fluorescence
detected in the aqueous media, when compared with NBD-PE. However,
the peptide's preference for lipid membranes is evident from the fluores-
cence peaks observed on each bilayer (Fig. 8).

The lipid membrane system used in these experiments is deployed
of any cellular component or electrochemical gradient, which compose
the cellular machinery required for endocytic mechanisms. For this rea-
son, direct translocation or membrane permeation has to be the overall
mechanism (or one of the mechanisms) behind the translocation of

Table 5

Estimation of the percentages of NrTP8 secondary structure in the absence and pres-
ence of different lipids, calculated based on the UV circular dichroism data, using the
K2d software (http://www.embl.de/~andrade/k2d/).

Random coil a-helix -sheet
NrTP8 99% - -
NrTP8-POPC 28% 33% 39%
NrTP8-POPG 28% 32% 40%
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Fig. 8. Translocation of NrTP1-RhB into giant multivesicular liposomes and giant mul-
tilamellar vesicles (POPC + DPPE-NBD 1%), assessed by confocal microscopy. Panel B
presents the normalized fluorescence intensities along a line drawn across the vesicle
image (panel A), showing the co-localization of NBD (green; 488 nm laser) with
NrTP1-RhB 15 uM (red; 561 nm laser). Each spike of the NBD fluorescence in B corre-
sponds to a lipid bilayer.

NrTPs and their cargoes. Indeed, the detailed mechanism responsible
for the passage of the peptide across a membrane is still not fully under-
stood for most CPPs. However, endocytic-independent mechanisms of
peptide entry are considered to play a significant role. Some models
have been proposed to explain membrane permeation, including the
inverted micelle [64], sinking-raft [65], carpet, the barrel stave pore
and toroidal pore [66,67] models. These last two and the carpet model
are often associated with the AMPs mechanism of action [68]. Based
on our experimental evidences, we cannot be certain about the exact
endocytosis-independent mechanism of NrTPs membrane transloca-
tion. Nevertheless, the inverted micelle model is a good candidate. Be-
sides of being the model accepted to describe the internalization of
several other CPPs, it is the model that predicts less membrane destabi-
lization, which is consistent with the very low levels of toxicity ob-
served for NrTPs. Results from leakage experiments also support this
argument, since they exclude the formation of pores (either transient
or permanent). It is worth noting that several CPPs have been shown
to be able to enter cells by direct permeation, without the formation
of pores in studies using GUV as membrane models [69]. Therefore,
the inability of NrTPs to induce the formation of pores (absence of leak-
age), clearly distinguishes them from other peptides with antimicrobial
activity.

Our confocal microscopy data clearly shows that, despite of the ab-
sence of electrochemical gradient or glycosaminoglycans (known medi-
ators or facilitators of CPP uptake), translocation of NiTPs seemed to
rely on a membrane partition-driven mechanism. Furthermore, it
should be highlighted that, to the best of our knowledge, this is the
first time this simple and direct methodology is used to assess pep-
tide/protein translocation.

4. Conclusions

The present work unravels the molecular basis of the cell mem-
brane translocation of NrTPs. Results show that the nucleolar
targeting peptides have high affinity towards all the lipid membranes
tested. As shown here, with both zwitterionic and negatively charged
LUV, NrTPs revealed high K, values. Quenching studies not only cor-
roborate the partition data obtained, but also contribute for the as-
sessment of peptide localization in the membrane. Together, these
results reveal the ability of NrTPs to interact with zwitterionic vesi-
cles, adsorbing on their lipid-water interface, retaining some degree
of freedom to translocate across their membrane. Additionally,
NrTPs insert on the hydrophobic interior of negatively-charged bila-
yers, which simulate bacterial membrane (Fig. 9).

Translocation studies showed that, besides interaction and pene-
tration, these peptides are also able to translocate across lipid vesicle
membranes. Remarkably, this demonstrates that the translocation
and the concomitant CPP action are not dependent on the presence
of specific receptors, such as glycosoaminoglycans (known to medi-
ate the entry of many CPPs), or on the presence of electrochemical
gradients.

In the present work, in addition to characterize and quantify the
molecular determinants of NrTPs interaction with lipid membranes
and their internalization into vesicles, the observed residual leakage
of LUV-entrapped fluorophores indicates negligible toxic effects of
NrTPs upon interaction and translocation across cell membranes.

It is known that the mechanisms by which CPPs translocate across
lipid membranes and internalize into the cells differ from CPP to CPP,
and sometimes between model systems, type of cells or nature of or-
ganisms and their tissues. Often the mechanism of peptide cell pene-
tration depends on the CPP concentration, if the CPP is conjugated or
un-conjugated, as well as on the peptide to cell ratio [68]. Therefore,
an assertive conclusion about one exclusive and single mechanism
of penetration is perhaps impossible. A more plausible explanation
is that cell-penetrating peptides can use more than one route to
gain access to the cell cytoplasm. The data presented here bring the
awareness that the translocation of NrTPs can occur by the simplest
of the models, i.e., membrane insertion and direct translocation.
However, this does not exclude the possibility of other cell-specific
mechanisms to be also involved on NrTPs translocation in more com-
plex biological systems, as observed elsewhere for NrTP1, by our
group [70].

The new methodology developed and applied by us to assess
cell-penetrating peptide translocation based on the imaging of giant
vesicles is simple, relatively fast and very informative.

All the studied NrTPs showed approximately the same trends re-
garding preference of interaction with different lipid membranes. The
quantitative differences between peptides for their partition and
quenching account for the variation in their amino acid sequence.
Based on the results presented in this work, it is clear that all the tested
NrTPs are potentially useful as nanoshuttles to carry compounds across
lipid membranes. However, it is important to highlight that the pres-
ence of a spacer to connect the segments 1-9 and 38-42 of crotamine
in the synthetic spliced peptides is apparently not an advantage. Impor-
tantly, an Nr'TP composed entirely of p-amino acid residues does not
have its translocation impaired. This latter characteristic may improve
the in vivo stability of the peptide.

We are sure that the understanding of the molecular interaction of
NrTPs with lipid moieties, as presented and discussed in this work,
associated with the mechanism of action of these peptides at the mo-
lecular level, constitute a critical step on the development of NrTPs as
a valuable biomedical tool to ferry cargos into membrane-surrounded
compartments. Our results show compelling evidences that NrTPs are
promising CPPs, capable of interacting with lipid membranes of vari-
ous compositions and translocate membranes by simple membrane
intercalation and translocation without its disruption.
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Fig. 9. Schematic illustration of NrTPs localization in lipid membranes. Results showed that NrTPs stay preferentially adsorbed on zwitterionic membranes, while in anionic mem-
branes they are inserted in the membrane. Insertion of Nr'TPs in POPG containing vesicles is determined by the decrease in the Ksy observed for acrylamide quenching and by the
higher Ksy values obtained with the lipophilic probes (5 and 16-NS), when compared with those obtained for zwitterionic lipid vesicles. Hence, in anionic membranes, NrTPs locate
closer to the phospholipids acyl chains than in zwitterionic membranes. On the other hand, the unchanged Ksy for acrylamide quenching in the presence of POPC membranes shows
that most of the peptide must stay adsorbed, fully accessible to the quencher. The fact that NrTPs quenching by both 5 and 16-NS probes was similar (but lower than for POPG) can
be explained by the broader in-depth membrane localization of 16-NS in the membrane, which generates a misleading higher value of Ksy for 16-NS.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.bbamem.2012.06.014.
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