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Abstract 

 

Data deluge has been dubbed the problem of the continuous accumulation of huge amounts of data that is 

generated nowadays. The analysis of this data has become a great issue in many areas of research. One of 

these fields is neuroscience. For this reason an application of a 3D visualization of neuronal network models 

has been previously built in the eXperience Induction Machine (XIM)1. In this study we investigate the role 

of sonification to extract meaning from the connectome datasets. Our hypothesis is that sonification 

enhances the visualization by giving a further layer of understanding of the networkõs dynamics during the 

navigation in the XIM. We conducted an empirical evaluation to test whether sound helps the comprehension 

of a complex dataset and we exposed the participants to two different conditions; only visualization and both 

visualization and sonification. Our results revealed that sonification enhances the understanding of the 

networkõs characteristic even with the completion of different tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
1  It is located at the laboratory for Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS), at the UPF, 
Barcelona 
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1. INTRODUCTION 

1.1 Problem statement 
 

In the last decades there is a continuous growth of data in different fields of research. This data is frequently 

left unused due to the lack of tools to effectively extract, analyze and understand it (Betella et al., 2012). The 

graphic presentation of information is a key issue in scientific creative research for the discovery of relations 

and patterns, as it aids the brain in handling tacit associations and relationships within wide sets of 

information (Garfield, 1989; Fry, 2004). One of the fields that generates extensive datasets is neuroscience. 

For this reason a 3D real-time visualization system has been built to graphically represent the massive 

connectivity of neuronal network models in the eXperience Induction Machine (XIM) (Betella et al., 2013). 

Visual display has a long successful history, and it has been employed widely and commonly in most of the 

traditional HCIs (Fry, 2004). However, the demand of presenting large quantity of information becomes a 

rising challenge for visual displays.  Representations of multidimensional data can become a difficult task for 

visual displays and may be too noisy to apprehend only with the eye (Eldridge, 2005). 

The last few decades there have been made considerable development of representation of complex data 

through the auditory display and sonification (Pauletto & Hunt, 2009; Scaletti & Craig 1999, Hermann et al., 

2001; Grond & Dallõ Antonia, 2008; Hermann, 2002).  

Humans are able to detect very subtle patterns in acoustic sounds, and this ability has found applications to 

an impressive degree in the field of music, or in medicine.  Traditional tools such the stethoscope and the 

Geiger counter provide good examples of the use of sound for the comprehension of time-varying structural 

details and demonstrate that they can be more effective than a visual display (Hermann & Ritter 1999; 

Eldridge, 2005).   

In this way, òauditory data display offers a new and very promising tool to uncover hidden structures and 

meaning in massive collections of data that would be difficult to scan, explore, or summarize by more 

conventional meansó (Hermann & Ritter, 2004). The use of the sonification of complex data has been 

developed either in pure auditory displays or with their integration in visual displays as a supportive medium 

(Kaper et al., 2000; Nesbitt & Barrass, 2002; Walker & Nees, 2011; Hendrix, 1994). 

The present thesis project deals with the sonification of a complex network such as the connectome 

(Hagmann et al., 2008) and is conducted under the framework of the CEEDS2 project. CEEDS is a 

European FP7 projects that contributes to addressing the question of how we can advance our understanding 

                                                             
2 The Collective Experience of Empathic Data Systems Project is founded by the European Union under the 7th 
Framework Programme, ICT-FET scheme (http://ceeds-project.eu/ ). 
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of the world and the data we extract from it, by placing human experience in the center of solution. The 

CEEDS project develops and deploys new methods to experience and analyze complex high-dimensional 

data sets by combining mixed reality, pervasive computing, ambient intelligence and interface technologies.  

The sonification of the connectome network aims to help the user understand better the relations of the 

characteristics of the network and discern the changes of their values occurring during the navigation in the 

3D visualization in the XIM. The hypothesis under investigation is that sonification will enhance the 

estimation of the values of the characteristics, make easier and more intuitive the understanding of the 

changes with the goal to detect differences in different regions of the network.  
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2. STATE OF THE ART 

2.1 The connectome network  
 

The data used for this project come from the study of the connectome network by Hagmann et al. (2008), 

which is  publically available for further research3. For this reason it seems appropriate to make an 

introduction into the nature of this dataset. 

 

The connectome is the complete description of the structural connectivity (the physical wiring) of an 

organismõs nervous system (Sporns et al., 2005). The name of connectome has been given simultaneously and 

independently by Sporns and Hagmann, giving birth also to the field of science dealing with the assembly, 

mapping and analysis of data on neural connectoms, named as connectomics. 

 

In the human brain, the significance of the connectome stems from the realization that the structure 

(connectivity) and function of the human brain are intricately linked, through multiple levels and modes of 

brain connectivity. The connectome naturally places strong constraints on which neurons or neural 

populations can interact, or how strong or direct their interactions are. 

Structure-function relationships in the brain are unlikely to reduce to simple one-to-one mappings. Despite 

such complex and variable structure-function mappings, the connectome is an indispensable basis for the 

mechanistic interpretation of dynamic brain data, from single-cell recordings to functional neuroimaging. 

 

The connectome is the fundamental basis for the mechanistic interpretation of dynamic brain data, from 

single-cell recordings to functional neuroimaging. Hagmann et al. (2008) constructed a connection matrix 

from fiber densities measured between homogeneously distributed and equal-sized regions of interest (ROIs) 

numbering between 500 and 4000. A quantitative analysis of connection matrices obtained for approximately 

1000 ROIs and approximately 50,000 fiber pathways from two subjects demonstrated an exponential (one-

scale) degree distribution as well as robust small-world attributes for the network. The data sets were derived 

from diffusion spectrum imaging (DSI). 

 

2.2 Auditory Display and Sonification Background 
 

An auditory display can be broadly defined as any display that uses sound to communicate information. 

Sonification has been defined as a subtype of auditory displays that use non-speech audio to represent 

                                                             
3 http://www.cmtk.org 
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information (Walker & Nees, 2011). Hermann (2008) suggests that the term of auditory display should also 

encompass the technical system used to create sound waves, or more general: all possible transmissions which 

finally lead to audible perceptions for the user. Sonification is thereby an integral component within an 

auditory display system, which addresses the actual rendering of sound signals, which in turn depend on the 

data and optional interactions.  

 

Sonification is still a relatively new field. Its definition was formally introduced quite recently, in the 

Sonification Report: Status of the Field and Research Agenda (Kramer et al., 1999) and can be considered as 

the most agreed definition: òSonification is the use of non-speech audio to convey information. More 

specifically, sonification is the transformation of data relations into perceived relations in an acoustic signal 

for the purposes of facilitating communication or interpretation.ó 

 

Another definition proposed later by Hermann (2008) is the following. Sonification is òa technique that uses 

data as input, and generates sound signals (eventually in response to optional additional excitation or 

triggering) and may be called sonification, if and only if: 

(C1) The sound reflects objective properties or relations in the input data. 

(C2) The transformation is systematic. This means that there is a precise definition provided of how the data 

(and optional interactions) cause the sound to change. 

(C3) The sonification is reproducible: given the same data and identical interactions (or triggers) the resulting 

sound has to be structurally identical. 

(C4) The system can intentionally be used with different data, and also be used in repetition with the same 

dataó. 

 
 
The last few decades sonification has been broadly used as a tool for the understanding of complex data. It is 

suggested that auditory display offers a new and very promising tool to uncover hidden structures and 

meaning in massive collections of data that would be difficult to scan, explore, or summarize by more 

conventional means (Hermann & Ritter, 1994).  One of its aspects is to aid and enhance the currently much 

wider established techniques of data visualization for the purpose of interactive, or exploratory data analysis. 

A major reason for this is that the specific properties of sound perception as compared to visual perception 

make auditory data displays highly suited to offer an additional route to meaning in data that is both 

synergistic and complementary to visualization. Particular strengths in this regard are: 1) the capability of our 

auditory system to process several streams of information in parallel 2) to offer a high temporal resolution 3) 

its high sensitivity for structured motion, in particular, rhythm and 4) its ability to function well even in noisy 

contexts. 
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As aforementioned, sonification may have been formally formulated in the late ô90s however its history can 

be tracked back many years ago. It could be suggested that sonification started to get established with the use 

of alarm signals with the broad use of computers and the appearance of the first user interfaces, in order to 

focus attention or announce the completion of a task. These would mainly aim in giving cues to the user, 

such as beeps etc. In the following sections, we will present a brief history background of the techniques 

developed are described. 

 

2.2.1 Sonification Techniques 
 

a) Audification 

Audification was one of the first attempts of representing big quantities of data. Its birth can be found back 

in 1819 with the invention of the stethoscope and after that we have even more examples of audifying 

physical data (Laennec, 1830). A rather old example of an auditory display is the well-known Geiger counter, 

which provides a direct auditory display of the number of registered ions per time caught by the electrodes of 

the Geiger device. It is used to measure the radioactivity and allows the listener to infer quantitative 

information. (Hermann & Ritter, 1999; Dombois & Eckel, 2011). 

The method of audification translates the data to amplitude values of the waveform and it is applicable if the 

data itself is a time series, e.g. data from a dynamic system like neural networks or seismic data. Audification 

has been broadly used in medicine with EEG signals (Dombois & Eckel, 2011; Nadwana, 2012), in 

seismology (Hayward, 1994; Dombois, 2002) or as a diagnostic tool for heliospheric data analysis (Alexander 

et al., 2011). 

 

b) Auditory Icons 
This sonification technique uses sounds that are used in a metaphorical sense; they are òeveryday sounds 

meant to convey information about computer events by analogy with everyday eventsó (Gaver, 1989), so that 

the effort to learn the display is decreased and is mostly applied in GUI. Auditory Icons appeared with the 

desktop user interfaces and can be considered as the counterparts of visual icons in desktop metaphor. 

Gaverõs work (1993) on Auditory Icons was inspired by Gibsonõs (1979) ecological theory of visual 

perception, adapted and applied for the design of auditory user interfaces. Examples of the work on Auditory 

Icons can be found in the SonicFinder (Gaver, 1989) an auditory interface developed at Apple computer, 

Soundshark, an application where sounds were used to represent the activity of ongoing processes even when 

not within a visible window or view on the screen.  Other applications of auditory icons can be broadly found 
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in mobile devices (Brazil & Fernstrom, 2011). However, this auditory display could be considered rather 

unsuited for presentation of general types of data. 

 

c) Earcons 
Earcons have been proposed by Blattner et. al. (1989) for navigation/orientation in data trees (like directory 

trees) with the intention to communicate more complex messages. Earcons were firstly defined as ònon-

verbal audio messages used in the user-computer interface to provide information to the user about some 

computer object, operation, or interactionó. This definition was later refined by Brewster, as follows: Earcons 

are òabstract, synthetic tones that can be used in structured combinations to create auditory messagesó 

(McGookin & Brewster, 2011). Likewise as Auditory Icons, Earcons have been used broadly in mobile 

devices. The difference with the Auditory Icons is that there is no assumption of an existing relationship 

between the sound and the information it represents. Earcons are simple tonal combinations or arbitrary 

acoustic patterns whose meaning must be learned by the user, and which can be combined to build non-

verbal messages of a higher complexity. 

 

d) Parameter Mapping Sonification 
This is one of the most common used techniques for the auditory representation of large data sets. Parameter 

Mapping Sonification involves the association of auditory parameters with data for the purposes of display. 

Given the inherent multidimensionality of sound, Parameter Mapping Sonification is considered to be well 

suited for sonification of multivariate data. For each data point one or more tones are generated where the 

parameters of the events, e.g. timestamp, duration, volume, pitch, envelope characteristics, brightness, etc., 

are controlled by the data vector components. The result can be called a multi-dimensional òsonic scatter 

plotó. A good example used for understanding the Parameter Mapping Sonification is the teapot as described 

by Grond and Berger (2011). Consider the simple case of a whistling teakettle: the kettle produces a particular 

sound as the water inside approaches its boiling point. It could be said that such a kettle creates much more 

sound than necessary considering that it merely represents a binary signal (boiling or not boiling). It would be 

simpler to use an auditory signal might be achieved by monitoring the output of a thermometer measuring 

the water temperature in the tea kettle, and mapping the numeric output to a sound synthesis parameter. A 

simple mapping, for example, would link temperature to frequency, pitch or, perhaps a more obvious and 

explicit auditory signal. Rather than simply hearing when the target temperature is reached one might wish to 

listen to the continuous change of the rising water temperature or, perhaps, to hear selective temperatures at 

various times during the heating process. However, it is important to note the fact that the sound of a 

whistling teakettle is a broadly understood signal, which carries a positive emotional connotation for some. 
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Additionally, the progression from noise to unstable frequency to relatively stable frequency can be said to 

have a musical quality. Thus, Parameter Mapping Sonification may offer something in the way of efficiency, 

but there are other important considerations, such as intuitive, emotive and aesthetic issues.  Previous work 

on Parameter Mapping Sonification has been implemented with meteorological data, such in Polliõs study  

(2005) or in the Hyperspectral, a diagnostic tool for probing in colon cells where a vocal tract model in which 

particular data states were anchored to specific phoneme sounds  (Cassidy et al., 2004) and the Sonification 

Sandbox for the sonification of auditory graphs(Walker & Cothran, 2003). 

 

e) Model Based Sonification  
Model Based sonification (MBS) can be considered the most recent technique for auditory displays and has 

been proposed by Hermann (2002).  The basic characteristic of the MBS is the concept of interaction. Takes 

as a paradigm our real life interaction with the environment to apply it in the auditory display. As in nature, 

normally passive systems are silent and it needs excitation in order to transmit sound. 

Model-Based Sonification is a sonification technique that takes a particular look at how acoustic responses are 

generated in response to the userõs actions, and offers a framework to govern how these insights can be 

carried over to data sonification basis is the imagination of a virtual data òmaterialó for the development of 

the sonification. Designing a sonification model consists in a òmaterial designó in a data space. The material 

structure is not only determined by the setup of the elements, but also given by the interactions between the 

elements. A kind of òvirtual physicsó must be defined, that permits a vibrational process analogous as in real 

sounding materials. Thus the data more or less directly becomes the sounding instrument, which is examined, 

excited, or played by the listener (Hermann & Ritter, 1999).  

For example, data points could be conceived as planets and a gravitational force defined. Particles could then 

be introduced into the data space to probe the gravitational potential at various points, from which the 

structure of the data set as a whole could be inferred. This approach has proved successful for several data 

pre-processing tasks such as analyzing clusters in vectorial data, and exploring the separability of a vectorial 

data set prior to a classification task. MBS has been broadly used for high dimensional data (Hermann & 

Ritter 2005; Kolbe et al., 2010). 
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2.3 Issues on Sonification  
 

Sonification is a combination of different research disciplines such as Psychoacoustics, Perceptual Research, 

Sound Engineering, Data Mining and much more. Taking into account the interdisciplinary character of the 

field there are various issues that have to be taken into consideration for a successful sonification design.  

 

2.3.1 Task 
One of the main and most important issues in sonification is the task that the user will need to complete. In 

order to create a new sonification model, the first question should be what is the main analysis task, or what 

type of pattern or structure should become apparent from listening. Taking a task-centered view helps the 

designer to focus on the relevant features. For example, assume that the goal was to hear whether the data set 

contains outliers or try to identify patterns in data structure. In each case the sonification design would be 

very different. Always the designer needs to consider how sonification can best help the listener in order to 

perform successfully her or his role in the system (Walker & Nees 2011). 

 

 

2.3.2 Mappings  
In sonification, data mapping is the process that determines how conceptual information is translated into 

auditory displays. It consists of three key aspects ð the selection of sound dimension, the choice of polarity 

and the determination of scaling. The type of data mapping used to sonify data has direct impact on the 

listener perception (Grond & Berger, 2011). 

 òTypically, when information to be sonified is of multi-dimensional, two or more variables in the sound 

dimension are to be used to represent the data. This would further complicate the mapping process due to 

the possible interactions between different sound dimensions, in which change in one dimension affects the 

perception of the other. For example, Neuhoff et al. (1999) found that changes in pitch can influence how 

listener estimate changes in loudness, and vice versa. However, the interaction can also be applied favorably 

in auditory displayó (Shou, 2012).  
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2.3.3. Human auditory perception  
 

a) Working Memory 
Walker and Mauney (2004) completed a specific experiment to study effect of individual differences on 

comprehension of sonification. Subject cognitive ability, including working memory (òthe system which 

actively holds information in the mind and to make it available for further information processingó) the 

experimental results suggested that individual working memory capacity and gender seemed to have 

substantial influence on comprehension of sonified data, although the test results were not completely 

consistent. 

 

b) Training 
Unlike visual display, where applications are pervasive and the user cognition is well established, auditory 

display is relatively unfamiliar to most of the users. Training is identified as one of the factors that can benefit 

novice users of auditory display. Recent researches focused on investigating the effect of different training 

methods, mainly divided as conceptual training and perceptual training. Classic perceptual training methods 

included the use of prompting and feedback. With prompting, a cue of correct response to a stimulus is 

provided before or during the presentation of the stimulus. With feedback, the correct answer is revealed 

after user makes a response to a stimulus (Bonebrigth & Flowers, 2011). 

 

 

2.4 Sonification in Multimodal Displays 
 

Until now we discussed about the sonification and its function as pure auditory display. However, this thesis 

deals with the integration of the sonification in a visual display. Thus, it would be instructive to review 

previous studies implemented on the comparison of visual and auditory displays and with their integration in 

multimodal displays, and expose the findings on the interaction of the two modalities (visual and auditory) 

and the effectiveness that sonification may have in the representation of complex data, as the data coming of 

neuroscience that are studied in this thesis. 

 

The auditory information channel can also be used as a complementary input to the visual modality. Audition 

helps to direct out eyes and can therefore improve our response time to visual stimuli. For example, previous 

studies have found that auditory cues in addition to visual cues help improve human performance in target 
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search tasks. Furthermore, the auditory channel is very sensitive to changes in the acoustic signal over time 

(Bregman, 1994).  

In many applications of sonification, it is reasonable to assume that the human listener will likely have other 

auditory and/or visual tasks to perform in addition to working with the sonification. Surprisingly few studies 

to date have considered how the addition of a secondary task affects performance with sonifications. The few 

available studies are promising.  

 

Mezrich et al. (1984) showed that a dynamic sonic and visual representation could assist people in analyzing 

en eigth-variable economic indicator that a sonic representation may be a more effective aid than a visual 

representation for identifying and remembering periodic patterns, and that the strong associative memories 

evoked by music may indicate that the way in which we remember sonic patterns differs from the way we 

remember visual patterns. Auditory displays, it could be suggested, can offer more than just a companion or 

an enhancement to visual displays. 

 

One of the most significant contributions to the field came from Sara Bly (1982). Her doctoral thesis was 

focused on the classification of non-ordered multivariate data sets. In a data set with n dimensions, each data 

point was represented by an audio event in which n parameters were controlled by the data. Possible 

parameters were loudness, pitch, duration, timbre, attack time, and waveform. Bly used a multivariate data set, 

involving the classification of flower species using four measurements per plant. Using sound, most study 

subjects were able to correctly classify most of the plants. In the same paper, a logarithmic data set was 

presented, and the logarithmic relationship between frequency and pitch was used to represent it. The 

exponential variable of earthquake magnitude was encoded in pure frequency and also in loudness and 

duration. The result was a positive indication that significant features of seismic data could be represented 

through sound. Bly conducted formal experiments using multivariate data, which were presented using sound 

only, graphics only and bimodal displays. Other variables were training methods and the data-to sound 

mappings. Subjects were asked to classifying a test sample as belonging to one of two possible sets. The 

results indicated that auditory display was as effective as visual display, and that the combined display 

outperformed both. 

 

Scaletti and Craig (1991) developed a series of sonifications to compliment visualizations to assist researchers 

in analyzing and interpreting complex data. The sonifications aimed to enhance the understanding of 

visualizations of forestry, air pollution and blood diagnostic tools produced in the NCSA University. They 

found that data-driven sound tracks increased the bandwidth of the scientific visualizations, providing 

supportive or additional information. 

 



 21 

Janata and Childs (2004) conducted an experiment of monitoring task where the participants had to detect 

changes in the variation of the values of the stock market. The task of the participants consisted in pressing a 

key for positive changes and another for negative ones. They found that auditory information increases the 

proportion of correct detections and the helpfulness of sound was even more pronounced when a secondary 

number-matching task was added.  

 

Peres and Lane (2005) showed in their study that using integral dimensions of sound (pitch and loudness, 

where interaction between dimensions exists) in data mapping improved listener performance in an auditory 

monitoring task, in which subjects were asked to determine the status of box plots (on target, off target and 

skewed) based on sonified data and provided their response visually through buttons. Whereas using separate 

dimensions (pitch and tempo) in data mapping showed no differences, compared with when only a single 

auditory dimension was usedó. They found that while the addition of a visual monitoring task to an auditory 

monitoring task initially harmed performance of the auditory task, performance soon (i.e., after around 25 

dual task trials) returned to pre-dual task levels.  

 

Bonebright and Nees (2009) presented sounds that required a manual response approximately every 6 

seconds while participants listened to a passage for verbal comprehension read aloud. The sound used 

included five types of earcons and also brief speech sounds, and the researchers predicted that speech sounds 

would interfere most with spoken passage comprehension. Surprisingly, however, only one conditionñ

featuring particularly poorly designed earcons that used a continuous pitch-change mappingñsignificantly 

interfered with passage comprehension compared to a control condition involving listening only without the 

concurrent sound task. Although speech sounds and the spoken passage presumably taxed the same verbal 

working memory resources, and all stimuli were concurrently delivered to the ears, there was little dual-task 

effect, presumably because the sound task was not especially hard for participants. 

 

Chang et al. (2010) implemented a sonification for a visual attention task. Although the aim of the study was 

not necessarily to discover information in the auditory displays that cannot be perceived in the visualizations, 

the system was considered to provide an engaging and accessible means to explore neural data and extract the 

main effects in each experiment. The sonified output enhanced and complemented the visualization, 

providing a multi-sensory means of experiencing and exploring the data.  

 

Lokki and Grohn (2005) tested the navigation in a virtual environment with auditory cues. The results 

showed that 3D navigation in a virtual environment is possible with auditory cues alone. However, the fastest 

and most accurate navigation is obtained when both auditory and visual cues are available. 
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Kaper et al. (2000) implemented a sonification for the exploration and analysis of complex data sets in 

scientific computing. They suggest that the combination of visual images and sounds provides indeed an 

extremely powerful tool for uncovering complicated structures. Sometimes, the sounds reveal features that 

are hidden to the eye; at other times, the visual images illuminate features that are not easily detectable in the 

sound. The two modes of perception reinforce each other, and both improve with practice. 

 

From the few studies that exist on multimodal displays, it is suggested that audio generally enhances the visual 

representation of data, referring to the complementary or redundant nature of the use of sound. In addition, 

there are studies that suggest even the superiority of sonification of data over visualization. 
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3. METHODS 

In this project, based on the data available for the study of the connectome, it was decided to measure 

whether the addition of sound can enhance the understanding of changes of the values and dynamics of its 

characteristics during the navigation through the network.  

 

3.1 Data exploration 
 

The neuroscience application represents the connectome networks. For this thesis, we adopted the dataset 

taken from the study of Hagmann et al. (2008). In particular we used the dataset of the subject B that 

contains 998 regions of interest (ROIs) and 28000 unidirectional connections. The dataset is stored in 

graphml format4 and is publically available for further research. A visual representation of this data has been 

implemented in the eXperience Induction Machine for the purposes of the CEEDS project in Unity5.  

Specifically, the connectome network that is graphically represented in the XIM consists of 66 anatomical 

subregions in the left and right hemisphere of the brain (Betella et al., 2013). Each one of the regions presents 

a certain number of nodes, connections and average strength. Strength refers to the extent a region is 

connected to the rest of the network. The following figure shows the latest graphical representation of the 

connectome network built in Unity. 

 

Figure 1. Screenshot of the neuroscience application with the GUI showing the values of the parameters for one of the 
regions (Superiorparietal Left). 

                                                             
4 data source http://www.cmtk.org/datasets/homo_sapiens_01.cff 
5 http://unity3d.com      
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The nodes are represented graphically as spheres (Fig. 1) and are highlighted when a certain region is selected. 

The connections are the links between the nodes and are represented as tubes that connect the nodes. The 

average strength is represented with the gradient color on the connections, which varies from white for low 

av. strength to very dark green for the high av. strength. The application includes a GUI where the values of 

each region selected are depicted. 

Since the sonification is based on the changes of the parameters of the characteristics of the connectome 

network it was necessary to understand the structure of this data. Before the design of the sonification system 

a data exploration phase was necessary.  

A preliminary examination of the data gave the following distribution of the characteristics. 

 

 

 

 

 

 

Figure 2. Histogram representing the 
nodes distribution in the network. 

 

Figure 3. Histogram representing the 
connections distribution in the network. 

 

Figure 4. Histogram representing the av. strength of the 
regions of the network. 
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The histograms above (Fig. 2,3,4) show that the data presented a varied distribution depending on the 

characteristic under study. This is important because it is a factor to take into consideration both for the 

design of the sonification and the design of the experiment, as it will be described in the further sections. 

Regarding the sonification, the distribution of the characteristics showed that higher resolution was needed in 

the following cases. In the case of the nodes, as it can be seen from the histogram, most of the nodes are 

concentrated in the range 0-15, while above the value of 30 there were very few regions. In the case of the 

connections most of the regions of the network presented values between 0-400, while in the range of 600-

800 and above 1200 there were very few regions. Finally, the values of the average strength present a normal 

distribution with most of the values being concentrated around 0.03 and 0.04. 

The following table summarizes the distribution of the parameters in the network and the values that were 

important for the design of the sonification and the experimental design. 

 

Table 1. Table shows the distribution of the characteristics in the network and the ranges of high and low concentration 
of values.  

Characteristic Mean Standard Deviation 
(SD) 

Ranges of high 
concentration of 
values 

Ranges of low 
concentration of 
values 

Number of 
connections 

15.11 ± 10.88 0-15 >30 

Number of nodes 438.64 ± 343.91 

 

0-400 600-800 and >1200 

Av. Strength 0.041 ± 0.078 

 

0.03 -0.04 <0.03 and >0.04 

 

3.2 Sonification method 
Parameter Mapping Sonification is probably the most common used technique for large datasets. The data 

are mapped into parameters of separate sound events. For each data record an acoustic event is created 

whose properties are driven by the data values. This technique allows the sound events to superimpose and 

offers flexibility (Grond & Berger, 2011). For these reasons and due to the nature of the data, Parameter 

Mapping Sonification has been considered to be the most appropriate for the auditory representation of the 

networkõs data. The parameters to be sonified were the four characteristics of the network coming from the 

neuroscience application: a) number of nodes, b) number of connections, c) average strength of each region 

and d) the location referring to which hemisphere the region was found.  

Two distinct sound sources were chosen whose parameters were mapped to the networkõs characteristics:  a) 

a grain sound of 16 ms and b) an ambient sound. The sound parameters used for the sonification were: a) the 

repetition rate of the grain sound, b) the pitch of the ambient sound, c) the loudness of the grain sound and 

d) panning.  
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The decision of using two different sounds was essential for the sonification design in order to avoid 

interaction between the frequency and the amplitude. As it has been suggested in previous studies the pitch of 

a sound is highly influenced by its loudness (Flowers, 2005). Therefore, changing both of the parameters of a 

single sound source, could lead to unperceived and confusing differences.  

As a solution to this problem it was decided to use two distinct sounds; one representing the number of 

nodes and the average strength of the regions and the other the number of connections. More specifically, the 

repetition rate of the grain sound was mapped to the number of nodes of each region of the network while 

the amplitude to the average strength of each region. The pitch of the second sound was mapped to the 

number of connections. In the following table the sound mappings are summarized. 

Table 2. Table shows the mappings between the networksõs characteristics and the sound parameters. 

Connectome 
characteristics 

Mappings Functions 

Sound source Sound parameter 

Number of connections Sound grain of 16 ms Rate of repetition Linear 

Number of Nodes  Ambient sound at 380 
Hz enhanced by pure 
sine wave at the same 
frequency 

Pitch Linear 

Av. Strength Sound grain of 16 ms Loudness Linear 

 

The choice of the sounds is also essential for the effective functioning of the system. On the one hand the 

sonification needs to give information about the data on the other hand has to be pleasant to the ear (Barass 

& Vickers 2011). In addition, there is interdependence between these two sounds, which needs to be taken 

into account. Thus, the two sounds functioned as two different streams that would not be confused but 

would be easily distinguished even if the first was listened in very low amplitude. Further details on the quality 

of the sound are given in the following sections regarding the sound mappings of each one of the parameters. 
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Figure 5. Overview of the sonification engine in Pure Data. 
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3.2.1 Data Communication between systems 

The sonification engine was built in Pure Data6. Pure Data is a ôreal-time graphical programming environment 

for audio, video and graphical processingõ and has been previously used in various sonification projects while 

it has been extended by a diverse group of developers, who have contributed additional libraries and 

functionality. Additionally, Pure Data has been chosen because of its open-source nature and the supportive 

online community of users.  

The communication of the data between the Unity environment, in which the neuroscience application has 

been built, and Pure Data was established using OpenSoundControl (OSC) messages. In the following figure 

the subsystem of the sonification engine is shown, receiving the data from Unity. 

 

Figure 6. Subsystem in Pure Data responsible for receiving the OSC messages from Unity. 

 

3.2.2 Sonification mappings 

a) Nodes 

For the nodes, a narrow-band short sound was chosen having an òelectricó quality with the objective to 

simulate laboratory sound recordings of neural activity. As mentioned above the rate of repetition of the 

sound was mapped to the number of nodes. Since the nodes have a very small range the sample was never 

played back so fast as to create a continuous sound. On the low end of the range again, the sample was 

repeated fast enough to remain on the psychological present (Bregman, 1994). Furthermore, it was intended 

to avoid a clearly mechanical repetitive feeling of the sound. For this, a random factor was added to the 

                                                             
6 http://puredata.info/ 
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repetition rate, which would simulate the quantity of nodes corresponding to different regions, giving the 

impression of distinct particles being activated. The tuning of this factor was based on empirical observation, 

the goal being not to distort the sense of repetition by for example creating too many bursts of sound. A 

different scaling was required for the low values and the higher values. This was based once again on the 

distribution of the nodes in the network. Since a high number of regions presented low number of nodes the 

scaling for these values had to cover a bigger range. Two linear functions served the purposes for these 

mappings based on two groups below and above the value of 12 nodes, where a more evident difference in 

the resolution was observed (Fig. 7). 

 

Figure 7. Patch within Pure Data of the mapping of the nodes values to the grainõs repetition rate and the strength to 
the amplitude of the grain sound. 
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b) Strength 

The values of the average strength were mapped to the amplitude of the grain sound as seen in the figure 

above (Fig. 7). As explained before if the amplitude was manipulated with the frequency of the same sound 

the interaction of these two parameters would lead to unperceived and confusing changes of the sound. For 

this reason the amplitude of the grain sound was preferred. The range in which the strength was mapped to 

was of 30 dB. Low amplitude corresponded to low average strength of a region and high amplitude to higher 

values of average strength. A linear mapping was implemented in the case of the strength, which was divided 

in 3 different ranges that were determined by testing the amplitude in relation to its interaction with the other 

two sound parameters Additionally, a reverb was added to the higher values to enhance the perception of 

higher strength for the correspondent regions of the network. 

c) Connections 

The parameter mapped to the number of connections is the pitch. The decision to use pitch was based on 

two facts. First, it has been used widely with success in previous studies (Walker, 2002; Flowers, 2005). 

Second, it offers large resolution (Carlile, 2011). The latter is crucial for this system since the number of 

connections present a very wide range (as shown in Fig. 3 and Table 1). It was decided to use an ambient 

sound instead of a pure sine wave. The main reasoning behind this is connected to the neuroscience 

application itself. This sonification should function as an extra channel for the user investigating the network. 

Since the XIM is an environment where the user is immersed, and taking into account that the connectome is 

a complex network a user can spend a great amount of time in order to get familiarized with the network. For 

this reason, a softer, more ambient sound was chosen which would not be annoying to the ear as a pure sine 

wave would be (Brown et al., 2003). First, it was necessary to analyze the sound. For the frequency analysis 

the [fiddle] object was used in Pure Data. It revealed a fundamental frequency of around 380-400 Hz 

although due to inaccuracies further analysis was needed. Spectral analysis with SonicVisualiser7 confirmed 

that the most prominent frequency was at 380Hz.  

                                                             
7 http://www.sonicvisualiser.org/ 
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Figure 8. Spectrogram of the sound implemented in the SonicVisualiser. The most prominent frequency found at 380 
Hz indicated with the yellow orange color low in the spectrogram. 

Furthermore the spectrogram of the sound shows some concentration of energy at around 1200 Hz. This 

explained why pitch shifting the sample was not working as expected for the whole range. At some 

frequencies the perception of the pitch was not clear. To rectify this problem and make pitch perception 

more robust a pure sine was added to the original sound. It was mixed on -12 decibels so it seamlessly blends 

with the original sound. Finally, the amplitude of the sound was adjusted according to the equal - loudness 

contours (Carlile, 2011). This correction was important so that all the ranges of the frequencies would be at 

the same level of loudness.  

 

Figure 9. Equal-loudness contours used for the adjustment of the amplitude level of the sound for the mapping of the 
number of connections. 
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The [pitchshifter] object was used to change the frequency of the sound sample. This was necessary in order 
to transpose the original soundõs frequency to lower and higher values. 

 

 

Figure 10. Patch within Pure Data designed for the connections mapping. 

 

The mapping was based on a linear function and the data coming from the number of connections (7-1500) 

were mapped to frequencies ranging from 100 Hz to 1200 Hz.  
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d) Brain Hemisphere 

The last parameter to be sonified was the brain hemisphere. Panning was thought to be appropriate for the 

discrimination of the left and right hemisphere as direction of the sound source would make more intuitive 

and direct the understanding of the location of the regions in the network (Carlile, 2011). Binary signals of 0,1 

were received from the Unity application, which were then mapped to the two speakers through the [pan] 

object.  

 

Figure 11. Patch within Pure Data designed for the panning depending on the hemisphere. 

 

3.3 Experimental design and set-up 
 

3.3.1 The eXperience Induction Machine 
Before the final experiment two pilot experiments were conducted. The experiments were carried out in the 

eXperience Induction Machine (XIM) (Eng et al., 2003; Bernardet et al., 2007; Betella et al., 2012). The XIM 

is a multiuser mixed-reality space covering a surface area of 5.5 x 5.5m equipped with a number of sensors 

and effectors (Fig. 12). XIM effectors include computer graphics content projected via 8 projectors on 4 

separate walls, a luminous interactive floor, movable lights and sonification system. For the purposes of this 

project four projectors were used as a visual displays of the connectome network on 4 separate walls and two 

speakers in the left and right corners of the room for the auditory display. A table and a comfortable chair 

were placed in the central front part of the room so that the participants would have a good auditory 

perception of the sound coming from the two speakers and additionally they would be able to fill the 
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questionnaires and use the keyboard and mouse to navigate through the network.  The lights were dimmed to 

provide an immersed experience. 

 

 

Figure 12. Illustration of the eXperience Induction Machine. The sensors are indicated with red color and the effectors 
with blue. 

 

3.3.2 Pilot experiment 
A first pilot experiment was conducted. The basic objective of this preliminary experiment was to test the 

design of the experiment and detect defects and problems that could emerge for the final experiment. The 

pilot experiment consisted of two different sessions. In this experiment the engagement was also measured 

with the ITC-SOPI questionnaire (Lessiter et al., 2001) that measures spatial presence, engagement, ecological 

validity/naturalness and negative effects.  

 

The sample for the pilot experiment consisted of 10 healthy adults (4 females, mean age 26.50, SD ± 3.7) that 

were recruited among the undergraduate students of the Universitat Pompeu Fabra in Barcelona. The 

subjects were informed that they would be presented various areas of the connectome network and later 
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would be asked questions about its structure and its characteristics. 

This pilot experiment followed an independent samples design. The participants were equally divided in two 

groups and each group participated in a different condition. The first condition was: only visualization and 

the second one: both visualization with sonification. The procedure followed was the same for both groups. 

In the beginning the subjects were presented with the connectome network projected in front of them and 

different areas were showed to them in order to get familiarized (with or without sound depending on the 

group). They were also informed of the minimum and maximum values of the characteristics in the network.  

A previous version of the network application (Fig. 13) was used for the pilot since the latest version with the 

anatomical atlas and other visual improvements was not available yet. 

 

 

 

Figure 13. Previous version of the neuroscience application used for the pilot experiment. 

 

In the first session the participants were presented with 5 different consecutive regions (the order was 

randomized). The GUI of the application was visible which provided the following values: a) name of region 

including the hemisphere, b) number of nodes c) number of connections and d) av. strength. The participants 

were also provided with a printed visual guide of the 5 regions in order to facilitate their task and help their 

orientation in the network. Then they were asked to fill in a questionnaire relative to their characteristics (i.e. 

which of the five regions presented the highest number of nodes) (Annex I). The participants had to mark 

their answers in close-ended questions. The measurements for this task was based on the number of correct 

and wrong answers of the participants. The average score of each participant was calculated.  
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In the second session they were allowed to navigate freely through the network for 3 min (with or without 

sound) and explore the network. The participants were informed that they would be given a questionnaire 

where they would be asked to answer questions concerning their experience. The participants used the 

keyboard for the navigation and then they were asked to fill the ITC-SOPI questionnaire on engagement 

(Annex II ).  

3.3.3 Empirical Validation 
 

For the second experiment 25 healthy adults  (15 females, mean age=29.53, SD ± 5.6) with normal or 

corrected vision and hearing were recruited. The subjects were naïve and had no prior scientific knowledge of 

neural networks. 

In order to avoid differences due to the single subject skills the experiment followed a paired samples design 

where each participant was exposed to both conditions (in a random order). The two conditions consisted of 

a) only visualization and b) both visualization and sonification8. The independent variable was the presence of 

sound vs the absence of sound and the dependent variable was the estimation of the values of the changes of 

the characteristics of the network between different regions with different characteristics. The experiment 

consisted of 3 sessions that are described in detail in the following sections and the participants were allowed 

to take breaks between the sessions. 

 

3.3.1 Experimental protocol 
 

a) Demographics 
In the beginning the subjects were asked to fill a consent form and a demographic questionnaire. The 

demographic questionnaire (Annex III) included personal questions concerning the age, gender, musical 

background, knowledge on neural networks resulting in an average formal or informal music training of 1.84 

(SD ± .85) on a scale of from 1 (none) to 4 (expert). 

b) Introduction 
The subjects were given a short introduction about the experiment and the objective. The task of the subjects 

was to estimate the number of nodes, connections and the average strength of each region presented and 

understand the changes of these values during the navigation. They were presented with the network and a 

brief explanation followed in order to understand the characteristics of the network (nodes, connections, av. 

strength). In this experiment the latest version of the neuroscience application was used compared to the one 

                                                             
8 These conditions will be further referred to as a) visualization and b) sonification 
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adopted in the pilot experiment. This new version features a better allocation of the nodes on their 

anatomical X,Y,Z coordinates according to the talaraic atlas. The visualization is improved and there is no 

cluster effect as in the previous version (Fig. 14). 

 

Figure 14. The latest version of the neuroscience application. 

 

The experiment consisted of 3 sessions. Each of the sessions consisted of two parts (one with sound and the 

other without, in a random order) and the GUI was deactivated. Before the first session the participants were 

explained how the characteristics were represented visually and acoustically and were informed of the ranges 

of the scales of the characteristics of the regions in the network. A printed table with the minimum and 

maximum values of the characteristics was also provided to them. They were shown different regions with 

the GUI activated and they were informed of the values verbally and visually so that they could control the 

values and get familiarized with the connectome network. The subjects were informed that the task did not 

consist in memorizing nor counting, but making estimations about the values. In the following figure an 

overview of the procedure followed and the timeline of the experiment are presented. 

 

 

Figure 15. Procedure and timeline of the experiment. 
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c) Session1 ð Training 
 

The first session had a training character so that the participants could get familiarized with the characteristics 

and their corresponding visual and auditory representations. 

 

Task 

The participants were presented with 7 different regions for each of the two conditions (visualization and 

sonification) and were asked to estimate the number of nodes, connections and av. strength of each region and 

in which hemisphere the region was encountered. Then, they were asked to mark their answers in a 

predetermined scale, which varied depending on the values of each characteristic and their distribution in the 

network (more specifically for the nodes was a 6-scale, for connections 7-scale, av. Strength 6-scale and 2 

options for the hemisphere). After completing the task for each region they were given feedback on their 

answers so that they could control their possible mistakes.  

An example of the questionnaire is shown in the following figure. 

 

Figure 16. Example of the questionnaire used in the first session. The scales were determined depending on the 
distribution of the characteristics in the network.  

 

 

Regions selection 

The regions presented for both of the parts of this session had very similar characteristics and their values 

entered in the same ranges (Annex IV). This decision was made so that the conditions for both of the 

conditions were similar and the participants would be exposed in the whole range of values of nodes, 

connections and av. strength. 
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In total, the participants were exposed to 14 regions for both conditions, resulting in 7 trials for each 

condition. After the presentation of each region the participants marked their answers in a questionnaire (for 

the correspondent region) and then they were given feedback on the correct answers. 

Score attribution criterion 

In this session the error deviation from the correct answer in a predetermined scale was measured (based on 

the scale shown in Fig. 16). 

The absolute distance from the correct answer was calculated  (Walker et al., 2004) and divided by the 

number of possible answers, which provided the normalization of the scores. The result was subtracted from 

1, resulting in scores equal to 1 for the correct answers and 0 for the most distant one in the scale. 

The error deviation was calculated according the following formula. 

 

‍
ρ Ȥ Ȥ
ȿ ȿ 

 = normalized score 

j = participants answer  

k = correct answer 

N = total number of probable answers 
 

The average of the normalized scores of all the answers for each participant was calculated, in both 

conditions. 

 

 d) Session 2 

Task 

In this session the subjects were presented with 18 different pairs of regions (9 for each condition, in a 

random order). After the presentation of each pair of regions they had to evaluate the polarity of the values. 

Specifically, the participants were informed of the characteristic they had to evaluate (number of nodes, 

connections or av. strength) and they were presented two different regions. The participants were asked to 

decide if the second region presented a higher or lower value of the characteristic asked compared to the first 

region (this is referred to in previous studies as estimation of polarity (Walker and Lane 2001). Then they 

were asked to mark with +/- their answer in a questionnaire, as shown in the following figure. 
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Figure 17. Example of the questionnaire provided to the participants in the second session. 

 

If the subjects asked to see or listen again the regions they were allowed to ask for repetition. The regions 

presented with sound did not exceed the duration of 12 seconds since in the literature it is suggested that 

òthis is the most effective duration since auditory sensory memory is an issue for making such comparisons; if 

displays or stimuli exceed 12 seconds it is likely that memory for events at the beginning of the display will be 

degraded and the ability of participants to make reliable comparisons will be impaired, but should not 

presented too rapidly because shortening the duration may run the risk that perception of auditory patterns 

will be impairedó (Bonebrigth & Flowers, 2011).  

 

Regions selection 

For each one of the 3 parameters (nodes, connections, av. strength) at least one pair presents evident 

difference for the parameters measured. The rest of the regions presented variation in their values of the 

three characteristics. In Annex V the selected regions are presented.  

In total, the participants were exposed to 36 regions for both conditions, resulting in 18 trials (9 pairs of 

regions for each condition). After the presentation of each region the participants marked their answers in the 

questionnaire. 

 

Score attribution criterion 

The score was based on the number of correct and wrong answers. A score of 1 was assigned to the 

questions answered correctly and 0 to incorrect answers. A total score from 0 to 9 was calculated for each of 

the two conditions for each participant.  

 

e) Session 3 

Task 

In this session the participants were asked to navigate freely through the connectome network. For the 

navigation they used the keyboard and the mouse. Their task consisted in finding a region with certain values 
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(e.g. a region with low number of connections between 200-400 connections, a region with medium-high 

number of nodes between 20-30 nodes, etc) (Annex VI).  There was no time limitation and they were also 

given a printed table with the minimum and maximum values of each of the parameters. When they were 

confident that they found the region that applied to the characteristics asked they were given feedback and 

they continued with the next one. The task was repeated twice, one for each condition. Each participant 

completed 6 trials for each condition.  

 

Score attribution criterion 

In this session two measurements were made: 

1. A score of 1 was assigned to the questions answered correctly and 0 to incorrect answers. A total score 

from 0 to 9 was calculated for each of the two conditions for each participant.  

2. As in the first session the absolute distance from the correct answer was calculated in a predetermined scale 

designed ad hoc for the evaluation (Annex VI). The distance was divided by the number of possible answers, 

which provided the normalization of the scores. The result was subtracted from 1 resulting in scores equal to 

1 for the correct answers and 0 for the most distant one in the scale. The same formula as in Session 1 was 

used. The following table summarizes the tasks and the score attribution criteria for each one of the sessions. 

 

Table 3. Table shows the task of each session and the score attribution criterion.      

Session Task Score attribution criterion 

Session 1 Estimation of the values of 
the networkõs 
characteristics 

Error deviation from correct answer in 
predetermined scale 

Session 2 Estimation of polarity Correct answers were attributed with 1, otherwise 
with 0 

Session 3 Finding regions with 
certain characteristics in 
predetermined ranges of 
values 

1. Correct answers were attributed with 1, otherwise 
with 0 

2. Error deviation from correct answer in 
predetermined scale designed ad hoc for the 
evaluation 
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4. RESULTS 

         

4.1. Results - Pilot 
         

The first experiment served as a pilot and had a testing character. The main goal of this experiment was on 

the one hand to spot potential issues with the protocol and on the other hand acquire some preliminary 

results that would help us with the experimental design. A statistical analysis was conducted in SPSS. 

 

a) Session 1 
No significant results were found in the measurement of the data acquired from the first session between the 

two conditions. The sample was very small and the statistical analysis did not show any differences that would 

lead to further analysis of the results. The only observation that could be made is that for regions that 

presented that presented very high and very low number of nodes we acquired the highest number of correct 

answers. However, this resulted for both conditions. Nonetheless, the pilot was very useful for the design of 

the following experiment.   

 

b) Session 2 
The data obtained from the engagement questionnaire satisfied the normality criterion as verified using the 

Shapiro-Wilk test. 

An independent T-test was conducted to measure differences in the engagement between the group that 

navigated without sound (visualization condition) and the group that navigated with sound (sonification 

condition).  Although there was no significant difference, there was a tendency for higher score assigned to 

the sonification (M=3.51, SE=0.31) compared to the visualization (M=3.14 , SE=0.25) t(8)=-.93, p>.05 

(Fig.18)  
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Figure 18. Boxplots for the engagement ratings between the two conditions: visualization and sonification. 

  

The most important finding was that the independent samples design might not have been the most 

appropriate one and the second experiment followed a paired samples design. 

  

 

4.2 Results ð Experiment 

a) Session 1 
Although the first session was considered to be a training session, a statistical analysis for the measurements 

of the error deviation was conducted. The average values of the normalized scores were calculated for each 

participant for both conditions (visualization and sonification). 

The means of each of the three characteristics of each region were calculated and the total mean of the scores 

for both conditions. 

 

Table 4. Means of the normalized scores for the two conditions including the individual scores obtained for each of the 
three characteristics. 

Session1   Estimation of values 

 Visualization Sonification 

Parameters Mean SD Mean SD 

Nodes 0.90 0.04 0.87 0.05 

Connections 0.80 0.06 0.84 0.04 

Strength 0.76 0.07 0.79 0.06 

Total 0.82 0.04 0.83 0.03 
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The data satisfied the normality criterion as verified using the Shapiro-Wilk test. A dependent T-test was 

conducted to evaluate differences on the estimation scorings for the characteristics of the different regions 

presented in the two conditions. No significance was found and there was no order or gender effect. 

 

b) Session 2 
A Wilcoxon test was conducted to evaluate differences on the estimation of polarity of the values of the pairs 

of regions presented between the two conditions. The correct answers for both conditions were calculated. 

The sonification condition obtained a significant higher score (Mdn=7.00),  z=-2.96, p<0.05, r=-0.57  

compared to the visualization condition (Mdn = 6.00) (Fig. 19). 

Since the experiment followed a paired samples design, the data were tested for order effect. There was not 

found an order nor a gender effect. 

 

 

Figure 19. Boxplot shows the significant effect on polarity estimation task between the two conditions. 

 

 
 
The means of the correct answers of the participants for each of the parameters of the networks are 

presented in the following table. Wilcoxon tests were conducted for each of the parameters between the two 

conditions. The means for the sonification were higher compared to the ones of the visualization. However, no 

significance was found in the means between the separate characteristics. 
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Table 5. Means of the scores for the correct answers for the two conditions including the individual scores obtained for 
each of the three characteristics. 

Session 2    Estimation of polarity of values 

 Visualization Sonification 

 Mean SD Mean SD 

Nodes 2.32 0.80 2.41 0.60 

Connections 2.12 0.97 2.48 0.82 

Strength 1.76 0.66 2.16 0.99 

Total 6.00 1.52 7.00* 1.57 

 
 

As observed from the boxplot above (Fig. 19) an important amount of the population obtained a low score 

for the sonification condition. For this reason, a correlation was conducted between the musical background 

and the ratings of the polarity in the sonification condition to test if there was any effect. 

A significant negative correlation was found between the scores (correct answers) of the participants and their 

musical background.  

 

 

Table 6. Table shows the significant negative correlation between the scores obtained from the correct answers and the 
musical background of the participants. 

 

c) Session 3 
First, a Wilcoxon test was conducted to test for differences in the ratings of correct and incorrect answers 

between the two conditions. No significant difference was found between the two conditions. 

 

A dependent T-test was conducted for the total scores obtained from the error deviation measurements. The 

normalized scores for each participant were calculated for each of the regions found by the participant 

through the navigation in the network. The average score was calculated for each of the two conditions for 

each participant.  A significant higher score was obtained for the sonification condition (M=8,03, SE=0.11) 

compared to the visualization (M=7.15, SE=0.13) t(24) = -5.03, p<0.001, r=-.12.  
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Figure 20. Boxplot shows the significant score obtained for the sonification condition for the task on finding regions 
with specific parameters. 

 

Wilcoxon tests for the separate parameters were conducted. The scores obtained were higher for the 

sonification for all the separate parameters asked. In addition and significance was found for the regions with 

low number of connections between the two conditions.  

The sonification condition obtained a significant higher score (Mdn=1.00),  z=-3.42, p<0.05, r=-0.68  

compared to the visualization (Mdn = 0.20). 

 

Table 7. Means of the scores obtained from the error deviation for the correct answers for both conditions including 
the individual scores obtained for each of the three characteristics. The significant results are indicated with an asterisk. 

 

Session 3   Correct Answers ð Error deviation 

 Visualization Sonification 

 Mean SD Mean SD 

Nodes Low 0.94 0.09 0.96 0.10 

Nodes High 0.90 0.14 0.95 0.11 

Connections Low 0.48 0.35 0.85* 0.21 

Connections High 0.83 0.21 0.87 0.13 

Strength Low 0.77 0.29 0.87 0.13 

Strength High 0.83 0.16 0.84 0.14 

Total 7.15 0.62 8.03* 0.54 
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5 DISCUSSION AND CONCLUSION 

         

The goal of this study is to explore whether the addition of sound in the neuroscience application enhances 

the understanding of the relationships of the networks parameters, during the navigation through the 

connectome network in the eXperience Induction Machine (XIM). The networkõs parameters (nodes, 

connections, av. strength and hemisphere) were mapped to different sound parameters (repetition rate, 

amplitude and pitch) and the estimation of the values in the two conditions (absence and presence of sound) 

was measured. 

Two experiments were conducted in the XIM, the first one having a testing character for the design of the 

second experiment. The second one consisted of three sessions with the objective to measure whether sound 

could enhance the understanding of the networkõs dynamics.  

The results of the first session of the pilot experiment played a decisive role in the protocol design of the 

second experiment.  Although no significant results were obtained from this experiment, it provided an 

insight for the design that would be adopted later.  

In the first session five consecutive regions were presented to the participants with their names and the values 

of their characteristics visible in the GUI. They were asked to compare their characteristics and answer 

questions, in which they had to select the correspondent region that filled the criteria asked. However, the 

results and the participantsõ qualitative comments showed that they were not able to remember the names of 

the regions and make comparison between them, when asked questions on their values. Even though the 

participants were provided with a visual printed guide they were not able to answer correctly most of the 

questions and they commented that they found it difficult to get oriented in the network. These findings 

showed that the task of comparing many consecutive regions proved to be difficult for the participants and 

they were taken into consideration for the final experiment. Thus, the experimental protocol was 

reconsidered and a different design was adopted. During the comparison task of the second experiment pairs 

of regions were selected to minimize the effect of attention and working memory.  

 

Regarding the measurement of the engagement for the two conditions no significant results were obtained. 

This led into two considerations. One was related to the nature of the questionnaire, which was considered 

not to be appropriate for the neuroscience application and the certain task. The ITC-SOPI is merely designed 

for media, such as films, videos and computer games in which the content usually includes characters and 

story telling and tests how the participants feel during the experience. Since the nature of the virtual 

environment of connectome application differs from these media it was decided that engagement would not 

be further measured in the next experiment.  
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The second one was related to the experiment protocol. The results showed that a paired samples design 

would be more adequate for the measurement between the two conditions. Hence, a paired samples designed 

was adopted in the following experiment. 

 

A second experiment was conducted in the XIM and the estimation of values of the parameters was 

measured in three separate sessions. The first having a training character, the second one measuring the ability 

of estimating the polarity of the values of the networks characteristics between pairs of regions and the third 

one measuring the ability of the participants to find regions with certain values of the three parameters during 

a free navigation in the network. 

 

The analysis of the data for the three sessions revealed coherence in the results between Session 2 and Session 

3. The sonification condition obtained higher scores in two different tasks and thus, the alternative hypothesis 

was retained. Sonification significantly enhanced the performance of the users in terms of estimation of 

polarity and finding regions with certain characteristics. 

 

Furthermore, the analysis of the data for the third session showed that participants during the free navigation 

through the network obtained higher scores for the regions with low number of connections in the sonification 

condition. This shows that pitch enhanced significantly their task compared to the visual task. The networkõs 

connections are difficult to discern visually, qualitative comments from the participants revealed that they 

could intuit the number in relation with the nodes (low number of nodes in the networks corresponds to low 

number of connections and vice versa in most of the regions) but the addition of sound shows that 

sonification enhanced the accuracy during the navigation.  

 

In addition, the significant results in favor of the sonification condition shows that the selected sound 

parameters corresponding to the networks characteristics were effective. In all sessions the sonification 

condition resulted in higher scores revealing that the selection of the sound parameters and the sonification 

design enhanced the task of the participants. 

However, there were some interesting findings to be discussed. In the first session, the analysis of the 

separate means for the estimation of the three separate networkõs parameters showed a higher score for the 

nodes. Examination of the results showed that higher scores were obtained for regions that presented very 

low number of nodes (between 6-10). This could be explained by the fact that estimation of such low number 

of elements are especially easy to detect with the eye. In this specific case further experiments would be useful 

to study whether cross-modal effect interactions may cause interference effects (Eldridge, 2005). 
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Another interesting finding is that in the third session participants obtained lower scores for the strength in 

the sonification condition for specific regions. This may be due to the interaction of the sound parameters 

(repetition rate and loudness). When an area presented high number of nodes but low strength the 

interactions of these two parameters may confuse the perception and these regions maybe perceived as 

having high number of strength. Further research on the interaction of the sound parameters would provide 

better understanding of the auditory perception. It would be interesting to examine the effectiveness of the 

auditory display with different sound parameters and also with different networks exposing the participants to 

higher number of trials. This would give us insight for the interactions of sound parameters and the auditory 

perception of the user.  

 

Regarding the negative correlation, in the third session, between the scores obtained of the sonification 

condition and the musical formal training of the participants our prediction was that those with low musical 

background would provide lower scores. However, analysis of the results showed the opposite. In the 

literature, there is no agreement about the relation of the musical background in auditory tasks. The reason 

underlying these results is not clear and further investigation is required. As suggested by Walker and Nees 

(2011) òa person could have had many years of musical experience as child, yet that person could be many 

years removed from their musical training and exhibit no more musical ability than someone who received no 

formal trainingó. This could explain the results obtained. In addition, a more reliable, and valid measure of 

musical ability than a filling a questionnaire could probably give a better understanding on the results.  

 

In most of the sonification studies it is suggested that training sessions are very important (Bonebright & 

Flowers, 2011). Visual information displays owe much of their success to their pervasiveness as well as to 

usersõ formal education and informal experience at deciphering their meanings (Walker & Nees, 2011). Visual 

representations are taught from a young age (Ferguson & Cabrera, 2008) and we are familiarized with graphs 

and plots. However, complex auditory displays currently are not pervasive, and users are not taught how to 

comprehend auditory displays as part of a standard education. The training sessions in the sonification 

research and experiments play an important role with the scope to get the participants familiarized. These 

sessions usually have duration of 20 minutes. In this experiment the training session for both the conditions 

were about 10 min and further training would probably enhance the results for the sonification condition.  

 

Concluding, the results obtained in this study are consistent with the literature regarding the study of the 

effectiveness of the auditory display and the addition of sound in visual displays, as cited in the previous 

sections. Sound enhanced the task of the participants and provided a first step in the sonification of the 

connectome network. The sonification can be used to help the navigation of the user in the neuroscience 
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application. Further improvements and experimentation on the sonification models could lead to a powerful 

tool for the exploration of the neural networks.   

The connectome network is a complex dataset and giving a further layer with the sonification we achieved to 

enrich the neuroscience application helping the user understand better the relations and the dynamics of the 

network. Large datasets are continuously generated in different research fields and sonification can be used to 

facilitate the task of extracting important information. 

 

 

Summary of conclusions 

 

Å The alternative hypothesis was retained. Sonification significantly enhanced the performance of the users in 

terms of estimation of polarity and finding regions with certain characteristics. 

 

Å Coherence was found in the results between Session 2 and Session 3. Sonification condition obtained higher 

score in two different tasks. 

 

Å Sonification is an effective method for the visual display of the connectome application. 

 

Å The selected sound parameters found to be effective for the certain task. 

 

Å The negative correlation between the participants scores and the former musical background is interesting 

for further research. 

 

Å In the third session the scores for av. strength were lower for the sonification condition in certain pairs of 

regions. Although not significant, interactions between the sound parameters (loudness and rate) should be 

examined. 

 

Å Further training for the auditory condition could enhance the results. 
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6 FUTURE STEPS  

This project can be considered as a first step for the sonification of the connectome network. A first 

approach related to the estimation and the understanding of the relationships of the networks characteristics 

was proven to be successful. However, the connectome application has a great potential. Improvements on 

the current work for extending the sonification model for the neuroscience application are proposed. 

 

Regarding the current sonification design, a different task would be interesting for future experiments, such as 

presenting different regions or even different networks to the participants and evaluate the ability to detect 

differences between them. Studying the interchange of the sound parameters correspondent to the networkõs 

characteristics would offer further understanding on cognitive abilities of the user and auditory perception. 

 

As aforementioned the visualization used for the final experiment was a newer version of the connectome 

network. Although the visualization changed aesthetically the dataset remained the same. But, nonetheless the 

newer version of the neuroscience application has much more possibilities.  

 

In addition, designing a sonification that would be based on the algorithms described in Hagmannõs paper for 

the extraction of patterns and understanding the networkõs structure would be a challenging work and would 

enrich the neuroscience application.  

 

This of course would lead to a different task and a new sonification design. This thesis was tested with naïve 

subjects. Examining the effectiveness of the new proposed multimodal display and testing it with 

professionals would be of great interest.  

Furthermore, creating an adaptive system that would function as a machine learning system for all kinds of 

networks would add potential to the neuroscience application and would add potential as a powerful tool for 

uncovering complicated structures. 

Finally, the sonification of implicit signals (ECG and EDR) and study the effect of these measurements in a 

interactive virtual environment such as the eXperience Induction Machine would enhance the neuroscience 

application and offer the possibility to study cognitive processes on the understanding of big data sets. 
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