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Abstract

Data deluge has been dubbed the problem of the continuous accumulation of huge amounts of data that is
generated nowadays. The analysis of thihda become a great issue in many areas of research. One of
these fields is neuroscience. For this reason an applitati®b visualization of neuronal network models

has beeprevioushbuilt in the eXperience Induction Machine (XINf) this studye investigate the role

of sonification to extract meaning from the connectome datasets. Our hypothesis is that sonification
enhances the visualization by giving a further layer of understanding of thé setwokly na mi c¢s dur i
navigation in the XIM\Me conducted an empirical evaluataest whether sound helps the comprehension

of a complex dataset and we exposed the participants to two different comliiemsualizatioandboth

visualization and sonificatio®ur results revealed that saaffion enhances the understanding of the

net workds characteristic even with the completion

1 It is located at the laboratory for Synthetic, Perceptive, Eraativ€ognitive Systems (SPECS), at the UPF,
Barcelona
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1. INTRODUCTION

1.1Problem statement

In the last decades there is a continuous growth of data in different fields of research. This data is frequently
left unused due to the lack of tools to effelgtiertract, analyze and understand it (Betedla2012). The

graphic presentation of information is a key issue in scientific creative research for the discovery of relations
and patterns, as it aids the brain in handling tacit associations amdhipgtivithin wiel sets of
information (Garfield, 1988yy, 2004). One of the fields that generates extensive datasets is neuroscience.
For this reason a 3D rdmhe visualization system has been built to graphically represent the massive
connectivity bneuronal network models in the eXperience Induction Machine (XIM) @BeteR813).

Visual display has a long successful history, and it has been employed widely and commonly in most of the
traditional HCls (Fry2004). However, the demand of prieg large quantity of information becomes a

rising challenge for visual displays. Representdtiondtidimensional data can become a dift@sit for

visual displays and may be too noisy to apprehbndith the eyéeldridge 2005).

The last fewdecades there have been made considerable development of representation of complex data
through the auditory display and sonification (Pagidttont, 2009 Scalett& Craig 1999, Hermarat al,
2001;Grond& a |l | 6 , 2008Harmann2002).

Humansare able to detect very subtle patterns in acoustic sounds, and this ability has found applications to
an impressive degree in the field of music, or in medicine. Traditional tools such the stethoscope and the
Geiger counter provide good examples ofiskeeof sound for the comprehension of taging structural

details and demonstrate thia¢y can be more effective than a visual display (Her&ditter 1999;

Eldridge 2005).

In this waygauditory data display offers a new and very promising tomotover hidden structures and
meaning in massive collections of data that would be difficult to scan, explore, or summarize by more
conventional meafgHermann& Ritter, 2004). The use of the sonification of complex data has been
developed either in puauditory displays or with their integration in visual displays as a supportive medium
(Kaperet al, 2000Nesbhitt& Barrass2002; Walker &ees 2011Hendrix 1994).

The present thesis project deals with the sonification of a complex network thecltoasmectome
(Hagmannet al.,2008) and is conducted under the framework of the CEmDect. CEEDS is a
European FP7 projects that contributes to addressing the question of how we can advance our understanding

2The Collective Experience of Empathic Data Systems Project is founded by the European Union under the 7th
Framework Programme, IEET schemehttp://ceedsproject.eu/).
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of the world and the data we extract fignby placing human experience inddeterof solution. The
CEEDS project develops and deploys new methods to experience and analyze couliptexdiaytal
data sets by combining mixed reality, pervasive computing, ambient intelligence aneanteriages.

The sonification of the connectometworkaims to help the user understand better the relations of the
characteristics of the network and discern the changes of their values occurring during the navigation in the
3D visualization in the XIMThe hypothesis under investigation is that sonification will enhance the
estimation of the values of the characteristics, make easier and more intuitive the understanding of the

changes with the goaldetectdifferences in different regions of the oekw

12



2. STATE OF THE ART

2.1 The connectome network

The data used for this project come from the study of the connectome bgtivagmannet al.(2008)
which is publically available for further resedrdior this reason it sesnappropriate to make an

introduction into the nature of this dataset.

The connectomds the complete description of the structural connectivity (the physical wiring) of an
organi smds ner etalR@5)Fhg sameahcorfn& e hasshaeangimultaneously and
independently by Sporns and Hagmann, giving birth also teldloé $cience dealing with the assembly,

mapping and analysis of data on neural connectoms, named as connectomics.

In the human brain, the significance of the coomectstems from the realization that the structure
(connectivity) and function of the human brain are intricately linked, through multiple levels and modes of
brain connectivity The connectome naturally places strong constraints on which neurons or neural
populations can interact, or how strong or direct their interactions are.

Structurefunction relationships in the brain are unlikely to reduce to simjiteasreamappingsDespite

such complex and variable struefunetion mappings, the connectomenisnalispensable basis for the
mechanistic interpretation of dynamic brain data, from-aatigiecordings to functionsuroimaging

The connectome ifhie fundamental basis for the mechanistic interpretation of dynamic brain data, from
singlecell recadings to functionaleuroimagingHagmannet al.(2008) constructed a connection matrix

from fiber densities measured between homogeneously distributed ssideelgugjions of interest (ROIS)
numbering between 500 and 4000. A quantitative analpsieaxition matrices obtained for approximately

1000 ROIs and approximately 50,000 fiber pathways from two subjects demonstrated an expenential (one
scale) degree distribution as well as robustveonlalattributes for the network. The data sets weredleriv

from diffusion spectrum imaging (DSI).

2.2 Auditory Display and Sonification Background

An auditory display can be broadly defined as any display that uses sound to communicate information.
Sonification has been defined as a subtype of auditorysdibjplause nespeech audio to represent

3 http://www.cmtk.org
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information(Walker& Nees 2011). Hermann (2008)ggests that the term of auditory display should also
encompass the technical system used to create sound waves, or more general: all possible transmissions whic
finally lead to audible perceptions for the user. Sonification is thereby an integral component within an
auditory display system, which addresses the actual rendering of sound signals, which in turn depend on the

data and optional interactions

Sonificéion is still a relatively new field. Its definition was formally introduced quite recently, in the
Sonification Report: Status of the Field and Research Agenda 8{ani®99) and can be considered as

the most agreed definitiod:So ni f i c aisei ob morspeexh audioeto convey information. More
specifically, sonification is the transformation of data relations into perceived relations in an acoustic signal

for the purposes of facilitating communication or

Another definition mposed later by Hermann (2008 t he f ol | owi ng. Sonificati
data as input, and generates sound signals (eventually in response to optional additional excitation or
triggeringandmay be called sonification, if and only if:

(C1)The sound reflects objective properties or relations in the input data.

(C2) The transformation is systematic. This means that there is a precise definition provided of how the data
(and optional interactions) cause the sound to change.

(C3) The sonificain is reproducible: given the same data and identical interactions (or triggers) the resulting
sound has to be structurally identical.

(C4) The system can intentionally be used with different data, and also be used in repetition with the same
dat ad.

Thelast few decades sonification has been broadly used as a tool for the understanding of complex data. It is
suggested that auditory display offers a new and very promising tool to uncover hidden structures and
meaning in massive collections of data thatdwwme difficult to scan, explore, or summarize by more
conventional means (HermatarRitter, 1994). One of its aspects is to aid and enhance the currently much
wider established techniques of data visualization for the purpose of interactive, oryedptaranalysis.

A major reason for this is that the specific properties of sound perception as compared to visual perception
make auditory data displays highly suited to offer an additional route to meaning in data that is both
synergistic and complertay to visualization. Particular strengths in this regard are: 1) the capability of our
auditory system to process severm@usis of information in paral®lto dfer a high temporal resoluti@h

its high sensitivity for structdrenotion, in partical, rhythmand 4) its ability to function well even in noisy

contexts.
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As aforementioned, soni fication may have been for
be tracked back many years ago. It could be suggested that sonificaditngetadstablishewith the use

of alarm signalsith the broad use of computers and the appearance of the first user interfaces, in order to
focus attention or announce the completion of a task. These would mainly aim in giving cues to the user,
such a beeps etc. In the following sections, we will present a brief history background of the techniques
developed are described.

2.2.1 Sonification Techniques

a)Audification

Audificationwas one of the first attempts of representing big quantities dfsdairdh can be found back

in 1819 with the invention of the stethoscope and after that we have even more examples of audifying
physical data (Laenn&830)A rather old example of an auditory display is th&nweslin Geiger counter,

which provides direct auditory display of the number of registered ions per time caught by the electrodes of
the Geiger device. It is used to measure the radioactivity and allows the listener to infer quantitative
information. (Herman& Ritter, 1999Dombois& Ecke| 2011).

The method of audification translates the data to amplitude values of the waveform and it is applicable if the
data itself is a time series, e.g. data from a dynamic system like neural networks or seismic data. Audification
has been broadly used indmme with EEG signalDpmbois & Ecke| 2011 Nadwana2012), in
seismology (Haywart994Dombois 2002) or as a diagnostic tool for heliospheric data analysis (Alexander
etal.2011).

b) Auditory Icons

This sonification technique uses sounds teatised in a metaphorical sense; they ar&¢ er yday sour
meant to convey information about c¢compAd89sthatevent s
the effort to learn the display is decreased and is mostly applied Audidty Iconsapeared with the

desktop user interfaces and can be considered as the counterparts of visual icons in desktop metaphor.
Gaverds work (1993) on Auditory lcons was inspi
perception, adapted and applied fod#sgn of auditory user interfaces. Examples of the work on Auditory

Icons can be found in the SonicFinder (Ga\#89) an auditory interface developed at Apple computer,
Soundshark, an application where soundsusedeo represent the activity of onggrocesses even when

not within a visible window or view on the screen. Other applications of auditory icons can be broadly found

15



in mobiledevices (Braz& Fernstrom 2011). However, this auditory display could be considered rather

unsuited for presg¢ation of general types of data.

c) Earcons
Earcons have been proposed by Blattner et. al. (1989) for navigation/orientation in data trees (like directory

trees) with the intention to communicate more complex messages. Earcons were firstly @efimed as
verbal audio messages used in thecasguter interface to provide information to the user about some
computer object, .dgsaefiniton veas later efinedibyBresvstea, @ follaws: &arcons
are Oabstract, mylme hesed tonedsdrubbured combinati
(McGookin & Brewster2011). Likewise as Auditory Icons, Earcons have been used broadly in mobile
devicesThe difference with the Auditory Icons is that there is no assumption of ag estionship

between the sound and the information it represents. Earcons are simple tonal combinations or arbitrary
acoustic patterns whose meaning must be learned by the user, and which can be combined-to build non
verbal messages of a higher complexit

d) Parameter Mapping Sonification
This is one of themostcommon used techniques for the auditory representation of large dRéaasatter

Mapping Sonification involves the association of auditory parameters with data for the purposes of display.
Given the inherent multidimensionality of sound, Parameter Mapping Sonification is considered to be well
suited for sonification of multivariate d&tar. each data point one or more tones are generated where the
parameters of the events, e.g. timestamgtiafy volume, pitch, envelope characteristics, brightness, etc.,

are controlled by the data vector components. The result can be called @ mudtin s i on a | 0soni
ploté. A good example used for un dheteapbtasdéscribegd t he
by Grond and Berger (201Chnsider the simple case of a whisttiagettlethe kettle produces a particular

sound as the water inside approaches its boiling point. It could be said that such a kettle creates much more
sound thamecessary considering that it merely represents a binary signal (boiling or not boiling). It would be
simpler to use an auditory signal might be achieved by monitoring the output of a thermometer measuring
the water temperature in the tea kettle, andingagie numeric output to a sound synthesis parameter. A
simple mapping, for example, would link temperature to frequency, pitch or, perhaps a more obvious and
explicit auditory signal. Rather than simply hearing when the target temperature is regghedvisieto

listen to the continuous change of the rising water temperature or, perhaps, to hear selective temperatures at
various times during the heating process. However, it is important to note the fact that the sound of a
whistling teakettle is aoldly understood signal, which carries a positive emotional connotation for some.

16



Additionally, the progression from noise to unstable frequency to relatively stable frequency can be said to
have a musical quality. Thus, Parameter Mapping Sonificatimffermsgmething in the way of efficiency,

but there are other important considerations, such as intuitive, emotive and aestheRieigeussyork

on Parameter Mapping Sonification has been impksiwentt h met eor ol ogi c al dat a,
(2005) oin the Hyperspectral, a diagnostic tool for probing in colon cellsanmral tract model in which

particular data states were anchored to specific phoneme sounds efGdsafifi4)and theSonification

Sandboxor the sonification of aitdry graph@Valker& Cothran2003)

e)Model Based Sonification
Model Based sonification (MBS) can be considered the most recent technique for auditory displays and has

been proposed by Hermann (200)e basic characteristic of the MBS is the coateyeraction. Takes

as a paradigm our real life interaction with the environment to apply it in the auditory display. As in nature,
normally passive systems are silent and it needs excitation in order to transmit sound.

ModetBased Sonification is andization technique that takes a particular look at how acoustic responses are
generated in response to the wuserds actions, and
carried over to data sonification basis is the imagination of advittaa o mat er i al 6 f or t h
the sonification. D¥gninga s oni fi cati on model consists in a oO0ma
structure is not only determined by the setup of the elements, but also given by the interactiahg between

el ements. A kind of ovirtual physicso6 must be def
sounding materials. Thus the data more or less directly becomes the sounding instrument, which is examined,
excited, or played by the listefrtermann& Ritter, 1999).

For example, data points could be conceived as planets and a gravitational force defined. Particles could then
be introduced into the data space to probe the gravitational potential at various points, from which the
structure bthe data set as a whole could be inferred. This approach has proved successful for several data
preprocessing tasks such as analyzing clusters in vectorial data, and exploring the separability of a vectorial
data set prior to a classification task. K&Sbeen broadly used for high dimensitatal Hermann&

Ritter2005 Kolbeet al.2010).
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2.3 Issues on Sonification

Sonification is a combination of different research disciplines such as Psychoacoustics, Perceptual Research,
Sound Engineerin®ata Mining and much more. Taking into account the interdisciplinary character of the
field therearevarious issues that have to be taken into consideration for a successful sonification design.

2.3.1Task

One of the main and most important issuesnifisation is the task that the user will need to complete. In

order to create a new sonification modelfitstequestiorshould be what is the main analysis task, or what

type of pattern or structure should become apparent from listening. Takirgeateas#t view helps the

designer to focus on the relevant features. For example, assume that the goal was to hear whether the data se
contains outlierer try to identify patterns in data structure. In each case the sonification design would be
very diferent. Alwaythe designer needs to constuew sonificatiortanbest help the listengr order to
performsuccessfullyer or his role in theysten{Walker& Nees2011).

2.3.2 Mappings

In sonification, data mapping is the process that determine®mmptual information is translated into

auditory displays. It consists of three key aspéuotsselection of sound dimension, the choice of polarity

and the determination of scaling. The type of data mapping used to sonify data has direct impact on th
listenemperceptionGrond & Berger201).

oOoTypically, when i nf or diaménsianal, two or more vasgablesiinftheesalndi s o
dimension are to be used to represent the data. This would further complicate the mapping process due to
the possible interactions between different sound dimensions, in which change in one dimension affects the
perception of the other. For example, Neuhoff. €1999) found that changes in pitch can influence how
listener estimate changes in loudnessjiemdersa. However, the interaction can also be applied favorably

in audit (®hoy 20d2) spl ay 6
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2.3.3. Human auditory perception

a)Working Memory

Walker and Mauney (2004) completed a specific experiment to study effect of individuasddferen
comprehension of soni fication. Subject cognitive
actively holds information in the mind and to ma
experimental results suggested that dudiviworking memory capacity and gender seemed to have
substantial influence on comprehension of sonified data, although the test results wereetedy compl

consistent

b) Training

Unlike visual display, where applications are pervasive and the iutg@an ogrell established, auditory

display is relatively unfamiliar to most of the users. Training is identified as one of the factors that can benefit
novice users of auditory display. Recent researches focused on investigating the effect diwiiffgrent tr
methods, mainly divided as conceptual training and perceptual training. Classic perceptual training methods
included the use of prompting and feedback. With prompting, a cue of correct response to a stimulus is
provided before or during the prestotaof the stimulus. With feedback, the correct answer is revealed

after user makes a response to a stifRonebrigth& Flowers2011).

2.4 Sonification in Multimodal Displays

Until now we discussed about the sonification and its function asditary display. However, this thesis

deals with the integration of the sonification in a visual display. Thus, it would be instructive to review
previous studies implemented on the comparison of visual and auditory displays and with their integration in
multimodal displays, and expose the findings on the interaction of the two modalities (visual and auditory)
and the effectiveness that sonification may have in the representation of complex data, as the data coming of

neuroscience that are studied in tlasish
The auditory information channel can also be used as a complementary input to the visual modality. Audition

helps to direct out eyes and can therefore improve our response time to visual stimuli. For example, previous

studies have found that auditaues in addition to visual cues help improve human performance in target
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search tasks. Furthermore, the auditory channel is very sensitive to changes in the acoustic signal over time
(Bregmanl1994).

In many applications of sonification, it is reasenaldssume that the human listener will likely have other
auditory and/or visual tasks to perform in addition to working with the sonification. Surprisingly few studies

to date have considered how the addition of a secondary task affects perfornsmifoaitbns. The few

available studies are promising.

Mezrich et al(1984) showed that a dynamic sonic and visual representation could assist people in analyzing
en eigthvariable economic indicator that a sonic representation may be a moreaffabtvea visual
representation for identifying and remembering periodic patterns, and that the strong associative memories
evoked by music may indicate that the way in which we remember sonic patterns differs from the way we
remember visual patterdsiditory displays, it could lseggestedcan offer more than just a companion or

an enhancement to visual displays

One of the most significant contributions to the field came from Sara Bly (1982). Her doctoral thesis was
focused on the classification ohvavdered multivariate data sets. In a data set diititensions, each data

point was represented by an audio event in whigrameters were controlled by the data. Possible
parameters were loudness, pitch, duration, timbre, attack time, and walyaieed.e8Bmultivariate data set,

involving the classification of flower species using four measurements per plant. Using sound, most study
subjects were able to correctly classify most of the plants. In the same paper, a logarithmic data set was
presentedand the logarithmic relationship between frequency and pitch was used to represent it. The
exponential variable of earthquake magnitude was encoded in pure frequency and also in loudness and
duration. The result was a positive indication that signféesumes of seismic data could be represented
through sound. Bly conducted formal experiments using multivariate data, which were presented using sound
only, graphics only and bimodal displays. Other variables were training methods anth theuddta
mappings. Subjects were asked to classifying a test sample as belonging to one of two possible sets. The
results indicated that auditory display was as effective as visual display, and that the combined display

outperformed both.

Scaletti and Craig (199&yeloped a series of sonifications to compliment visualizations to assist researchers
in analyzing and interpreting complex data. The sonifications aimed to enhance the understanding of
visualizations of forestry, air pollution and blood diagnostic todlscpd in the NCSA University. They

found that datdriven sound tracks increased the bandwidth of the scientific visualizations, providing

supportive or additional information.
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Janata and Childs (2004) conducted an experiment of monitoring taskenpetecitpents had to detect

changes in the variation of the values of the stock market. The task of the participants consisted in pressing a
key for positive changes and another for negative ones. They found that auditory information increases the

proporion of correct detections and the helpfulness of sound was even more pronounced when a secondary

numbermatching task was added.

Peres and Lane (2005) showed in their study that using integral dimensions of sound (pitch and loudness,
where interaction beeen dimensions exists) in data mapping improved listener performance in an auditory
monitoring task, in which subjects were asked to determine the status of box plots (on target, off target and
skewed) based on sonified data and provided their respaa#g through buttons. Whereas using separate
dimensions (pitch and tempo) in data mapping showed no differences, compared with when only a single
auditory dimension was usedo6. They found that whi
monitoring task initially harmed performance of the auditory task, performance soon (i.e., after around 25

dual task trials) returned to-plgal task levels.

Bonebright and Nees (2009) presented sounds that required a manual response approyintately ever
seconds while participants listened to a passage for verbal comprehension read aloud. The sound used
included five types of earcons and also brief speech sounds, and the researchers predicted that speech sound
would interfere most with spoken passageprehension. Surprisingly, however, only one cofidition

featuring particularly poorly designed earcons that used a continueztsapgehmappifgsignificantly

interfered with passage comprehension compared to a control condition involving listevithgutniye

concurrent sound task. Although speech sounds and the spoken passage presumably taxed the same verba
working memory resources, and all stimuli were concurrently delivered to the ears, there w#aslkttle dual

effect, presumably becausestingend task was not especially hard for participants.

Changet al.(2010) implemented a sonification for a visual attentiofltaskigh the aim of the study was

not necessarily to discover information in the auditory displays that cannot be petfoeivistidtizations,

the system was considered to provide an engaging and accessible means to explore neural data and extract th
main effects in each experiment. The sonified output enhanced and complemented the visualization,

providing a muksensory nans of experiencing and exploring the data.
Lokki and Grohn (2005gsted the navigation in a virtual environment with auditory cues. The results

showed that 3D navigation in a virtual environment is possible with auditory cues alone. However, the fastes
and most accurate navigation is obtained when both auditory and visual cues are available.
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Kaper et al.(2000) implemented a sonificatfon the exploration andnalysis of complex data sets in
scientific computing. They suggest that the combinatisuall images and sounds provides indeed an
extremely powerful tool for uncovering complicated structures. Sometimes, the sounds reveal features that
are hidden to the eye; at other times, the visual images illuminate features that are not elsily tthetectab

sound. The two modes of perception reinforce each other, and both improve with practice.
From the few studies that exist on multimodal displays, it is suggested that audio generally enhances the visual

representation of data, referring to theglementary or redundant nature of the use of sound. In addition,

there are studies that suggest even thesitpef sonification of dataver visualization.
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3. METHODS

In this project, based on the data available for the aftutlg connectome, it was decided to measure
whether the addition of sound can enhance the understanding of changes of tired\édjnesicsf its
characteristics during the navigation through the network.

3.1 Data exploration

The neuroscience apgliion represents the connectome networks. For this thesis, we adopted the dataset
taken from the study of Hagmaanal.(2008). In particular we used the dataset of the subject B that
contains 998 regions of interest (ROIs) and 28000 unidirectionaitionandhe dataset is stored in
graphml formdtand is publically available for further research. A visual representation of this data has been
implemented in the eXperience Induction Machine for the purposes of the CEEDS project.in Unity
Specificallythe connectome network that is graphically represented in the XIM consists of 66 anatomical
subregions in the left and right hemisphere of the brain (BetelR0&8x Each one of the regions presents

a certain number of nodes, connections and avstangth. Strength refers to the extent a region is

connected to the rest of the network. The following figure shows the latest graphical representation of the

connectome network built in Unity.

Figure 1 Screenshot of the n@science application with the GUI showing the values of the parameters for one of the
regions (Superiorparietal Left)

4 data sourchttp://www.cmtk.org/datasets/homo_sapiens_01.cff
5 http://unity3d.com
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The nodes are represented graphically as spheres (Fig. 1) and are highlighted when a certain region is selecte
The connections are thieks between the nodes and are represented as tubes that connect the nodes. The

average strength is represented with the gradient color on the connections, which varies from white for low
av. strength to very dark green for the high av. strength. Tibaeteppincludes a GUI where the values of

each region selected are depicted.

Since the sonification is based on the changes of the parameters of the characteristics of the connectome
network it was necessary to understand the structure of this dagethBefesign of the sonification system

a data exploration phase was necessary.
A preliminary examination of the data gave the following distribution of the characteristics.

Frequency

0 5 10 15 20 25 30 35 40 45 50 55 60
Nodes

Figure 2. Histogram epresenting the
nodes distribution in the network

Frequency

Frequency

207

1) 200 400 600 800 1000 1200 1400

Connections

Figure 3. Histogram representing the
connections distribution in the network

Figure 4. Histogram representing the drersgth of the
regions of the network
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The histograms above (F&33,4 show that the data presented aedladistribution depending on the
characteristic under study. This is important because it is a factor to take into consideration both for the
design of the sonification and the design of the experiment, as it will be described in the further sections.
Regading the sonification, the distribution of the characteristics showed that higher resolution was needed in
the following cases. In the case of the nedels can be seen from the histograwst of the nodes ar
concentrated in the rangd® while abwee the value of 30 there were very few regions. In the case of the
connections most of the regions of the network presented hetivesr0-400, while in the range of 600

800 and above 1200 there were very few regions. Finally, the values of theemgtrageesent a normal
distribution with most of the values being concentrated around 0.03 and 0.04.

The following table summarizes the distribution of the parameters in the network and the values that were
important for the design of the sonificatiod #e experimental design.

Table 1 Table shows the distribution of the characteristics in the network and the ranges of high and low concentration
of values

Characteristic Mean Standard Deviation| Ranges of high| Ranges of low
(SD concentration  of | concentration of
values values
Number of 15.11 +10.88 0-15 >30
connection
Number of nodes | 438.64 +343.91 0-400 600800 and>1200
Av. Strength 0.041 +0.078 0.03-0.04 <0.03 and >0.04

3.2Sonificatiormethod
Parameter Mapping r8fication is probably the most common used technique for large datasets. The data

are mapped into parameters of separate sound events. For each data record an acoustic event is createc
whose properties are driven by the data values. This techniguihalkmusd events to superimpose and

offers flexibility (Grond Bergey2011). For these reasons and due to the nature of the data, Parameter
Mapping Sonification has been considered to be the most appropriate for the auditory representation of the
The par amefouechaactéristics mfehe sepmork ¢omisgdronwteer et |
neuroscience application: a) number of nodes, b) number of connections, c) average strength of each region

networld s dat a.

and d) thdocation referring to whidilemispherée region was found.

Two distinct sound sources were chosen whose para

a grain sound of 16 ms and b) an ambient sound. The sound parameters used for the sonification were: a) the
repetition rate athe grain sound, b) the pitch of the ambient sound, c) the loudness of the grain sound and

d) panning.
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The decision of using two different sounds was essential for the sonification design in order to avoid
interaction between the frequency and the adglif\s it has been suggested in previous studies the pitch of

a sound is highly influenced by its loudness (FI@966). Therefore, changing both of the paeamef a

single sound sourceutd lead to unperceived and confusing differences.

As a saltion to this problem it was decided to use two distinct sounds; one representing the number of
nodes and the average strength of the regions and the other the number of connections. More specifically, the
repetition rate of the grain sound was mappdtetaumber of nodes of each region of the network while

the amplitude to the average strength of each region. The pitch of the second sound was mapped to the

number of connections. In the following table the sound mappings are summarized.

Table22Tabl e shows the mappings between the networksds cha

Connectome Mappings Functions
characteristics Sound source Sound parameter

Number of connections| Sound grain of 16 ms | Rate of repetition Linear
Number of Nodes Ambient sound at 380 | Pitch Linear

Hz enhanced by pure
sine wave at the same
frequency

Av. Strength Sound grain of 16 ms | Loudness Linear

The choice of the sounds is also essential for the effective functioning of the system. On tthéhene han
sonification needs to give information about the data on the other hand has to be pleasant to the ear (Barass
& Vickers 2011). In addition, there is interdependence between these two sounds, which needs to be taken
into account. Thus, the two sourfdectioned as two different streams that would not be corffused

would be easily distinguished even if thenfardlistened in very low amplitude. Further details on the quality

of the sound are given in the following sections regarding the soumymalpgach one of the parameters
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Figure 5. Overview of the sonificationgine in Pure Data.
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3.2.1Data Communication between systems

The sonification engine was built in Pure®DataP u r e  D-timearaghisal paogré@méag énvironment

for audio, video and egpreviopusly usedlin v@rious soeifEagionprojdiks and h a
it has been extended by a diverse group of developers, who have contributed additional libraries and
functionality. Additionally, Pure Data has been chosen because ofstsuopenature and teapportive

online community of users.

The communication of the data between the Unity environment, in which the neuroscience application has
been built, and Pure Data was established using OpenSoundControl (OSC) messages. In the following figure
the subsstem of the sonification engine is shown, receiving the data from Unity.

dumplSC BEER | —= listen to port for the communicaotion with Unity
OSCroute Anodes Afconnections ,a'streng&h_.:current -= route 05SC data
= =

e ____=

urpack. f urpack flootad 05Croute /hemisphere /foreq
Al aeack T 4 route left right| —= route data of hemisphere
=end values = =strength for ponning to L and R speaker
for nodes

I zend values T A

= conhections for strength I =

=
sehd values s right s left

for connections

Figure 6. Subsystem in Pure Data responsible for receiving the OSC messages from Unity.

3.2.2Sonification mappings
a) Nodes

For the nodes, a narrdvand short sound was chosenihavg an oO0el ectricdé qualit.y
simulate laboratory sound recordings of neural activity. As mentioned above the rate of repetition of the
sound was mapped to the number of nodes. Since the nodes have a very small range the sample was nevel
played back so fast as to create a continuous sound. On the low end of the range again, the sample was
repeated fast enough to remain on the psychological present (Bt8gd)afrurthermore, it was intended

to avoid a clearly mechanical repetitive geefirthe sound. For this, a random factor was added to the

6 http://puredata.info/
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repetition ratewhich would simulatéhe quantity of nodes corresponding to different regionsg the
impression of distinct particles being activated. The tuning of this factor was bragé&itahabservation,
the goal being not to distort the sense of repetition by for example creating too many bursts of sound. A
different scaling was required for the low values and the higher values. This was based once again on the
distribution of the ndes in the network. Since a high number of regions presented low number of nodes the
scaling for these values had to cover a bigger range. Two linear functions served the purposes for these
mappings based on two groups below and aboveltleeof 12 nodesvhere a morevident difference in

the resolution was observed(
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b) Strength

The values ofhe average strength were mapped to the amplitude of the grain sound as seen in the figure
above(Fig. J. As explained before if the amplitude was manipulated with the frequency of the same sound
the interaction of these two parameters would lead taceiveer and confusing changes of the sound. For

this reason the amplitude of the grain sound was preferred. The range in which the strength was mapped to
was of 30 dB. Low amplitude corresponded to low average strength of a region and high amplgude to high
values of average strength. A linear mapping was implemented in the case of the strength, which was divided
in 3 different ranges that were determined by testing the amplitude in relation to its interaction with the other
two sound parameters Additidneh reverb was added to the higher values to enhance the perception of

higher strength for the correspondent regions of the network.

c) Connections

The parameter mapped to the number of connections is the pitch. The decision to use pitch was based on
two facts. First, it has been used widely with success in previous(\Atalkies2002;Flowers 2005).

Second, it offers large resolution (Cagldd1). The latter is crucial for this system #iiecaumber of
connections present a yevide range (abavn in Fig3 and Table 1). It was decided to use an ambient
sound instead of a pure sine wave. The main reasoning behind this is connectedutosthience
application itself. This sonification should function as an extra channel for the usatinuytstigetwork.

Since the XIM is an environment where the user is immersed, and taking into account that the connectome is
a complex network a user can spend a great amount of time in order to get familiarized with the network. For
this reason, a soffeanore ambient sound was chosen which would not be annoying to the ear as a pure sine
wave would be (Browet al.,2003). First, it was necessary to analyze the sound. For the frequency analysis
the [fiddle] object was used in Pure Data. It revealed anfenil frequency of around 380 Hz

although due to inaccuracies further analysis was needed. Spectral analysis with SonmVisnaliser

that the most prominent frequency was at 380Hz.

7 http://www.sonicvisualiser.org/
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Figure 8. Spectrogram of the sound implemented in thee@snaliser. The most prominent frequency found at 380
Hz indicated with the yellow orange color low in the spectrogram.

Furthermore the spectrogram of the sound shows some concentration of energy at around 1200 Hz. This
explained why pitch shifting themgde was not working as expected for the whole rAhggme
frequencieshe perception of the pitch was not clear. To rectify this problem and make pitch perception
more robust a pure sine was added to the original sound. It was mlZedemibels soseamlessly blends

with the original sound. Finally, the amplitude of the sound was adjusted according to- foeickups

contours (Carlij&2011). This correction was important so that all the ranges of the frequencies would be at
the same level @fudness.
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Figure 9. Equatloudness contours used for the adjustment of the amplitude level of the sound for the mapping of the
number of connections
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The [pitchshifter] object was used to change the frequency of the sound sample. This was omteyssary in

to transpose the original soundo6s frequency to
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Figure 10 Patch within Pure Data designed for the connections mapping.

The mapping was based on a linear function and the data coming from the number of cont&6)ns (7

were mapped to frequencies ranging from 100 Hz to 1200 Hz.
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d) Brain Hemisphere

The last parameter to be sonified was the brain hemisphere. Panning was thought to be appropriate for the
discrimination of the left and right hemisphere as direction sduhd source would make more intuitive

and direct the understanding of the location of the regions in the networkZ@Ht)ildinary signals of 0,1

were received from the Unity application, which were then mapped to the two speakers through the [pan]
object.

receives A,1 values for
panning according to hemisphere

r right r left
T—"
éhunge

-= zet threshold for smooth
transition from L to R

= —
31, 1 G088 $1, 8 gea

line

moses A .85=
=

the outlets~ of nodes, strength, [pan posi'll:n
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equa | _pawer _pan-
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Figure 11 Patch within Pure Data designed for the panning depending on the hemisphere.

3.3 Experimental design andiget

3.3.1 The eXperience Induction Machine
Before the final experiment two pilot experiments were conducted. The expegneecdsried out in the

eXperience Induction Machine (XIM) (Eical. 2003;Bernardett al., 200 Betelleet al.,2012). The XIM

is a multiuser mixe@ality space covering a surface area of 5.5 x 5.5m equipped with afraenbers

and effectorsFig. 12. XIM effectors include computer graphics content projected via 8 projectors on 4
separate walls, a luminous interactive floor, movable lights and sonification system. For the purposes of this
project four projectors were used as a visual dispthg connectome network orsdparate walls and two
speakers in the left and right corners of the room for the auditory display. A table and a comfortable chair
were placed in the central front part of the room so that the participants would haveiaigngd

perception of the sound coming from the two speakers and additionally they would be able to fill the
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guestionnaires and use the keyboard and mouse to navigate through theTiehwghks were dimmed to

provide an immersed experience.

1 Infrared Camera
3 Directional Microphones

8 Projectors [

16 Loudspeakers A — » -

4 Projection Screens | pr. ~

72 Floor Tiles
(RGB light source + pressure sensors)

Figure 12 lllustration of the eXperience Induction Machine. The sensors are indicated with red color and the effectors
with blue.

3.3.2 Pilot experiment
A first pilot experimenivas conducted. The basic objective of this preliminary experiment was to test the

design of the experiment and detect defects and problems that could emerge for the final experiment. The
pilot experiment consisted of two different sessions. In this experiment the engagement was also measured
with the ITGSOPI questionnaire (Lessial.,2001) that measures spatial presence, engagement, ecological

validity/naturalness and negative effects.
Thesample for the pilot experiment consisted of 10 healthy adults (4 females, mean age 26.50, SD + 3.7) that

were recruited among the undergasel students of the Universitat Pompeu Fabra in Barcelona. The
subjects were informed that they would be presented various areas of the connectome network and later
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would be asked questions about its structure and its characteristics.

This pilot experimeriollowed an independent samples design. The participants were equally divided in two
groups and each group participated in a different condition. The first condition was: only visualization and
the second one: both visualization with sonification. dhedure followed was the same for both groups.

In the beginning the subjects were presented with the connectome network projected in front of them and
different areas were showed to them in order to get familiarized (with or without sound depending on the
group). They were also informed of the minimum and maximum values of the characteristics in the network.
A previous version of the network applicafiig. 13was used for the pilot since the latest version with the
anatomical atlas and other visuatavgments was not available yet.

Figure 13 Previous version of the neuroscience application used for the pilot experiment

In the first session the participants were presented with 5 different consecutive regions (the order was
randomized). The GUIf the application was visible which provided the following values: a) name of region
including the hemisphere, b) number of nodes c¢) number of connections and d) av. strength. The participants
were also provided with a printed visual guide of the 5 regmder to facilitate their task and heljrthe
orientation in the network. Then they were asked to fill in a questionnaire relative to their characteristics (i.e.
which of the five regions presented the highest number oj (deex |). The participats had to mark

their answers in clesaded questions. The measurements for this task was based on the number of correct

and wrong answers of the participdrite. average scareeach participamtas calculated.
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In the second session they were alldwedvigate freely through the network for 3 min (with or without
sound) and explore the network. The participants were informed that they would be given a questionnaire
where they would be asked to answer questions concerning their experience.ifdrgspagia the
keyboard for the navigation and then they were asked to fill #8HICgquestionnaire on engagement
(AnnexIl).

3.3.3 Empirical Validation

For the second experime2b healthy adults (15 females, mean age=29.53, SD + 5.6) with normal o
corrected vision and hearing were recruited. The subjects were naive and had no prior scientific knowledge of
neural networks.

In order to avoid differences due to the single subject skills the experiment followed a paired samples design
where each pasipant was exposed to both conditions (in a random order). The two conditions consisted of

a) only visualization andtujth visualization and sonificatiofihe independent variable was the presence of

sound vs the absence of sound and the dependepievada the estimation of the values of the changes of

the characteristics of the network between different regions with different characteristics. The experiment
consisted of 3 sessions that are described in detail in the following sections anippamespaeie allowed

to take breaks between the sessions.

3.3.1Experimental protocol

a)Demographics

In the beginning the subjects were asked to fill a consent form and a demographic questionnaire. The
demographic questionnai#ennex l1ll) included perswal questions concerning the age, gender, musical
background, knowledge on neural networks resulting in an average formal or informal music training of 1.84
(SD £ .85) on a scatd from 1 (none) to 4 (expert)

b) Introduction
The subjects were given arshdroduction about the experiment and the objective. The task of the subjects

was to estimate the number of nodes, connections and the average strength of each region presented and
understand the changes of these values during the navigation. Thegsesmted with the network and a

brief explanation followed in order to understand the characteristics of the network (nodes, connections, av.
strength). In this experiment th&stversion of the neuroscience application was used compared to the one

8 These conditions will be further referred to asaglizatiamd b)sonification
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adgted in the pilot experiment. This new version features a better allocation of the nodes on their

anatomical X,Y,Z coordinates according to the talaraic atlas. The visualization is improved and there is no

cluster effet as in the previous versioig(R4.

Figure 14 The latest versiaof the neuroscience application

The experiment consisted of 3 sessions. Each of the sessions consisted of two parts (one with sound and the
other withoutjn arandomordel and the GUI was deactivated. Before thesfisstion the participants were

explained how the characteristics were represented visually and acoustically and were informed of the ranges
of the scales of the characteristics of the regions in the néwmikted table with the minimum and

maximum vales of the characteristics was also provided to Thewy.were shown different regions with

the GUI activated and they were informed of the values verbally and visually so that they could control the
values and get familiarized with the connectome nefitarisubjects were informidt the task did not

consistin memorizing nor counting, but making estimations about the values. In the following figure an

overview of the procedure followed and the timeline of the experiment are presented.

] I | T ] I
| | | | ] [}
L 4 @ @ @
| Consent Form ' Introduction | Session 1 | Session 2 | Session 3 | End of
Introduction ' Explanation of Training Estmationof | Free navigation  experiment
 Demographics | visual and auditory | | polarity | Region Identification |
| | rq)raoontlllons | | | |
: : : | : :
0 min 5 min 15 min 30 min 40 min 50-60 min

Figure 15 Procedure and timeline of the experiment
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c) Sessiond Training

The first session had a training character so that the participants could get familiarized with the characteristics
and their corresponding visual and auditory representations.

Task
The paticipants were presented with 7 different regions for each of the two condgicalzgticand

sonificatjoand were asked to estimate the number of nodes, connections and av. strength of each region and
in which hemisphere the region was encount@tezh, they were asked to mark their answers in a
predetermined scale, which varied depending on the values of each characteristic and their distribution in the
network (more specifically for the nodes wascaal6, for connectionss@ale, av. Strengdscale and 2

options for the hemisphere). After completing the task for each region they were given feedback on their
answers so that they could control their possible mistakes.

An example of the questionnaire is shown in the following figure.

Nodes Connections Av. Strength

1. |<5 D 1. [<100 D 1. [<0.01 D
2. |6-10 D 2. |100-300 D 2. |~0.01 D
3 |11-15 D 3. 300 — 500 D 3. |~002 D
4. |116-20 D 4 500 - 700 D 4. |~0.03 D
5 (21-25 D 5 | 700 -1000 E] 5 |~004 D
6. |=25 D 6. 1000 — 1200 D 6. |=004 D

7. = 1200 D
Hemisphere | D R D

Figure 16. Example of the questionnaire used in the first session. The scales were determined depending on the
distribution of the characteristics in the network.

Regions selection
The regions presented footh of thepars of thissession had very similar relegeristics and their values

entered in the same ranglangx V). This decision was made so that the conditions for both of the
conditions were similar and the participants would be exposed in the whoté vahges of nodes,
connectionsnd av. streggth.
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In total, the participants were exposed to 14 regions for both conditions, nesultingls for each
condition After the presentation of each region the participants marked their answers in a questionnaire (for
the correspondent region) andihigey were givdeedback on the correct answers.

Score attribution criteron
In this session the error deviation from the correct ansavpreédetermined scale was meds(rased on

the scale shown ing- 16.

The absolute distance from the correswar was calculated (Walkerl.,2004) and divided by the

number of possible answers, which provided the normalization of the scores. The result was subtracted from
1, resulting in scores equal to 1 for the correct answers and 0 for the moshelistainé acale.

The error deviatiowascalculated according the following formula.

Tpgs

B = normalized score

j = participants answer

k = correct answer

N = total number oprobable answers

The average of the normalized scores of all the answers for each participant was calculated, in both
conditions.

d) Session 2

Task
In this sessio the subjects were presented with 18 different pairs of regions (9 for each condition, in a

random order). After the presentation of each pair of ragmynsad to evaluate the polarity of the values.
Specifically, the participants were informed othheacteristic they had to evaluate (hnumber of nodes,
connections or av. strength) and they were presented two different regions. The participants were asked to
decide if the second region presented a higher or lower value of the characteristic asicetbdbenfiest

region (this is referred to in previous studies as estimation of polarity (Walker and Lane 2001). Then they

were asked to mark with-ttheir answer in a questionnaire, as shown in the following figure.
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CONNECTIONS

1. Mark the CONNECTIONS in relation to the first region you saw or listened:
Higher (+) D
Lower (-) D

Figure 17. Example of the quiisnnaire provided to the participants in the second session.

If the subjects asked to see or listen again the regions they were allowed to ask for repetition. The regions
presented with sound did not exceed the duration of 12 seconds since in uhe iliterauggested that

othis is the most effective duration sieditory sensory memory is an issue for making such comparisons; if
displays or stimuli exceed 12 seconds it is likely that memory for events at the beginning of the display will be
degradd and the ability of participants to make reliable comparisons will be impaired, but should not
presented too rapidly because shortening the duration may run the risk that perception of auditory patterns
will be impaire@l(Bonebrigth& Flowers2011).

Regions selection
For each one of the 3 parameters (nodes, connections, av. strength) at least one pair presents evident

difference for the parameters measured. The rest of the regions presented variation in their values of the
three characteristids.AnnexV the selected regions are presented.

In total, the participants were exposed to 36 regions for both conditions, resulting in 18 trials (9 pairs of
regions for each condition). After the presentation of each region the participants marked thigirth@swers

guestionnaire.

Score attribution criterion
The score was based on the number of correct and wrong aAseeose of 1 was assigned to the

guestions answered correctly and 0 to incorrect answers. A total score from 0 to 9 was calculaied for each

the two conditions for each participant.

e)Session 3

Task
In this session the participants were asked to navigate freely through the connectome network. For the

navigation they used the keyboard and the mouse. Their task consisted in findirgith cEgiam values
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(e.g. a region with low number of connections betweef0Q0fbnnections, a region with medhigh

number of vdes between ZAD nodes, etfAnnex VI) There was no time limitation and they were also

given a printed table with thénimum and maximum values of each of the parameters. When they were
confident that they found the region that applied to the characteristics asked they were given feedback and
they continued with the next one. The task was repeated twice, one for diich. déach participant
completed 6 trials for each condition.

Score attributioncriterion
In this session two measurements were made:

1. A score of 1 was assigned to the questions answered correctly and O to incorrect answers. A total score
from O to 9was calculated for each of the two conditions for each participant.

2.As in the first session the absolute distance from the correct answer was calculated in a predetermined scale
designed ad hoc for the evaluaffamnex W). The distance was dividgdtbe number of possible answers,

which provided the normalization of the scores. The result was subtracted from 1 resulting in scores equal to
1 for the correct answers and O for the most distant one in the scale. The same formula as in Session 1 was
usedThe following table summarizes the tasks and the score attribution criteria for each one of the sessions.

Table 3. Table shows thiask of each session and the score attribution criterion

Session Task Score attribution criierion

Session 1 Estimation of the values d Error deviation from correct answer in
t he net wor k { predetermined scale
characteristics

Session 2 Estimation of polarity Correct answers were attributed with 1, otherwi
with O
Session 3 Finding regions with 1. Correct answers were attributed with 1, othe

certain characteristics in | with O

predetermined ranges of | 2. Error deviation from correct answer in
values predetermined scale designed ad hoc for the
evaluation
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4. RESULTS

4.1 Results Pilot

The first experiment served as a pilot and had a testing character. The main goal of this experiment was on
the one hand to spot potential issues with the protocol and on the other hand acquire some preliminary

results that wouldelp us with the experimental desigstatistical analysis was conducted in SPSS.

a) Session 1l
No significant results were found in the nmemsent of the data acquired fritra first session between the

two conditions. The sample was very small anthtistical analysis did not show any differences that would

lead to further analysis of the results. The only observation that could be made is that for regions that
presented that presented very high and very low number of nodes we actjigrezsthrenber ofcorrect

answers. However, this resulted for both conditions. Nonetheless, the pilot was very useful for the design of
the following experiment.

b) Session 2

The data obtained from the engagement questionnaire satisfied the normality critefied asinvg the
Shapirewilk test.

An independent -fest was conducted to measure differences in the engagement between the group that
navigated without soundiqualizatiocondition) and the group that navigated with sosodification
condition). Ahough there was no significant difference, there was a tendency for higher score assigned to
the sonification (M=3.555E=0.31) compared to the visualization (M=3.8£50.25) t(8)}-.93, p>.05

(Fig1g
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Figure 18 Boxplots for the engagement ratingsvbeh the two conditiongsualizati@mdsonification

The most important finding was that the independent samples design might not have been the most

appropriate one and the second experiment followed a paired dasighe

4.2 Resultd Experimet

a) Sessionl
Although the first session was considered to be a training session, a statistical analysis for the measurements

of the error deviation was conducted. The average values of the normalized scores were calculated for each

participant for both cditions yisualizatiamdsonificatjon
The meansf each of the three characteristics of each region were calculated and the total mean of the scores

for both conditions.

Table 4. Means of the normalized scores for the two tiondiincluding the individual scooesainedor each of the
three characteristic

Sessionl Estimation of values

Visualization Sonification
Parameters Mean SD Mean SD
Nodes 0.90 0.04 0.87 0.05
Connections 0.80 0.06 0.84 0.04
Strength 0.76 0.07 0.79 0.06
Total 0.82 0.04 0.83 0.03
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The data satisfied the normality criterion as verified using the -Bhptest. A dependent-té€st was
conducted to evaluate differences on the estimation scorings for the characteristics of the different regions
presented in the two conditions. No significance was found and there was no order or gender effect.

b) Session 2

A Wilcoxon test was conducted to evaluate differences on the estimation of polarity of the values of the pairs
of regions presented between the ¢emditions. The correct answers for both conditions were calculated.
The sonificatiorondition obtained a significant higher score (Mdn=7.00)}2.987 p<0.05, r8.57

compared to theisualizaticondition (Mdn = 6.00) (Fig. 19

Since the experiméeiotiowed a paired samples design, the data were tested for order effect. There was not
found an order nor a gender effect.
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Figure 19 Boxplot shows the significant effect on polarity estimatiobetgien the two conditians

The means of theorrect answers of the participants for each of the parameters of the networks are
presented in the following table. Wilcoxon tests were conducted for each of the parameters between the two
conditions. The maa for thesonificatiorere higher comparedttte ones of thegisualizationowever, no
significance was found in the means between the separate characteristics.
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Table 5. Means of the scorésr the correct answelar the two conditions including the individual scoloégnedfor
each of the three characteristics

Session 2 Estimation of polarity of values

Visualization Sonification
Mean SD Mean SD
Nodes 2.32 0.80 2.41 0.60
Connections 2.12 0.97 2.48 0.82
Strength 1.76 0.66 2.16 0.99
Total 6.00 1.52 7.00* 1.57

As observedrom the boxplot above (Fig.)1&n important amount of the population obtained a low score

for the sonificati@ondition. For this reason, a correlation was conducted between the musical background
and the ratings of the polarity in swgficatiocondition to test if there was any effect.

A significant negative correlation was found between the scores (correct answers) of the participants and their

musical background.

Table 6. Table shows the significant nagatiorrelation between the scores obtained from the correct answers and the
musical backgrourdd the participants

Correlations
Sonification_ Former Musical
TOTAL Training
Kendall's tau_b  Sonification_TOTAL Correlation Coefficient 1.000 -.300
Sig. (1-tailed) . 042
N 25 25
Former Musical Training  Correlation Coefficient -.300 1.000
Sig. (1-tailed) .042 .
N 25 25

* Correlation is significant atthe 0.05 level (1-tailed).

c) Session 3
First, a Wilcoxon test was conducted to test for differences in the ratings of correct and incorrect answers

between the two cditions. No significant difference was found between the two conditions.

A dependent -Test was conducted for the total scores obtained from the error deviation measurements. The
normalized scores for each participant were calculated for each of tisefoagm by the participant

through the navigation in the network. The average score was calculated for each of the two conditions for
each participant. A significant higher score was obtained $omifieati@ondition (M=8,03, SE=0.11)
compared tohe visualization (M=7.15, SE=0.43%) =-5.03, p<0.001, 12.
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Figure 20 Boxplotshows the significant score obtained for the sonification condition for the task on finding regions
with specific parameters.

Wilcoxon tests for the separate pararmetvere conductedhe scores obtained were higher for the
sonificatibor all the separate parameters asked. In adatitbsignificance was found for the regions with
low number of connections between the two conditions.

The sonificatiorondition olained a significant higher score (Mdn=1.00),-3.42, p<0.05, r6.68
compared to theisualizatighldn = 0.20)

Table 7. Means of the scorebtained fronthe error deviation for the correct ans@rboth conditions including
the individual scorebtainedor each of the three characterisfit® significant results are indicated with an asterisk.

Session 3 Correct Answerd Error deviation

Visualization Sonification

Mean SD Mean SD
Nodes Low 0.94 0.09 0.96 0.10
Nodes High 0.90 0.14 0.95 0.11
Connections Low 0.48 0.35 0.85* 0.21
Connections High 0.83 0.21 0.87 0.13
Strength Low 0.77 0.29 0.87 0.13
Strength High 0.83 0.16 0.84 0.14
Total 7.15 0.62 8.03* 0.54
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5 DISCUSSION AND CONCLUSION

The goal of this study is to exploresthler the addition of sound in the neuroscience application enhance

the understanding of the relationships of the networks parameters, during the navigation through the
connectome network in the eXperience | fnddexsti on
connections, av. strength and hemisphere) were mapped to different sound parameters (repetition rate,
amplitude and pitch) and the estimation of the values in the two conditions (absence and presence of sound)
was measured.

Two experiments werermhucted in the XIM, the first one having a testing character for the design of the
second experiment. The second one consisted of three sessions with the objective to measure whether sound
could enhance the understanding of the networkos
The reslts of the first session of the pilot experiment played a decisive role in the protocol design of the
second experiment. Although no significant results were obtained from this experiment, it provided an
insight for the design that would be adopted later

In the first session five consecutive regions were presented to the participants with their names and the values
of their characteristics visible in the GUI. They were asked to compare their characteristics and answer
guestions, in which they had teesethe correspondent region that filled the criteria asked. However, the
results and the participantsd qualitative comment
the regions and make comparison between them, when asked questionsatmetheiven though the
participants were provided with a visual printed guide they were not able to answer correctly most of the
guestions and they commented that they found it difficult to get oriented in the network. These findings
showed that the tagi comparing many consecutive regmosed to balifficult for the participants and

they were taken into consideration for the final experiment. Thus, the experimental protocol was
reconsidered and a different design was adopted. During the comgekisbthe second experiment pairs

of regions were selected to minimize the effect of attention and working memory.

Regarding the measurement of the engagement for the two conditions no gigsifitsamtere obtained.

This le into two consideration®ne was related to the nature of the questionnaire, which was considered
not to be appropriate for the neuroscience application and the certain task-SOPII®Inerely designed

for media, such as films, videos and computer games in which theusor@ignincludes characters and

story telling and tests how the participants feel during the experience. Since the nature of the virtual
environment of connectome application differs from these media it was decided that engagement would not
be further meased in the next experiment.
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The second one was related to the experiment protocol. The results showed that a paired samples design
would be more adequate for the measurement between the two conditions. Hence, a paired samples designed
was adopted in tHellowing experiment.

A second experiment was conducted in the XIM and the estimation of values of the parameters was
measured in three separate sessions. The first having a training character, the second one measuring the abilit
of estimating the pol#yiof the values of the networks characteristics between pairs of regions and the third

one measuring the ability of the participants to find regions with certain values of the three parameters during
a free navigation in the network.

The analysis of tltata for the three sessions reveadbdrence in the results between Session 2 and Session
3. The sonification condition obtained higher saoitevo different tasks and thus, the alternative hypothesis
was retained. Sonification significantly enhaheegderformance of the users in terms of estimation of
polarity and finding regions with certain characteristics.

Furthermore, the analysis of the data for the third seksxedhat participants during the free navigation

through the network obtainedjher scores for the regions with low number of connectionssionifieation
condition. This shows that pitch enhanced signifi
connections are difficult to discern visually, qualitative cosnfrantthe participants revealed that they

could intuit the number in relation with the nodes (low number of nodes in the networks corresponds to low
number of connections and vice versa in most of the regions) but the addition of sound shows that
sonificéion enhanced the accuracy during the navigation.

In addition, the significant results in favor of the sonification condition shows that the selected sound
parameters corresponding to the networks characteristics were difiectivesessions thsonitation
conditionresulted in higher scores revealing that the selection of the sound parameters and the sonification
design enhand¢he task of the participants.

However, there were some interesting findings to be discussed. In the first sessidysighef dna
separate means for the estimation of the three se
nodes. Examination of the results showed that higher scores were obtained for regions that presented very
low number of nodes (betweed@. This could be explained by the fact that estimation of such low number

of elements are especially easy to detect with the eye. In this specific case further experiments would be useful
to study whether cressodal effect interactions may cause erente effects (Eldrid@905).
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Another interesting finding is that in the third session participants obtained lower scores for the strength in
the sonificati@mondition for specific regions. This may be due to the interaction of the sound parameters
(repetition rate and loudness). When an area presented high number of nodes but low strength the
interactions of these two parameters may confuse the perception and these regions maybe perceived as
having high number of strengBurtherresearch on the griaction of the sound parameters would provide
betterunderstanding of the auditory perception. It would be interesting to examine the effectiveness of the
auditory display with different sound parameteralsmith different networks exposing the pgnts to

higher number of trials. This would give us insight for the interactions of sound parameters and the auditory
perception of the user.

Regarding the negative correlationthe third sessiobetweenthe score®btainedof the sonification

condition and the music&rmal training of the participants our predictionthathosewith low musical

background would provide lower scores. However, analysis of the results showed the opposite. In the
literature, there is no agreement about theorelztithe musical background in auditory tasks. The reason
underlying these results is not clear and further investigation is required. As suggested by Walker and Nees
( 2 0 B personocould have had many years of musical experience as child, yenhtoatijdebe many

years removed from their musical training and exhibit no more musical ability than someone who received no
f or mal This aould explaindhe results obtained. In addition, arelatde, and valid measure of

musical ability thanfiling a questionnaire coydtbbably give a better understanding on the results.

In most of the sonification studies it is suggested that training sessions are very important @onebright
Flowers 2011).Visual information displays owe much of theacess to their pervasiveness as well as to
usersd for mal education and i nf or m&NeexQlp)Fisuadlence a
representations are taught from a young age (Fe€g@ahrera2008) and we are familiarized witiplgga

and plots. Howevecpomplex auditory displays currently are not pervasive, and users are not taught how to
comprehend auditory displays as part of a standard edudad¢idmaining sessions in the sonification
research and experiments play an impaéa with the scope to get the participants famitlamtese

sessions usually have duration of 20 minutes. In this experiment the training session for both the conditions
were about 10 min and further training would probably enhance the resetofofithtioondition.

Concludingthe results obtained in this study are consistent with the literature regarding the study of the
effectiveness of the auditory display and the addition of sound in visual displays, as cited in the previous
sectionsSound enhanced the task of the participants and provided a first step in the sonification of the

connectome network. The sonification can be used to help the navigation of the user in the neuroscience
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applicationFurther improvements and experimentatiothe sonification models could lead to a powerful

tool for the exploration of the neural networks.

The connectome network is a complex dataset and giving a further layer with the sonification we achieved to
enrich the neuroscience application helpmgdbr understand better the relations and the dynamics of the
network. Large datasets are continuously generdiffdrent research fieldad sonification can be used to
facilitate the task of extractingportantinformation.

Summary of conclusions

AThe alternative hypothesis was retained. Sonification significantly enhanced the performance of the users in
terms of estimation of polarity and finding regions with certain characteristics.

A Coherence was found i nessidn®. Sondicatioh dorglition ebtaiwes bigherS e s s
score in two different tasks.

A Sonification is an effective method for the vis
A The selected sound parameters found to be effec

A Tnbgative correlation between the participants scores and the former musical background is interesting
for further research.

A In the third session the scores for av. strengt
regions. Althoughot significant, interactions between the sound parameters (loudness and rate) should be

examined.

A Further training for the auditory condition cou
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6 FUTURE STEPS

This project can be considered as a first step for the ammifiof the connectome network. A first
approach related to the estimation and the understanding of the relationships of the networks characteristics
was proven to be successful. However, the connectome application has a great potential. Improvements on
the current work for extending the sonification model for the neuroscience application are proposed.

Regarding the current sonification design, a different task would be interesting for future experiments, such as
presenting different regions or even iffe networks to the participants and evaluate the ability to detect

di fferences between them. Studying the interchang
characteristics would offer further understanding on cognitive abilitiessef #ueduauditory perception.

As aforementioned the visualization used for the final experiment was a newer version of the connectome
network. Although the visualization changed aesthetically the dataset remained the same. But, nonetheless the
newer versioof the neuroscience application has much more possibilities.

I n addition, designing a sonification that woul d
the extraction of patterns and u rlkminewokandwauld t he
enrich the neuroscience application.

This of course would lead to a different task and a new sonification design. This thesis was tested with naive
subjects. Examining the effectiveness of the new proposed multimodal dispkestirandt with

professionals would be of great interest.

Furthermore, creating an adaptive system that would function as a machine learning system for all kinds of
networks would add potential to the neuroscience application and would add potpotiarad ool for
uncovering complicated structures.

Finally, the sonification of implicit signals (ECG and EDR) and study the effect of these measurements in a
interactive virtual environment such as the eXperience Induction Machine would enhanosdieacesur
application and offer the possibility to study cognitive processes on the understanding of big data sets.
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