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Abstract
We investigate the topology of human brain functional networks, using fMRI data.
We re-examine the question of whether the degree distribution of these networks
really scale as power-law (scale-free) and which statistical tests are better suited
to answer such questions. Earlier studies have all been based on least-square esti-
mation, which is not a reliable estimator of power-law distributions. Degree dis-
tribution of brain functional networks from 10 healthy individuals were analyzed
using rigorous statistical analysis. The statistics do not support a power-law, but
rather the generalized Pareto distribution. We propose methods to construct syn-
thetic random and power-law networks from our empirical networks as a way to
compare efficiency among these different models, using graph-theoretic measures.

Keywords: brain functional networks, graph theory, network science, scale-
free networks, generalized Pareto distribution.
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Chapter 1

INTRODUCTION

1.1 Problem Statement

Much interest in theoretical neuroscience has revolved around graph-theoretic
scaling properties of the network of correlations in the human brain. Some au-
thors have attempted to show that the degree distribution of nodes in brain func-
tional networks are scale-free; that is, they obey power-law degree distributions
P (k) ∼ k−α (see for example [3], [5], [6], and [7]). The scale-free model is theo-
retically attractive for several reasons, among which are (i) the seemingly ubiqui-
tous presence of scale-free networks in nature, as claimed by a large body of work
from other fields related to scale-free networks, including both non-biological and
biological networks (see for example [8]); (ii) the link of scale-free networks to
self-organized criticality, as can be seen in [9], [10], [11], and [12]; (iii) the exis-
tence of a fat tail, implying larger number of brain hubs compared to random or
other small-world network models, ensuring efficiency of information processing
and resilience (see [13] and [14]). However, some other authors have claimed that
instead of being scale-free, brain functional networks follow a power law with
truncated exponential distribution (see [4]).

We noticed a systematic methodological weakness of previous works in the
literature ( [3], [5], [6], [7], [4]), as they mainly examined the structure of the
brain functional networks based on either visual assessment [6], [4], or using least
square error fitting on a log-scale to establish their claims [3], [5], [7]. Least
square fitting in many case does not give good estimate of the scaling parameter
α. And even when it does, the errors are no longer normally distributed under log-
log scale, thus the coefficient of determination R2, frequently used to assess the
goodness of fit in linear regression, cannot be a reliable goodness of fit indicator
in this context.

We deploy rigorous statistical techniques to verify these claims. In addition,
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structural and dynamical consequences of brain functional networks are further
investigated in light of our results. Concretely:

(i) We disprove the scale-free hypothesis of the brain functional networks,
which has been prevalent in the literature to date

(ii) We offer our own framework of the brain functional networks structure,
verified through rigorous statistical analysis. We argue why our model is
competitive with the scale-free models from a efficiency/cost perspective

(iii) We develop a hubs map of the brain functional networks, including both
positive correlation hubs and negative correlation hubs. This map will serve
as a basis for our dynamical modeling

1.2 State of the Art

1.2.1 Contemporary Network Science
The study of networks in the form of mathematical graph theory is one of the

fundamental pillars of discrete mathematics. Euler’s celebrated 1735 solution of
the Konigsberg bridge problem is often cited as the first true proof in the theory
of networks, and during the twentieth century graph theory has developed into a
substantial body of knowledge ( [15], [16]).

Networks have also been studied extensively in the social sciences. Typical
network studies in sociology involve the circulation of questionnaires, asking re-
spondents to detail their interactions with others ( [17]). One can then use the
responses to reconstruct a network in which vertices represent individuals and
edges the interactions between them. Typical social network studies address is-
sues of centrality (which individuals are best connected to others or have most
influence) and connectivity (whether and how individuals are connected to one
another through the network).

The last decade has witnessed the birth of a new movement of interest and
research in the study of complex networks, i.e. networks whose structure is ir-
regular, complex and dynamically evolving in time, with the main focus moving
from the analysis of small networks to that of systems with thousands or millions
of nodes, and with a renewed attention to the properties of networks of dynamical
units. This flurry of activity, triggered by two seminal papers, that by Watts and
Strogatz on small-world networks [18], and that by Barabasi and Albert on scale-
free networks appeared one year later in Science [19], has been certainly induced
by the increased computing powers and by the possibility to study the proper-
ties of a plenty of large databases of real networks. These include transportation
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networks, phone call networks, the Internet and the World Wide Web, the actors
collaboration network in movie databases, scientific co-authorship and citation
networks from the Science Citation Index, but also systems of interest in biol-
ogy and medicine, as neural networks or genetic, metabolic and protein networks.
Within neuroscience, the interest in studying human brain from the perspective of
network science is rapidly increasing, thanks to concepts and techniques devel-
oped from other disciplines, the development of brain imaging technologies, and
the wealth of available data sets.

1.2.2 Basic Definitions and Notations
Graph theory is the natural framework for the exact mathematical treatment

of complex networks and formally, a complex network can be represented as a
graph. Within the scope of this report, we will use the term network and graph
interchangeably. A undirected graph G = (V,E) consists of two sets V and E,
such that V 6= ∅, and E is a set of unordered (order) pairs of elements of V .
V is called set of vertices (also commonly known as nodes) and E is a set of
edges (also commonly called links), where elements consist of pair u, v of distinct
vertices u, v ∈ V .

Figure 1.1: illustration of a graph

A graph can be undirected or directed, depending on whether the edges in E
have an ordering to its vertices (i.e., so that u, v is distinct from v, u, for u, v ∈
V ). Also, a graph can be simple, or a multi-graph, if there are multiples edges
connecting two vertices. Within the scope of this report, we will deal mainly with
simple, undirected graph.

More importantly, a graph can be binary, or weighted. A binary graph is
one which a link indicates the presence of a relationship between two nodes (re-
lationship either exists or does not exist). A weighted graph also incorporates
connection strength into the links among vertices. Any simple, undirected graph
can be uniquely represented in the form of an adjacency matrix. A graph with
n vertices and be isomorphically mapped to a n × n square adjacency matrix A,
with each row (column) represents a vertex. The entry at row i and column j of
the adjacency matrix A, or aij indicates the connection strength between nodes
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i and j. It then follows that a binary graph can be represented by a symmetric,
binary adjacency matrix, whereas a weighted graph is represented by a symmet-
ric, weighted adjacency matrix. This one-to-one mapping between graphs and
adjacency matrices greatly facilitates the study of network graphs with the help of
formal mathematical tools, such as linear algebra.

Figure 1.2: example of the correspondence between a graph and its adjacency
matrix

The degree ki of a node i is the number of edges incident with the node, and
is defined in terms of the adjacency matrix A as: ki =

∑
j∈V aij . The degree

distribution of a network is an important feature in studying network topology.
The weighted degree of a node is defined similarly.

1.2.3 Graph-theoretic Measures
Degree Distribution

The most basic topological characterization of a graph G is its degree distribu-
tion P (k), defined as the probability that a node chosen uniformly at random
has degree k or equivalently, as the fraction of nodes in the graph having degree
k. The degree distribution provides a natural summary of the connectivity in the
graph. During the past decade, it has been found that approximate power-law
distributions appears to be ubiquitous in networks across many areas of the sci-
ences [20]. This discovery was originally quite unexpected, as such structure is
in contrast to that of networks studied throughout much of the 20th century [16],
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such as traditional random graphs. In the case of random graphs, vertex degree
is of a fairly similar order of magnitude across the graph, homogeneous instead
of heterogeneous. The corresponding degree distribution are thus concentrated,
and typically decay exponentially fast, rather than like a power-law. A power-law
distribution is characterized by a ”fat-tail”, implying the existence of numerous
network hubs, compared to other wise random networks. Due to its seemingly
ubiquitous presence in nature, networks with power-law degree distributions have
been the focus of a great deal of attention in the literature [21]. They are also
referred to as scale-free networks [20]. Formally, the probability density function
of a scale-free network takes the form P (k) ∼ k−α. The term scale-free refers to
any functional form f(x) that remains unchanged to within a multiplicative factor
under a rescaling of the independent variable x. The earliest published example
of a scale-free network is Price’s network of scientific citations [22], where the
value of scaling parameter α is between 2.5 and 3. More recently, power-law de-
gree distributions have been observed in a wide range of other networks, including
other citation networks ( [23], [24]), the World Wide Web ( [25], [26], [27]), the
Internet ( [28], [29], [30]), metabolic networks ( [31], [32]), telephone call net-
works ( [33], [34]), and the network of human sexual contacts ( [35], [36]). Other
common functional forms for the degree distribution are exponentials, such that
those seen in the power grid [37] and railway networks [38], and power laws with
exponential cutoffs, such as those seen in the networks of movie actors [37] and
some collaboration networks [39].

Degree Correlation and Mixing Patterns

The degree distribution is useful as a composite summary of how degree varies
across nodes in the network, but it does not provide any information on precisely
which nodes are connected to which others. To capture information of this sort, it
is helpful to establish summaries that describe the patterns of association among
nodes of similar degrees. Traditionally in the context of social network analysis, a
pattern of selective linking where highly connected nodes tend to be connected to
each other has been studied under the term homophily. Recently, a similar concept
of assortative mixing has been explored for different types of networks [40]. A
network is said to be assortative if high-degree vertices have a preference to attach
to other high-degree vertices, and disassortative if high-degree vertices tend to
connect to low-degree ones. This mixing pattern in networks can be summarized
through assortativity coefficient, defined as:

r =
l−1
∑

(i,j)∈E kikj − [l−1
∑

(i,j)∈E
1
2
(ki + kj)]

2

l−1
∑

(i,j)∈E
1
2
k2
i + k2

j − [l−1
∑

(i,j)∈E
1
2
(ki + kj)]2
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Figure 1.3: illustrative probability density functions of popular distribution mod-
els

Figure 1.4: illustrative probability density functions of the tails of popular distri-
bution models, signifying the structure of network hubs
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with l =
∑

(i,j)∈V aij is the number of links in the network. For weighted net-
works, the weighted assortativity coefficient can be defined similarly as [41]:

r =
l−1
∑

(i,j)∈E wijk
w
i k

w
j − [l−1

∑
(i,j)∈E

1
2
(wij(k

w
i + kwj )]2

l−1
∑

(i,j)∈E
1
2
wij(k2

i + k2
j )− [l−1

∑
(i,j)∈E

1
2
wij(kwi + kwj )]2

with wij represents connection weight of link (i, j), and kwi =
∑

i∈V wij is the
weighted degree of i. Networks with a positive assortativity coefficient are likely
to have a resilient core of mutually interconnected high-degree hubs. On the other
hand, networks with a negative assortativity coefficient are likely to have widely
distributed and consequently vulnerable high-degree hubs. Some examples of
assortative networks include scientific coauthorship and film actor collaboration
networks [40], while the Internet, World Wide Web, protein interaction networks
and networks of food web have been shown to be disassortative [40]. Notably,
random networks and the scale-free networks defined by preferential attachment
growth model of Barabasi and Albert have assortativity coefficient of 0 [40]. Re-
lated measure of assortativity computed on individual nodes is the average neigh-
bor degree [42] knn,i =

∑
j∈V aijkj

ki
for binary networks and kwnn,i =

∑
j∈V wijk

w
j

kwi
for

weighted networks.

Figure 1.5: illustrative assortative and disassortative networks, from [1]
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Characterizing Network Cohesion and Connectivity, Small-World Properties

A clear deviation from the behavior of random graphs can be seen in the prop-
erty of network clustering. In many networks it is found that if vertex A is con-
nected to vertex B, and vertex B to vertex C, then there is increased probability that
vertex A will also be connected to vertex C. In the context of social networks, the
friend of your friend is also likely to be your friend. This is exhibited in network
topology through the number of triangles in the network. It can be quantified by
defining a clustering coefficient C such as [18]: C = 1

n

∑
i∈V Ci = 1

n

∑
i∈V

2ti
ki(ki−1)

where ti = 1
2

∑
j,h∈V

aijaihajh denotes the number of triangles around node i, and

Ci is the clustering coefficient of node i. This notion of clustering coefficient can
be generalized for weighted networks as [43]:

Cw =
1

n

∑
i∈V

Cw
i =

1

n

∑
i∈V

2twi
ki(ki − 1)

where twi = 1
2

∑
j,h∈V

(wijwihwjh)
1
3 is the weighted geometric mean of triangles

around nodes i. Various higher-order clustering coefficients have also been pro-
posed, among which are the k-clustering coefficient that accounts for k-neighbors
( [44], [45]), or other measures based on the internal structure of cycles of order
four ( [46]), or on the number of cycles of a generic order [47]. Some defini-
tions of clustering coefficients without bias of degree correlation have also been
proposed ( [48], [49]). In general, regardless of which definition of the cluster-
ing coefficient is used, the values of real-world networks tend to be considerably
higher than those of a random graph with similar number of vertices and edges.

Another important concept that characterizes the cohesion of a network is its
shortest path lengths among different nodes. Shortest paths play an important role
in the communication within a network. The idea has long been explored in the
study of graph theory [50]. Shortest path between two nodes in a graph is typically
determined computationally through the use of standard Dijkstra’s algorithm, or
the breadth-first search method. The efficiency of the internal structure of a net-
work can be examined by looking at shortest paths among all vertices. A measure
of the typical separation between two nodes in the graph is given by the average
shortest path length, also known as the characteristic path length of a network,
formally defined as [18]:

L =
1

n

∑
i∈V

Li =
1

n

∑
i∈V

∑
j∈V,j 6=i dij

n− 1

8
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where dij is the shortest path length between i and j. Note that for weighted
networks, dwij =

∑
auv∈gi→jw

f(wuv), where f is a map (typically an inverse) from

weight to length, and gi→jw is the shortest weighted path between i and j. For
unconnected network, dij can be∞, thus it is sometimes more convenient to looks
at the global efficiency of a network [14]:

E =
1

n

∑
i∈V

Ei =
1

n

∑
i∈V

∑
j∈V,j 6=i d

−1
ij

n− 1

whereEi is the efficiency of node i. The definition of global efficiency for weighted
networks can be derived similarly.

An explosion of interest in network science emerged after a seminal paper from
Duncat Watts and Steven Strogatz came out in 1998, in which they studied a set
of so-called small-world networks [18]. The small-world effect was first studied
by Stanley Milgram in the 1960s [51], in which letters passed from person to per-
son were able to reach a designated target individual in only a small number of
steps (around 6 in the published case). Watts and Strogatz proposed to define a
class of small-world networks as those having both a small value of characteristic
path length L, like random graph, and a high clustering coefficient C, like regular
lattices. Such a definition corresponds to networks efficient in exchanging infor-
mation both at a global and local scale. Built on this characterization of small-
world networks, recently a quantitive measure of small-world-ness was suggested
by [52], in which network small-worldness S = C/Crand

L/Lrand
where C and Crand are

the clustering coefficients, and L and Lrand are the characteristic path lengths of
the respective tested network and a random network. Small-world networks often
have S � 1.

Characterizing Network Hubs, Centrality

Many questions that might be asked about a node in a network essentially seek
to understand its importance in the network. This importance can be expressed
through how well it is integrated into the rest of the network, or vice versa, the po-
tential impact of deleting this node from the network. A similar concept can also
be defined for the importance of a certain link in a network. In network science,
measures of centrality are designed to quantify such notion of importance. The
most obvious measure of node centrality is its degree k. Later when we define
functional brain networks, however, the degree of a node can take on different
meanings, depending on how exactly the network is constructed. Particularly in
the context of weighted networks that allow for both positive and negative links,

9
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the definition of hubs will depend on whether we look at positive and negative
links as a whole in the network, or treat them separately. Regardless of the treat-
ment, developing a map of network hubs can be very useful in capturing main
functionalities, while allowing a certain degree of simplification to take place.
This network hubs characterization is helpful especially in the context of model-
ing dynamical processes in a given network.

Beside degree of nodes, two other measures of node centrality can be used to
examine the prominence of nodes in the network. Closeness centrality is defined
as the inverse of the average shortest path length from one node to all other nodes
in the network. A related and often more sensitive measure is betweenness cen-
trality, defined as the fraction of all shortest paths in the network that pass through
a given node. Formally

L−1
i =

n− 1∑
j∈V,j 6=i

dij

denotes the closeness centrality of node i and betweenness centrality of node i is
defined as:

bi =
1

(n− 1)(n− 2)

∑
h,j∈V,h6=j,h6=i,j 6=i

ρ
(i)
hj

ρhj

where ρhj is the number of shortest paths between h and j, and ρ(i)
hj is the number

of shortest paths between h and j that pass through i
Bridging nodes that connect disparate parts of the network often have a high

betweenness centrality. The notion of betweenness centrality is naturally extended
to links and could therefore also be used to detect important connections within a
network.

1.2.4 Brain Functional Networks
Overview of Brain Networks

We now switch our discussion to recent works on various types of brain net-
works, with a special focus on functional networks. Two main factors contributed
to the recent wave of interest in studying the brain through the lens of network
science. First, the development of technical tools from graph theory, some of
which described above, and increased computational power have reached a point
of cross-fertilization where data-rich fields such as computational neuroscience
can be meaningfully studied with the help of these new techniques. Second, mod-
ern brain mapping techniques, such as diffusion MRI, functional MRI, EEG, and
MEG produce increasingly large data sets of anatomical and functional connec-
tivity patterns, gradually allowing researchers for the first time meaningfully map
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the entire brain in the form of massive networks, also known as Connectome
( [53], [54], [55]), in increasingly high level of resolution. Brain connectivity
data sets comprise networks of brain regions connected by anatomical tracts or by
functional associations. The three main types of brain networks can be broadly
classified as follows [56]:

• Structural networks: structural brain networks correspond to fiber den-
sity of white matter tracts between pairs of brain regions. Diffusion mag-
netic resonance imaging allows the mapping of the diffusion process of
molecules, mainly water, in biological tissues, in vivo and non-invasively.
The results from diffusion MRI can be used to build a tractography of whole
brain, providing an estimate of axonal trajectories across the entire white
matter [54]. Together with a parcellation of the brain into different regions
of interests (ROIs), connection weight between each pair of ROIs can be
computed to build a structural network of the brain. Initial studies of struc-
tural brain networks showed that individual brain networks have an expo-
nential node degree distribution and their global organization is in the form
of a small-world [53]. However, it should be noted that construction of
structural networks is still in relatively early phase and thus not many data
sets are currently available for more in-depth studies.

• Functional networks: functional brain networks correspond to magnitudes
of temporal correlations in activity between pairs of brain regions. Two
main methods are typically used to construct functional networks.

1. The functional networks can be derived by calculating cross-correlations
between BOLD signals from different brain regions throughout a fMRI
session. The smallest unit of brain regions is called brain ”voxel” (of
dimension 3x3.475x3.475mm3). Magnetic resonance brain activity is
measured in each voxel at each time step. Two brain sites are function-
ally connected if their Pearson temporal correlation exceeds a thresh-
old value rc, regardless of their anatomical connectivity. No clear rule
exists for the choice of threshold. However, most studies have consid-
ered positive thresholds of at least 0.5

2. Alternatively, some researchers applied discrete wavelet transform to
fMRI time series to estimate frequency-dependent correlation matri-
ces characterizing functional connectivity between brain regions [4].
Here, wavelet transform effects a time-scale decomposition that par-
titions the total energy of a signal over a set of compactly supported
basis functions, or little waves, each of which is uniquely scaled in
frequency and located in time [4]. The result is correlation matrices
corresponding to each range of frequency.
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Either method arrives at a correlation matrix of connectivity that is depen-
dent on the choice of threshold. After thresholding, connectivity matrices
are typically binarized, with functional connection between pairs of brain
regions assigned values of 1, with the rest being 0.

• Effective networks: effective brain networks represent direct or indirect
causal influences of one region on another and may be estimated from ob-
served perturbations [57]. Causal interactions are computed using transfer
entropy, a measure of directed information flow. Thus effective brain net-
works take the form of directed graphs.

The techniques to construct structural and effective brain networks are evolving
and still in relatively early stages. An illustration of the standard method to con-
struct structural and functional brain networks is provided below in figure 1.6.The
focus of this thesis will primarily be in the context of functional networks. For the
remainder of the report, brain networks will imply functional networks.

Figure 1.6: example of structural and functional networks construction, image
from [2]
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Graph-theoretic Measures in the Context of Brain Networks

An individual network measure may characterize one or several aspects of
global and local brain connectivity. At a macro level, measurement values of
all individual degree elements comprise the distribution of brain networks. The
degree distribution is an important marker of network development and resilience.
The mean network degree is most commonly used as a measure of density, or the
total wiring cost of the network [58]. Degree distribution of brain networks may
hold important clues to the dynamical processes on the networks, as the high-level
of interest on the hypothesized scale-free properties of brain functional networks
indicate [10], [6], [12], [9]. Furthermore, degree distribution also indicates to a
certain extent the resilience of the network. For instance, complex networks with
power-law degree distributions may be resilient to gradual random deterioration,
but highly vulnerable to disruption of high-degree central nodes [13]. Another
useful measure of resilience is the assortativity coefficient. Networks with a pos-
itive assortativity coefficient are likely to have a comparatively resilient core of
mutually interconnected hubs [56]. The effect of lesions of human brains or the
effect of neuro-degeneration can be quantified by looking at these macro mea-
sures.

At a lower level, functional segregation in the brain is the ability for spe-
cialized processing to occur within densely interconnected groups of brain re-
gions [56]. Measures of segregation, such as clustering coefficient, quantify the
presence of such groups, known as clusters and modules, within the network.
More sophisticated measures of segregation not only describe the presence of
densely interconnected groups of regions, but also find the exact size and com-
position of these individual groups [59]. At the same time, functional integration
in the brain is the ability to rapidly combine specialized information from dis-
tributed brain regions. Measures of integration, such as the characteristic path
length, characterize the ease with which brain regions communicate. Lengths of
path consequently estimate the potential for functional integration between brain
regions, with shorter path implying stronger potential for integration. Paths in
functional networks represent sequences of statistical associations and may not
correspond to information flow on anatomical connections [56], and thus provide
another dimension for analysis. A combined balance of functional integration
and segregation in the form of small-world networks was hypothesized to be a
well-design structure, allowing the brain to simultaneously reconcile the oppos-
ing demands of processing the information efficiently at both the global and local
level. Such a design appears to be a feature of anatomical connectivity [60]. In
addition, several studies examining functional networks also report varying de-
gree of small-worldness [4]. Given the more abstract nature of functional paths,
a more complete understanding of the relationship between structural dynamics
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and functional connectivity will help clarify this issue [61].
The characterization of brain hubs provides a way to study the simplified brain

networks, while allowing for the capture of main structural / functional proper-
ties. The degree is the most common indication of brain hubs. Other measures
of centrality are based on the idea that central nodes participate in many short
paths within a network and consequently act as important controls of information
flows [62]. Measures of centrality may have different interpretations in structural
and functional networks. For instance, anatomically central nodes often facilitate
integration, and consequently enable functional links between anatomically un-
connected regions. Such links in turn may make central nodes less prominent and
so reduce the sensitivity of centrality measures in functional networks [56].

Topological Properties of Brain Functional Networks

Much interest in the analysis of brain networks has revolved around topological
structure of the networks, especially scaling properties of the network. In the first
report on large-scale topology of brain functional networks, Eguiluz et al claimed
that functional networks are scale-free, with scaling parameter α ≈ 2 [3]. The
constructed network in this case came from 36x64x64 brain voxels, each mea-
sured at 400 time steps, with 2.5 seconds spacing. The method of establishing
scale-free properties, as displayed in figure 1.1, is to create a histogram of degree
frequency on a log-log scale, across several different levels of correlation thresh-
olds (rc = 0.5, 0.6, 0.7 or 0.8). The best fit straight line is then fitted through the
data at different thresholds, and the estimated scaling parameter α would be the
slope of this line, as can be seen in figure 1.7. In addition, they claimed that char-

Figure 1.7: Log-log plot of degree distribution from Eguiluz et al. [3]

acteristic path length is small and comparable with those of equivalent random
networks, and the clustering coefficient is orders of magnitude larger than those
of equivalent random networks. After this study, several other have come out in
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agreement with the hypothesis that the brain functional networks are scale-free,
notably [6], [5], and [7]. The scale-free model is theoretically attractive for sev-
eral reasons, among which are (i) the seemingly ubiquitous presence of scale-free
networks in nature, as claimed by a large body of work from other fields related
to scale-free networks, including both non-biological and biological networks [8];
(ii) the link of scale-free networks to self-organized criticality, which is a property
of dynamical systems which have a critical point as an attractor [9], [10], [11],
and [12].Their macroscopic behaviour thus displays the spatial and/or temporal
scale-invariance characteristic of the critical point of a phase transition; (iii) the
existence of a fat tail, implying larger number of brain hubs compared to random
or other small-world network models, ensuring efficiency of information process-
ing and resilience (see [13] and [14]).

However, some other authors have claimed that instead of being scale-free,
brain functional networks follow a power law with truncated exponential distri-
bution (see [4], [63], [64]). Formally, a power law with exponential cutoff can be
expressed by the probability distribution function P (k) ∼ k−αe−λk. Archard et al
studied the brain functional networks through constructing networks of 90 nodes,
and estimated scaling parameter α = 1.8 and cutoff degree λ = 0.2 [4]. Again,
log-scale plots of histogram of degree frequency were examined in their study.
One such plot is displayed in figure 1.8 below. In addition, they observed global
mean path length of 2.49, which is approximately equivalent to a comparable ran-
dom network, whereas clustering coefficient of 0.53 is two times greater. They
concluded that low-frequency functional networks have a small-world architec-
ture, but are not scale-free. In addition, the network is more resilient to targeted
attack on its hubs than a comparable scale-free network, but about equally resilient
to random error.

1.2.5 Methodological Weakness of Previous Studies
Several methodological issues exist with prior studies on topological structural

of functional networks. Here we address several key points which motivate our
current study.

• The commonly used method for analyzing the degree distribution of func-
tional networks in prior studies is either least-square fitting or visual assess-
ment. First, using visual assessment is not a reliable way of establishing the
power-law relationship, as many heavy-tail distributions can share the fea-
ture of noisy data towards the tail of the distribution on a log-log scale, thus
can be highly misleading. Second, least-square fitting can produce substan-
tially inaccurate estimates of parameters for power-law distributions. And
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Figure 1.8: Log-log plot of degree distribution from Achard et al. [4]. The plus
sign indicates observed data, the solid line is the best-fitting exponentially trun-
cated power law, the dotted line is an exponential, and the dashed line is a power
law.

even when in cases where such methods return accurate answers, such meth-
ods will not be able to give satisfactory indication of whether the data obey
a power law [65]. To date, the most common approach for testing empir-
ical data against a hypothesized power-law distribution is to transform the
distribution P (k) ∼ k−α into the log form logP (k) = c − α log k. The
probability density P (k) can be estimated by constructing a histogram of
the data and the resulting function can then be fitted to the linear form by
least-square linear regression. The slope of the fit is interpreted as the es-
timated α̂ of the scaling parameter, and r2 is taken as an indicator of the
quality of the fit. Table 1.1 illustrates how least-square fitting can wildly
mis-calculate the scaling parameter, by generating synthetic data sets gen-
erated from a priori known power-law distribution curve with α = 2.

Number of Synthetic Data Points LSQ Estimated α
50000 1.0589
100000 1.1691

Table 1.1: Inaccuracy of LSQ estimation on a priori known power-law dis-
tribution with α = 2

More seriously, a fit to a power-law distribution can account for a large
fraction of the variance even when the fitted data do not follow a power-
law, and hence high values of r2 cannot be taken as evidence in favor of
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Figure 1.9: typical FC matrix and binary thresholded adjacency matrix, image
from Eguiluz et al. [3]

the power-law form. In addition, the fits extracted by regression methods
usually do not satisfy basic requirements on probability distributions such
as normalization, and hence can be incorrect.

• Previous studies frequently transformed extracted functional correlation (FC)
matrices into binary adjacency matrices. This has the potential to introduce
more errors into the constructed networks, and ignore important gradient
of functional relationships. A binary network with threshold rc = 0.4, for
example, would view cross-correlation of 0.5 and 0.9 to be functionally
equivalent. A typical example can be seen in figure 1.9.

• By considering only positive thresholds, potentially important information
regarding anti-correlation relationships in functional networks are ignored
by previous studies. Several authors have argued for potential relevance of
anti-correlation in functional brain context [66], [67], [68], [69].
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Chapter 2

METHODOLOGY

2.1 Data and Construction of Brain Functional Net-
works

2.1.1 Data Acquisition
1000 Functional Connectomes Project

Our primary data source comes from the 1000 Functional Connectomes Project,
an open-access repository of resting-state functional MRI datasets [55]. The 1000
Functional Connectomes Project (http://www.nitrc.org/projects/fcon 1000/) is an
international open-access repository of resting-state functional connectivity MRI
datasets with subjects recruited in different cohorts across the world. For con-
sistency and due to computational limit, we select 10 healthy, right-handed male
subjects from the Ann Arbor, Michigan cohort with age ranging from 18 to 33
for our study. All datasets were reoriented to RPI. Also, the first 5 time points
of each time series were discarded, leaving each dataset with 295 time points
across 64x64x40 brain voxels. Different levels of resolution were considered.
At the lowest resolution level V1, collection of neighboring 4x4x2 brain voxels
were combined by taking the average fMRI signal at each time step, effectively
transforming the original data into 16x16x20 brain sites. At resolution level V2,
collection of neighboring 4x4x1 brain voxels were combined to obtain time series
of 16x16x40 brain sites. Similarly at level V3, neighboring 2x2x2 brain voxels
were combined to obtain time series data of 32x32x20 brain sites.

Task-based fMRI data from Eguiluz et al.

Original task-based fMRI data used in [3] consist of four healthy, right-handed
subjects. Subjects were studied using a Siemens-Trio 3.0 Tesla imaging system
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Figure 2.1: sampled image of fMRI session from subject 34781

using a birdcage radio-frequency head coil. The data were preprocessed using the
package FSL (http://www.fmrib.ox.ac.uk/fsl). Subjects performed on-off finger
tapping with threes different protocols. In one case they were instructed verbally
to start and stop tapping, in the other one the start or stop cue was a small green
or red dot in a video screen, and in the last one the start or stop cue was the entire
screen turning green or red [3].

Human Connectome Project

Recently, a consortium of universities led by Washington University at St. Louis
and University of Minnesota has initiated a new effort called Human Connectome
Project (http://www.humanconnectome.org/) to collect structural and functional
MRI data. The data acquisition and processing are still underway. At this stage,
we have received sampled, one subject sets of both resting-state fMRI data set
and task-based fMRI data sets for language, emotional, gambling, motor skill,
and working memory task.

2.1.2 Network Construction

We adopt the standard approach to construct brain functional networks from fMRI
data as presented in the literature [3], [5], [63]. To derive correlation matrix,
Pearson correlation coefficient between any pair of brain regions x1 and x2 is
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defined as:

r(x1, x2) =
〈V (x1, t)V (x2, t)〉 − 〈V (x1, t)〉〈V (x2, t)〉

σ(V (x1))σ(V (x2))

where the activity of brain region x at time t is denoted as V (x, t), σ2(V (x)) =
〈V (x, t)2〉 − 〈V (x, t)〉2, and 〈.〉 represents temporal averages. Figure 2.2 displays
the resulting correlation matrix for subject 34781 from the 1000 Functional Con-
nectome Project. From the FC matrix, functional networks can be extracted by
looking at a range of different thresholds. For each threshold r > 0, the weighted
adjacency matrix is obtained by keeping all values in the correlation matrix that
are greater than or equal to r, while other entries become 0. For each threshold
r < 0, such adjacency matrix is obtained by keeping the values that are less than
or equal to r, while other entries go to 0. We consider 17 different thresholds
for each subject, corresponding to 17 different extracted weighted networks. The
threshold values range from r = −0.7 to r = 0.8, with each increment of 0.1.
Note that for r > 0.8 and r < −0.7, extracted network will become too sparse for
meaningful analysis. An example of thresholded matrix corresponding to r = 0.4
for subject 34781 at resolution level V2 can be seen in figure 2.3. This adjacency
matrix has one-to-one relationship with a functional brain network at the given
threshold and resolution level. Each row (column) represents a node in the net-
work. Node degree is simply the sum of each corresponding row (column) of the
adjacency matrix. Graph-theoretic measures of the constructed network can be
performed on the corresponding weighted adjacency matrix.

Computationally, the construction of brain functional networks and all the anal-
ysis were performed using Matlab R2009 (Mathworks Inc.). In many cases where
functional networks are sufficiently large (20,000 nodes or more), the network
construction process can become computationally expensive. An efficient strat-
egy comprises of following steps is needed to reduce running time: (i) storage of
correlation matrix in single format instead of double format to ensure the matrix
can be efficiently loaded into random access memory for processing. Note that
using single format does not compromise the analysis of the data, given single
format in Matlab can be accurate up to 7 decimal digits (ii) utilization of parallel
processing toolbox in Matlab. This could help reduce running time by approxi-
mately 25 percent (iii) building correlation matrix by dividing the original group
of brain sites into multiple blocks. As an example, when the original set of brain
sites is divided into 2 blocks (block 1 and block 2), a full correlation matrix can
be constructed by concatenating 4 different sub-matrices: M1 = block 1 x block
1, M2 = block 1 x block 2, M3 = block 2 x block 2, M4 = block 2 x block 1.
This strategy is needed when the number of brain sites becomes too large to hold
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the entire correlation matrix in random access memory. In practice, M1 and M3
are symmetrical, and M4 is the transpose of M2, thus we can effectively calcu-
late only half of the pair-wise correlation coefficients to build the full correlation
matrix.

Figure 2.2: constructed correlation matrix from subject 34781 at resolution level
V2

2.2 Degree Distribution Testing

2.2.1 Testing Power-Law Distribution
From the previous section, assume that we have constructed a weighted functional
network with n nodes and a weighted degree sequence x1 ≤ x2 ≤ ... ≤ xn. To
test whether the degree distribution of functional networks follows a power-law,
we follow the method suggested by [65], which advocates using Maximum Like-
lihood Estimator to estimate the scaling parameter α and a parametric bootstrap
method to test the goodness of fit.

Estimate the parameters xmin and α of the power-law model using method of
maximum likelihood and Kolmogorov-Smirnov statistic

In practice, few empirical phenomena obey power laws for all values of x. More
often the power law applied only for values greater than some minimum xmin. In
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Figure 2.3: thresholded correlation matrix from subject 34781, r = 0.4, resolution
level V1

such cases the tail of the distribution follows a power law. For each α and xmin,
the probability density function for power-law distribution is given by

p(x) =
α− 1

xmin
(
x

xmin
)−α

. The likelihood of the data given the model is the conditional probability that the
data were drawn from the model given α:

p(x | α) =
∏

xi≥xmin

p(xi | α)

The data are most likely to have been generated by the model with scaling parame-
ter α that maximizes this function. Note that given our set of degree sequence, this
is a single variable function of α. Thus finding the maximum likelihood estimate,
or MLE of scaling parameter α̂ becomes the task of solving for the maxima of
this likelihood function. In case of power-law distribution, there is a closed-form
solution for α̂, which is given by:

α̂ = 1 + k(
∑

xi≥xmin

ln
xi
xmin

)−1 (2.1)

with k is the number of xi ≥ xmin. Thus for each possible value of xmin, the es-
timated scaling parameter is uniquely determined by equation 2.1. There remains
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the question of how we should go about choosing xmin. Clauset et al. suggested
that we choose ˆxmin that gives the best possible power-law fit out of all possible
xmin. Kolmogorov-Statistic, which measures the distance between the cumulative
density functions (CDFs) of the data and the fitted model, is commonly used to
quantify this degree of fitness. For each xmin, Kolmogorov-Smirnov (KS) statis-
tic is given by:

D = max
x≥xmin

| S(x)− P (x) |

where S(x) is the CDF of the data for the observations with value at least xmin,
and P (x) is the CDF for the power-law model that best fits the data in the region
x ≥ xmin. The estimated ˆxmin is the value of xmin that minimizes D.

Calculate the goodness-of-fit between the data and the power-law using a
parametric bootstrap based on the parameters estimated from previous step

Goodness-of-fit test is conducted by generating a large number of power-law dis-
tributed synthetic data sets with scaling parameter α and lower bound xmin equal
to those of the distribution that best fits the observed data. We then fit each syn-
thetic data set individually using its own power-law model and calculate the KS
statistic for each one relative to its own model. Then we count the fraction of the
time the resulting KS statistic is larger than the KS statistic value for the empirical
data (as determined from the previous step). This fraction is our p-value. If this
p-value is very small (less than 0.1), then power-law distribution is not a good
model for our observed data. Otherwise if p-value is greater than 0.1, then we do
not reject the hypothesis that the observed data follows a power-law distribution.
The Matlab code to conduct the power-law test according to the procedure de-
scribed here was developed by Clauset [65]. We adopt the code with some minor
modifications.

It is very important to note that failure to reject power-law distribution is no
guarantee for the power law being the best model for the empirical data. It is
entirely possible that other families of distribution may be able to explain the data
better. Test for other families of distribution, as well as for model selection, are
discussed in the following sections

2.2.2 Other Families of Distribution

A goodness-of-fit test as laid out in the previous section can be used to rule out
distribution hypothesis in the event the calculated p-value does not satisfy certain
critical value threshold. It does not, however, guarantees the tested model to be
the best model for the observed data. As such, we expand our analysis to consider
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other popular 1-parameter and 2-parameter models that have appeared in the lit-
erature. The expression for each of the considered distribution families is given in
table 2.1 as p(x) = Cf(x), with C being a constant.

Distribution Name f(x) C Parameter Condi-
tion

power law with cutoff x−αe−λx λ1−α

Γ(1−α,λxmin)
α > 0, λ > 0

exponential e−λx λeλxmin λ > 0

log-normal 1
x
exp[− (lnx−µ)2

2σ2 ]
√

2
πσ2 [erfc( lnxmin−µ√

2σ
)]−1 µ, σ ∈ <

Weibull xβ−1e−λx
β

βλeλx
β
min λ > 0, β > 0

generalized Pareto (1 + k x−xmin
σ

)−1− 1
k

1
σ

σ > 0

Table 2.1: Other families of distribution, f(x) is the functional form of proba-
bility density function (pdf), C is the normalizing constant of the pdf, such that
∞∫

xmin

Cf(x) = 1

Note that in general, the testing procedures described in previous section can
also be applied to each of these distribution families. We adapt the Matlab pro-
gram for power-law distribution test for other distribution families. The imple-
mentation, however, is more challenging, as solutions for the maximum likelihood
estimate do not exist in closed-form expression, with the exception of exponential
distribution. Numerical solutions are thus required using Matlab’s optimization
toolbox.

2.2.3 Model Selection
In the event that two or more distribution families ”pass” the statistical test, or
more precisely, cannot be ruled out based on criteria described in the previous
section, we use likelihood ratio test first suggested by [70] to determine which one
is a better model for the observed data. The basic idea behind the likelihood ratio
test is to compare the likelihood of the data under two competing distributions.
The one with the higher likelihood is then the better fit. Alternatively one can
calculate the ratio of the two likelihoods, or equivalently the logarithm < of the
ratio, which is positive or negative depending on which distribution is better or
zero in the event of a tie. The sign of the log likelihood ratio, however, will not
definitely indicate which model is the better fit because like other quantities, it is
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subject to statistical fluctuation. If its true value, meaning its expected value over
many independent data sets drawn from the same distribution, is close to zero,
then the fluctuations could change the sign of the ratio and hence the results of
the test cannot be trusted. In order to make a firm choice between distributions
we need a log likelihood ratio that is sufficiently positive or negative that it could
not plausibly be the result of a chance fluctuation from a true result that is close
to zero. To make a quantitative judgement about whether the observed value of <
is sufficiently far from zero, we use the results from [70] to calculate the standard
deviation σ of<. This method gives us a p-value that tells us whether the observed
sign of < is statistically significant.

In technical terms, consider two candidate distributions of observed data with
density function p1(x) and p2(x) respectively. The log likelihood ratio can be
derived as:

< =
n∑
i=1

[ln p1(xi)− ln p2(xi)] =
n∑
i=1

[`
(1)
i − `

(2)
i ]

where `(j)
i = ln pj(xi). The variance of the difference `(1)

i − `
(2)
i can be approxi-

mated as:

σ2 =
1

n

n∑
i=1

[(`
(1)
i − `

(2)
i )− (¯̀(1) − ¯̀(2))]2

with ¯̀(1) = 1
n

n∑
i=1

`
(1)
i and ¯̀(2) = 1

n

n∑
i=1

`
(2)
i . The critical p-value, or the probability

that the measured log likelihood ratio has a magnitude as large or larger than the
observed value |<|, is given by:

p =
1√

2πnσ2
[

−|<|∫
−∞

e−t
2/2nσ2

dt+

∞∫
|<|

e−t
2/2nσ2

dt]

= |erfc(</
√

2nσ)|

where erfc(z) = 1 − erf(z) = 2√
π

∞∫
z

exp−t2dt is the complementary Gaussian

error function, which can be calculated using Matlab.
If this p-value is small (p < 0.1) then it is unlikely that the observed sign is a

chance result of fluctuations and the sign is a reliable indicator of which model is
the better fit to the data. If p is large on the other hand, the sign is not reliable and
the test does not favor either model over the other.
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2.3 Networks Model Comparison
Having rigorously tested different network models, we will incorporate graph-
theoretic measures introduced in chapter 1 to compare the topological features
between our empirical networks, and equivalent networks of hypothesized mod-
els. We are especially interested in examining measures that relate to efficiency of
networks, from different graph-theoretic angles. This requires creating equivalent
networks of different hypothetical distributions from our empirical network. In
other words, from our empirical network, we want to derive null network model
for comparison purposes. This issue has not been addressed widely in the litera-
ture ( [71]). So far, most previous studies have dealt with binary, sparse networks
( [72], [71]). The basic idea is to randomly select four distinct nodes A,B,C and
D in a binary, sparse network so that there is a connection from A to B, and from
C to D. In addition, the selection criterion is such that no connection exists be-
tween A to D, and B to C. At each step, we can replace the connection A←→ B
and C ←→ D with those of A ←→ D and C ←→ B [72]. The random, binary
network is obtained by repeating this process over many iterations. It is easy to
see that for binary, sparse networks, this procedure will preserve the degree dis-
tribution of the original network, since the degree of each node does not change
after each rewiring operation.

Figure 2.4: Binary Rewiring Algorithm in the Literature

The method of rewiring binary network has been the standard by which null
model is created so that graph-theoretic measures such as small-world properties
are calculated [56]. However, when dealing with weighted networks, this rewiring
method does not work since the connection weight of each pair of nodes can be
different. We further develop several methods to work with weighted networks as
described in what follows.

2.3.1 Creating Null Model by Rewiring
One way to create a null model for a weighted functional network in a manner
similar to binary rewiring so that the degree distribution is preserved, we modify
the connection strength among different nodes in a way that preserves the degree
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of each node at each step of iteration. This method works for both dense and
sparse networks.

Figure 2.5: Our algorithm for rewiring weighted networks in order to randomize
connections, while preserving the degree distribution. 4 random nodes are cho-
sen and their inter-connection strengths are modified by a randomly generated
number γ

• Step 1: choose 4 different arbitrary nodes in the network, call theseA,B, C,
and D. Denote the connection strength AD = x, BC = y, AB = w, and
CD = t. If there is no connection between two nodes, then the connection
strength is 0.

• Step 2: generate a random number γ such that −1 ≤ γ ≤ 1. Modify
connection strengths among the four nodes as follows: AD = x+γ, BC =
y + γ, AB = w − γ, and CD = t− γ.

• Step 3: check to see if any of connection strength AB, BC, AD, CD has
absolute value exceeding 1. If yes, repeat step 2

• Step 4: repeat step 1 → 3 over many iterations (the number of iterations
should be at least the number of links in the network)

Figure 2.6 illustrates the outcome of this rewiring strategy after 1,000,000
iterations. It can be seen easily from the algorithm described above that each node
maintains its weight degree after each iteration. Thus, this algorithm provides
a way to randomize original network without changing its degree distribution.
Graph-theoretic measures can then be applied to examine the efficiency of the
original network compared to a random network. This method, although perfectly
preserves individual degrees, has the weakness of altering the connection strength
among nodes in the network. Also, it will be difficult to keep the connection
strengths in randomized network to be in the same range as the original network,
especially when the functional network becomes sparse due to high correlation
threshold.
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2.3.2 Creating Null Model by Bootstrap Method
We develop another method, called the bootstrap method, to create null model
by transforming the original network into an equivalent network of any degree
distribution. Furthermore, the equivalent network can be obtained by preserving
the individual connection strength in the original network as well. The trade-off,
compared to the previous method, is that the result will be approximate, in the
sense that the resulting degree sequence will not be 100 percent coincident with a
targeted degree sequence. However, this approximation can work quite well over
many iterations (despite being more computationally expensive). Let G = (V,E)
be the original weighted network. Let Ĝ denote the (dynamic) synthetic network,
Ê be the (dynamic) set of links in Ĝ, and S = E \ Ê be the dynamic stack of links
that contain all the connections that are in E but not in Ê. Initially Ĝ, Ê = ∅, and
S = E. The bootstrap algorithm can be carried out as follows:

• Step 1: Design a target degree sequence in decreasing magnitude ŵ1, ŵ2, ..., ŵn

such that
n∑
i=1

ŵi =
n∑
i=1

wi, with w′is represent the degree sequence of origi-

nal network. In other words, design a target degree sequence that preserves
the sum of individual degrees of original network. In two special cases, the
target degree sequence can be exactly the same as the original degree se-
quence, or it can follow a scale-free distribution. We discuss how to create
a scale-free degree sequence later in this section.

• Step 2: Starting from the highness target degree ŵ1 to lowest target degree
ŵn, pick random links from the stack S, and attach these links to node i in
Ĝ, the other ends can be attached to other nodes in Ĝ at random. At the
same time, remove these links from stack S. Do this until the constructed
degree of node i in Ĝ is within 0.5 of the target degree ŵi, and then move
on to node i+ 1 in Ĝ. Update the dynamic degree of Ĝ.

• Step 3: At node i+1, if the current degree of node i+1 in Ĝ already exceeds
ˆwi+1, start choosing random links attached to nodes i+ 1 and remove these

selected links by throwing them back into the dynamic stack S. If not,
continue adding links to node i+ 1 similar to step 2. With either case, stop
when the dynamic degree of node i+1 in Ĝ is within 0.5 of the target degree

ˆwi+1. Update the dynamic degree of Ĝ.

• Step 4: After all n nodes have been cycled through, due to the random nature
of assigning links to nodes, it should be expected that the dynamic degree of
Ĝ will differ from the target degree sequence ŵi. We then go back to node
1 and repeat step 2 → 3. One iteration is considered complete when all n
nodes have been cycled through by operations in step 2→ 3. The algorithm
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can terminate when the all the degrees in the dynamic Ĝ are within 0.5 of
the target degree sequence, or the maximum number of iterations has been
reached.

It can be seen that when the above algorithm terminates, there may still be some
links left over in the dynamic stack S, or the degree sequence of Ĝ may still differ
from the target degree sequence ŵi by an amount greater than 0.5 at some points
along the degree sequence. However, this difference is reduced with each itera-
tion. Hence, despite being an approximate method, this strategy can work quite
well to achieve a synthetic network with any degree sequence of our choosing.

We now return to the specific question of how to design a scale-free degree
sequence ŵi. Note that for any n random numbers r1, r2, ..., rn uniformly dis-
tributed on [0, 1], and any given α, the series {xi} such that xi = (1− ri)−1/(α−1)

are drawn from a scale-free distribution with scaling parameter α. Thus, we sim-

ply need to rescale {xi} by a constant parameter into {ŵi} so that
n∑
i=1

ŵi =
n∑
i=1

wi.

The choice of α, however, needs to be coordinated with other topological features
of the constructed scale-free network to ensure a randomness factor meaningful
enough for our comparison purposes.

Figure 2.7 displays the resulting CDFs of synthetic bootstrap networks versus
CDF of original network for subject 34781 with correlation threshold r = 0.4.
The left hand side chart shows the result for a synthetic network that preserves
the degree sequence of the original network. The chart on the right hand side
shows the result for a synthetic, scale-free network corresponding to the scaling
parameter α = 5. Both synthetic networks were constructed using 10 iterations.
Although the degree sequence is not perfectly preserved, it can be clearly seen that
synthetic networks constructed by the bootstrap method can serve as good null
models for our comparison goals. Figures 2.8 and 2.9 display the transformation
of FC matrix using the algorithm described above to achieve a random network of
the same degree distribution as the original network, and a random network with
scale-free degree distribution with α = 5, respectively.
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Figure 2.6: Randomized Network by ”Rewiring”, subject 34781, r = 0.4
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Figure 2.7: CDF of original vs. synthetic bootstrap networks for constant degree
sequence and scale-free degree sequence with α = 5, respectively, subject 34781,
r = 0.4
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Figure 2.8: transformation of adjacency matrix that preserves degree distribution
using bootstrap method, subject 34781, r = 0.4
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Figure 2.9: transformation of adjacency matrix using bootstrap method to achieve
scale-free degree sequence with α = 5, subject 34781, r = 0.4
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Chapter 3

RESULTS

3.1 Test Results for Different Families of Distribu-
tion

Procedures to test the power-law distribution hypothesis were carried out in Mat-
lab (Mathworks Inc.) with Statistics and Optimization toolboxes.. Each test
for each subject was conducted over 17 different thresholds, from r = −0.7 to
r = 0.8, with increment of 0.1. Note that outside of this range, the constructed
network becomes too sparse for meaningful analysis. Per [65], if we wish the
calculated p-value to be accurate within about ε, then we should generate at least
1
4
ε−2 synthetic data sets. Based on this, the parametric goodness-of-fit test was

conducted over 1000 repetitions, ensuring precision of p-value up to 2 decimal
digits. Table 3.2 and table 3.3 illustrate the results of power-law distribution test
for 10 chosen subjects from the 1000 Functional Connectome Project at resolution
level V2. Note that number of tail data indicates the number of nodes with the
degree exceeding the cut-off point with which we can establish the best possible
fit for a given data set. In our implementation, the number of tail data is ensured to
be greater than 50 data points, and also greater than 5% of the total number of non-
zero data points. This is to prevent trivial scenarios where there are too few data
points left at the tail, effectively causing the fit to be less reliable. It can be seen
that p-values are consistently below 10% across different thresholds, meaning a
synthetically generated data set from the estimated α parameter tends to always
fit better than the empirical data sets from the KS-statistic point of view. This also
holds true with other levels of resolution. This means power-law distribution is
not suitable for the distribution of brain functional networks.

In a similar, though less straight-forward fashion, other families of distribu-
tions can also be tested against the set of empirical data from our constructed
networks. Unlike power-law distribution, solving for the best fit parameters using
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maximum likelihood estimation method for other families of distributions typi-
cally requires the use of numerical/optimization methods, due to the lack closed-
form expression for the maximum likelihood estimation solution. We used a stan-
dard numerical method in Matlab (Mathworks Inc.) that finds zeros of functions
based on an algorithm originated by T. Dekker ( [74]). Note that this optimization
method can significantly increase the computation time, thus fully carrying out
all tests at resolution level higher than V2 for all subjects was not always prac-
tical, especially for power-law with exponential cutoff, Weibull, and generalized
Pareto distribution. However, we conducted the test at resolution level V3 for 2-3
subjects for each distribution to confirm that the results stay consistent across res-
olutions, which is indeed the case with our 10 subjects. Tables 3.4 and 3.5 report
the results for the power-law with exponential cutoff distribution and the expo-
nential distribution tests. Similar to above, p-values are consistently low for both
distributions. Tables 3.6 and 3.7 display the results for the log-normal distribu-
tion and Weibull distribution tests. Here both distributions exhibit high p-values
across different thresholds, though not in all cases, implying that we cannot reject
the log-normal and Weibull model for the given empirical data sets. Finally, tables
3.8 and 3.9 display test results for the generalized Pareto distribution. Again, we
observe high p-values across different thresholds, and consistently negative shape
parameter k, which we will discuss in the next chapter.

Figure 3.1: p-values across different thresholds and different distributions for sub-
ject 34781

Figure 3.1 graphically displays the results across different thresholds and dis-
tributions for one of the 10 subjects. In aggregate, table 3.1 shows the test statistics
for all 10 subjects. A single distribution test is considered ”pass” if corresponding
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p-value is greater than 10%. In summary, the power-law, power-law with expo-
nential cutoff and exponential distributions can be rejected due to the consistently
low p-values, while other distributions deserve further considerations.

Table 3.1: Summary of results for 10 subjects from 1000 Functional Connectome
project

Distribution Test

generalized
Pareto

Power
Law
with Exp
Cutoff

Power
Law

Exponential Log Nor-
mal

Weibull

% pass out of
170 tests

65.3% 12.4% 0.6% 0.0% 50.6% 69.4%

%
of tail data
versus total
data

35.4% 49.0% 15.2% 86.1% 22.2% 27.9%

3.2 Test Results for Model Selection
As discussed in chapter 2, a low p-value can serve as a basis for rejection of certain
hypothesized distribution, but a high p-value is not a guarantee for the hypothe-
sized distribution to be the best possible distribution to explain the data. Based
on this, it becomes clear from the results presented in the previous section that
the power-law model, together with the power-law with exponential cut-off and
the exponential model can be rejected as topological model for brain functional
networks. The three remaining plausible models are the log-normal distribution,
the Weibull (a.k.a stretched exponential) distribution and the generalized Pareto
distribution, which, as previously indicated, is the generalized version of both the
power-law and the exponential model. The next step is to use likelihood ratio
test as laid out in chapter 2 to select which model is the most plausible for our
various data sets.

One subtlety deserves some mentioning before we present the results. Note
that the likelihood ratio test implicitly assumes the two competing models to be
applied to the same set of data, thus implying the comparisons of two data sets
with the same number of data points. Frequently, however, as can be seen from the
results of distribution test, the number of tail data of one model for one particular
data set, at one particular threshold, is different from that of another model. In
order to enable a fair comparison between two different models in this case, we
would truncate the model with the ”longer tail” to ensure the equality in tail length.
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Table 3.2: Results of power-law test, 10 subjects from 1000 Functional Connec-
tome project, part 1

Subject 4111 Subject 4619

Threshold

Number of
non zeros
of original
sample

alpha (scale
parameter)

Number of
tail data

p value

Number of
non zeros
of original
sample

alpha (scale
parameter)

Number of
tail data

p value

r=0.8 2,033 7.97 127 0.0% 2,011 9.16 188 0.0%
r=0.7 3,131 6.72 336 0.0% 3,159 7.82 438 0.0%
r=0.6 4,101 9.22 370 0.0% 4,132 7.08 829 0.0%
r=0.5 4,986 11.82 413 0.0% 4,931 8.43 903 0.0%
r=0.4 5,876 13.30 456 0.0% 5,732 8.43 1,133 0.0%
r=0.3 7,208 13.63 589 0.0% 7,012 9.79 1,108 0.0%
r=0.2 9,457 15.28 618 0.0% 9,468 10.40 1,171 0.0%
r=0.1 9,560 18.85 580 0.0% 9,560 10.00 1,330 0.0%
r=0.0 9,560 19.51 625 0.0% 9,560 9.76 1,409 0.0%

r=-0.7 2,431 9.31 196 0.0% 2,159 8.42 201 0.0%
r=-0.6 3,438 15.64 176 0.0% 2,948 7.91 409 0.0%
r=-0.5 4,434 6.55 795 0.0% 3,857 8.47 529 0.0%
r=-0.4 5,515 13.23 422 0.0% 4,918 9.67 578 0.0%
r=-0.3 6,834 15.01 453 0.0% 6,372 10.66 608 0.0%
r=-0.2 9,324 16.71 475 0.0% 9,034 11.34 639 0.0%
r=-0.1 9,560 12.23 883 0.0% 9,560 11.41 697 0.0%
r=-0.0 9,560 12.87 904 0.0% 9,560 11.53 710 0.0%

Subject 13636 Subject 13959

Threshold

Number of
non zeros
of original
sample

alpha (scale
parameter)

Number of
tail data

p value

Number of
non zeros
of original
sample

alpha (scale
parameter)

Number of
tail data

p value

r=0.8 1,522 11.00 95 1.0% 666 6.30 67 0.0%
r=0.7 2,432 7.15 273 0.0% 1,311 8.06 198 4.0%
r=0.6 3,420 10.06 229 0.0% 2,394 3.90 568 0.0%
r=0.5 4,545 12.77 261 0.0% 4,083 3.72 682 0.0%
r=0.4 5,864 4.42 1,435 0.0% 6,448 4.24 642 0.0%
r=0.3 7,269 4.66 1,661 0.0% 8,408 3.42 1,302 0.0%
r=0.2 9,399 4.82 1,874 0.0% 9,539 3.39 2,850 0.0%
r=0.1 9,560 4.83 2,175 0.0% 9,560 4.92 2,108 0.0%
r=0.0 9,560 4.98 2,268 0.0% 9,560 5.41 2,158 0.0%

r=-0.7 2,030 5.03 353 0.0% 595 3.03 144 0.0%
r=-0.6 3,011 4.46 641 0.0% 1,409 5.42 129 34.5%
r=-0.5 4,233 4.23 987 0.0% 2,650 4.27 247 0.0%
r=-0.4 5,597 4.30 1,218 0.0% 4,954 4.14 389 0.0%
r=-0.3 7,112 4.62 1,307 0.0% 7,496 3.22 921 0.0%
r=-0.2 9,334 4.76 1,522 0.0% 9,466 2.79 2,253 0.0%
r=-0.1 9,560 4.90 1,740 0.0% 9,560 2.76 4,661 0.0%
r=-0.0 9,560 5.05 1,862 0.0% 9,560 2.86 5,424 0.0%

Subject 18698 Subject 28433

Threshold

Number of
non zeros
of original
sample

alpha (scale
parameter)

Number of
tail data

p value

Number of
non zeros
of original
sample

alpha (scale
parameter)

Number of
tail data

p value

r=0.8 474 1.87 210 0.0% 504 1.48 423 0.0%
r=0.7 1,271 1.43 1,223 0.0% 1,514 1.50 1,189 0.0%
r=0.6 2,377 6.68 132 0.0% 3,376 12.36 171 0.0%
r=0.5 3,505 6.56 198 0.5% 5,890 4.02 617 0.0%
r=0.4 4,429 8.15 224 0.0% 8,079 5.18 409 0.0%
r=0.3 5,602 4.80 876 0.0% 9,326 5.09 661 0.0%
r=0.2 9,287 5.69 992 0.0% 9,559 5.17 945 0.0%
r=0.1 9,560 6.84 1,013 0.0% 9,560 4.60 1,641 0.0%
r=0.0 9,560 2.18 9,488 0.0% 9,560 3.73 4,896 0.0%

r=-0.7 671 3.38 103 0.0% 370 1.86 192 0.0%
r=-0.6 1,407 5.20 74 3.5% 975 5.03 87 0.0%
r=-0.5 2,448 4.34 195 0.0% 1,875 5.31 158 0.0%
r=-0.4 3,673 4.49 293 0.0% 3,074 5.90 216 0.0%
r=-0.3 5,231 3.98 812 0.0% 4,973 3.74 730 0.0%
r=-0.2 9,269 4.54 905 0.0% 8,928 4.38 703 0.0%
r=-0.1 9,560 5.30 1,024 0.0% 9,560 4.30 912 0.0%
r=-0.0 9,560 5.96 1,041 0.0% 9,560 3.62 2,316 0.0%
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Table 3.3: Results of power-law test, 10 subjects from 1000 Functional Connec-
tome project, part 2

Subject 30421 Subject 34781

Threshold

Number of
non zeros
of original
sample

alpha (scale
parameter)

Number of
tail data

p value

Number of
non zeros
of original
sample

alpha (scale
parameter)

Number of
tail data

p value

r=0.8 1,103 3.63 193 0.0% 1,644 5.06 163 0.0%
r=0.7 2,110 7.30 190 0.0% 2,948 5.98 296 0.0%
r=0.6 3,039 11.79 201 0.0% 4,185 10.40 210 0.0%
r=0.5 3,922 17.12 200 0.0% 5,266 7.36 529 0.0%
r=0.4 4,747 15.25 335 0.0% 6,221 10.38 471 0.0%
r=0.3 5,775 16.94 292 0.0% 7,291 12.79 474 0.0%
r=0.2 9,254 13.56 512 0.0% 9,394 14.41 506 0.0%
r=0.1 9,560 14.81 505 0.0% 9,560 15.98 569 0.0%
r=0.0 9,560 15.62 530 0.0% 9,560 17.50 499 0.0%

r=-0.7 1,483 13.63 76 0.5% 2,273 7.41 123 3.5%
r=-0.6 2,349 8.66 221 0.0% 3,464 4.93 418 0.0%
r=-0.5 3,271 13.54 209 0.0% 4,747 6.47 408 0.0%
r=-0.4 4,288 10.99 365 0.0% 5,972 7.29 508 0.0%
r=-0.3 5,501 13.84 277 0.0% 7,192 8.72 557 0.0%
r=-0.2 9,181 9.87 588 0.0% 9,333 9.64 652 0.0%
r=-0.1 9,560 11.37 544 0.0% 9,560 10.81 712 0.0%
r=-0.0 9,560 12.23 540 0.0% 9,560 11.93 693 0.0%

Subject 47659 Subject 75922

Threshold

Number of
non zeros
of original
sample

alpha (scale
parameter)

Number of
tail data

p value

Number of
non zeros
of original
sample

alpha (scale
parameter)

Number of
tail data

p value

r=0.8 1,023 1.59 611 0.0% 1,537 4.09 271 0.0%
r=0.7 2,306 1.37 2,306 0.0% 2,629 2.62 828 0.0%
r=0.6 3,581 8.47 193 0.0% 3,577 4.45 522 0.0%
r=0.5 4,500 9.44 228 0.0% 4,569 4.93 686 0.0%
r=0.4 5,277 8.63 349 0.0% 5,494 4.67 975 0.0%
r=0.3 6,565 8.18 633 0.0% 6,666 4.27 1,344 0.0%
r=0.2 9,455 9.46 722 0.0% 9,367 4.28 1,558 0.0%
r=0.1 9,560 12.47 660 0.0% 9,560 4.33 1,990 0.0%
r=0.0 9,560 14.85 575 0.0% 9,560 4.50 2,212 0.0%

r=-0.7 1,046 5.47 85 6.5% 1,595 4.29 258 0.0%
r=-0.6 1,939 5.70 149 0.0% 2,518 6.49 248 0.0%
r=-0.5 3,189 7.12 183 0.0% 3,581 7.20 351 0.0%
r=-0.4 4,634 7.28 233 0.0% 4,855 6.55 486 0.0%
r=-0.3 6,359 5.52 603 0.0% 6,328 5.44 842 0.0%
r=-0.2 9,326 6.65 597 0.0% 9,235 5.13 1,132 0.0%
r=-0.1 9,560 8.64 574 0.0% 9,560 5.26 1,278 0.0%
r=-0.0 9,560 9.82 586 0.0% 9,560 5.40 1,403 0.0%
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Table 3.4: Results of power-law with exponential cutoff and exponential distribu-
tion tests, 10 subjects from 1000 Functional Connectome project, part 1

Subject 4111 Subject 4619

Power Law with exp. cutoff Exponential Power Law with exp. cutoff Exponential

Threshold Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value
r=0.8 1,410 0.0% 1,583 0.0% 194 5.3% 1,704 0.0%
r=0.7 2,359 0.0% 2,660 0.0% 526 0.0% 2,742 0.0%
r=0.6 3,278 0.0% 3,632 0.0% 659 0.7% 3,741 0.0%
r=0.5 627 0.3% 4,675 0.0% 925 0.3% 4,839 0.0%
r=0.4 919 0.7% 5,736 0.0% 1,173 0.7% 5,732 0.0%
r=0.3 603 5.0% 6,885 0.0% 1,147 3.0% 6,861 0.0%
r=0.2 608 3.0% 8,462 0.0% 1,296 0.0% 8,125 0.0%
r=0.1 9,557 0.0% 9,560 0.0% 9,498 0.0% 9,560 0.0%
r=0.0 9,491 0.0% 9,560 0.0% 9,380 0.0% 9,560 0.0%

r=-0.7 1,950 0.0% 2,169 0.0% 216 10.7% 2,143 0.0%
r=-0.6 174 22.7% 3,118 0.0% 377 1.0% 2,948 0.0%
r=-0.5 3,772 0.0% 4,179 0.0% 579 0.0% 3,857 0.0%
r=-0.4 4,845 0.0% 5,249 0.0% 614 1.7% 4,752 0.0%
r=-0.3 459 2.7% 6,401 0.0% 624 1.3% 5,819 0.0%
r=-0.2 7,369 0.0% 7,897 0.0% 642 1.3% 7,220 0.0%
r=-0.1 9,557 0.0% 9,560 0.0% 704 3.7% 9,560 0.0%
r=-0.0 9,491 0.0% 9,560 0.0% 9,558 0.0% 9,560 0.0%

Subject 13636 Subject 13959

Power Law with exp. cutoff Exponential Power Law with exp. cutoff Exponential

Threshold Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value
r=0.8 1,200 0.0% 1,339 0.0% 483 0.0% 565 0.0%
r=0.7 272 11.0% 2,188 0.0% 207 69.0% 1,006 0.0%
r=0.6 730 0.7% 3,035 0.0% 591 0.3% 1,614 0.0%
r=0.5 1,218 0.0% 4,019 0.0% 719 4.0% 2,457 0.0%
r=0.4 1,592 0.0% 5,140 0.0% 833 7.0% 4,224 0.0%
r=0.3 1,806 0.3% 6,609 0.0% 5,291 3.7% 6,756 0.0%
r=0.2 7,605 0.0% 8,175 0.0% 3,917 0.0% 9,377 0.0%
r=0.1 9,531 0.0% 9,560 0.0% 2,561 0.0% 9,560 0.0%
r=0.0 9,162 0.0% 9,560 0.0% 2,566 0.0% 9,560 0.0%

r=-0.7 398 26.0% 1,948 0.0% 173 55.0% 476 0.1%
r=-0.6 762 0.7% 2,745 0.0% 129 67.0% 990 0.0%
r=-0.5 1,142 0.0% 3,731 0.0% 2,065 0.0% 1,983 0.0%
r=-0.4 1,413 0.0% 4,832 0.0% 2,280 9.7% 3,442 0.0%
r=-0.3 1,535 0.0% 6,272 0.0% 4,097 18.0% 5,871 0.0%
r=-0.2 1,647 0.0% 8,016 0.0% 4,825 0.0% 8,198 0.0%
r=-0.1 2,053 0.0% 9,560 0.0% 5,707 0.0% 9,560 0.0%
r=-0.0 9,511 0.0% 9,560 0.0% 6,252 0.0% 9,560 0.0%

Subject 18698 Subject 28433

Power Law with exp. cutoff Exponential Power Law with exp. cutoff Exponential

Threshold Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value
r=0.8 328 0.3% 357 0.0% 384 0.0% 245 0.0%
r=0.7 1,088 0.0% 778 0.0% 1,309 0.3% 833 0.0%
r=0.6 2,122 0.0% 1,490 0.0% 2,966 0.0% 2,106 0.0%
r=0.5 276 71.0% 2,463 0.0% 5,395 0.0% 3,729 0.0%
r=0.4 2,921 0.0% 3,579 0.0% 7,408 0.0% 5,494 0.0%
r=0.3 4,273 0.0% 4,805 0.0% 7,944 0.0% 7,069 0.0%
r=0.2 5,805 0.0% 6,371 0.0% 8,894 0.0% 8,729 0.0%
r=0.1 7,767 0.0% 9,560 0.0% 8,852 0.0% 9,560 0.0%
r=0.0 9,540 0.0% 9,560 0.0% 6,766 1.0% 9,560 0.0%

r=-0.7 400 34.7% 528 0.0% 313 1.7% 302 0.1%
r=-0.6 850 48.0% 1,079 0.0% 449 17.0% 700 0.0%
r=-0.5 603 52.3% 1,855 0.0% 1,383 0.0% 1,292 0.0%
r=-0.4 768 16.3% 2,792 0.0% 1,813 0.0% 2,175 0.0%
r=-0.3 898 41.3% 4,047 0.0% 2,731 0.0% 3,260 0.0%
r=-0.2 941 10.3% 5,882 0.0% 976 3.7% 5,057 0.0%
r=-0.1 1,041 12.3% 9,560 0.0% 5,094 0.0% 9,560 0.0%
r=-0.0 9,361 0.0% 9,560 0.0% 4,725 25.0% 9,560 0.0%
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Table 3.5: Results of power-law with exponential cutoff and exponential distribu-
tion tests, 10 subjects from 1000 Functional Connectome project, part 2

Subject 30421 Subject 34781

Power Law with exp. cutoff Exponential Power Law with exp. cutoff Exponential

Threshold Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value
r=0.8 226 11.7% 796 0.0% 1,359 0.0% 1,279 0.0%
r=0.7 1,270 0.0% 1,545 0.0% 2,764 0.0% 2,300 0.0%
r=0.6 201 2.7% 2,395 0.0% 3,526 0.0% 3,434 0.0%
r=0.5 444 2.0% 3,329 0.0% 4,254 0.0% 4,678 0.0%
r=0.4 356 3.0% 4,378 0.0% 5,400 0.0% 5,948 0.0%
r=0.3 295 8.3% 5,538 0.0% 480 4.7% 7,249 0.0%
r=0.2 538 3.7% 6,871 0.0% 526 3.0% 8,790 0.0%
r=0.1 528 6.3% 9,560 0.0% 591 2.7% 9,560 0.0%
r=0.0 9,556 0.0% 9,560 0.0% 556 9.3% 9,560 0.0%

r=-0.7 1,159 0.0% 1,291 0.0% 2,189 0.0% 1,874 0.0%
r=-0.6 1,849 0.0% 2,059 0.0% 2,853 0.0% 2,930 0.0%
r=-0.5 417 0.7% 2,882 0.0% 3,785 0.0% 4,134 0.0%
r=-0.4 525 1.0% 3,818 0.0% 5,111 0.0% 5,499 0.0%
r=-0.3 306 5.0% 5,005 0.0% 643 0.7% 6,874 0.0%
r=-0.2 723 0.0% 6,418 0.0% 569 1.3% 8,630 0.0%
r=-0.1 6,727 0.0% 9,560 0.0% 2,019 0.3% 9,560 0.0%
r=-0.0 9,546 0.0% 9,560 0.0% 2,369 0.0% 9,560 0.0%

Subject 47659 Subject 75922

Power Law with exp. cutoff Exponential Power Law with exp. cutoff Exponential

Threshold Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value
r=0.8 715 0.0% 646 0.0% 310 7.3% 1,086 0.0%
r=0.7 2,079 0.0% 1,432 0.0% 835 0.0% 1,881 0.0%
r=0.6 3,437 0.0% 2,526 0.0% 2,190 0.0% 2,709 0.0%
r=0.5 4,352 0.0% 3,827 0.0% 4,386 0.0% 3,674 0.0%
r=0.4 4,503 0.0% 4,857 0.0% 1,169 0.0% 4,813 0.0%
r=0.3 638 1.3% 5,936 0.0% 5,247 0.0% 6,051 0.0%
r=0.2 803 1.3% 7,517 0.0% 6,949 0.0% 7,632 0.0%
r=0.1 659 2.3% 9,560 0.0% 9,551 0.0% 9,560 0.0%
r=0.0 585 3.7% 9,560 0.0% 6,675 0.0% 9,560 0.0%

r=-0.7 872 0.0% 838 0.1% 284 8.7% 1,248 0.0%
r=-0.6 1,164 0.0% 1,457 0.0% 344 13.3% 2,040 0.0%
r=-0.5 1,908 0.0% 2,255 0.0% 361 13.3% 2,956 0.0%
r=-0.4 2,533 0.0% 3,327 0.0% 706 1.0% 4,020 0.0%
r=-0.3 579 2.0% 4,885 0.0% 907 0.0% 5,300 0.0%
r=-0.2 4,749 0.0% 7,086 0.0% 6,732 0.0% 7,023 0.0%
r=-0.1 7,990 0.0% 9,560 0.0% 8,273 0.0% 9,560 0.0%
r=-0.0 8,035 0.0% 9,560 0.0% 9,221 0.0% 9,560 0.0%
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Implementing the log likelihood ratio for the generalized Pareto model ver-
sus the log normal model, and then for the generalized Pareto model versus the
Weibull model across all data sets presented in the previous section (170 different
tests), the results are as follows:

• The log likelihood of the generalized Pareto model is greater than the log
likelihood of the Weibull model for 168 out of 170 tests, 154 of which are
significant (meaning the probability that the observed positive sign of the
difference between the log likelihood being a chance result of fluctuations
is less than 10%)

• The log likelihood of the generalized Pareto model is greater than the log
likelihood of the log normal model for 170 out of 170 tests, 164 of which
are significant

These results clearly demonstrate that the generalized Pareto model is the best
model among the popular models in consideration.
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Table 3.6: Results of log-normal and Weibull distribution tests, 10 subjects from
1000 Functional Connectome project, part 1

Subject 4111 Subject 4619

Log Normal Weibull Log Normal Weibull

Threshold Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value
r=0.8 232 25.0% 321 50.5% 430 25.7% 478 71.7%
r=0.7 176 84.3% 919 1.9% 975 0.7% 1,280 6.6%
r=0.6 717 2.3% 1,243 6.6% 1,396 0.0% 1,562 0.0%
r=0.5 1,161 0.3% 1,227 10.4% 1,728 0.0% 2,146 0.0%
r=0.4 1,146 0.0% 1,285 10.0% 2,123 0.0% 2,497 0.0%
r=0.3 1,235 2.0% 1,298 11.9% 594 1.0% 2,375 0.0%
r=0.2 1,383 0.0% 1,337 7.7% 2,424 0.0% 633 17.4%
r=0.1 1,350 0.3% 1,355 4.2% 2,595 0.0% 683 15.8%
r=0.0 1,317 0.3% 1,460 6.6% 2,757 0.0% 688 20.6%

r=-0.7 345 74.3% 421 92.0% 535 70.7% 590 80.7%
r=-0.6 218 66.3% 339 54.2% 961 9.3% 1,219 34.5%
r=-0.5 239 86.7% 454 32.6% 1,258 13.0% 1,416 13.3%
r=-0.4 931 0.3% 1,105 0.2% 1,375 1.0% 253 99.0%
r=-0.3 1,010 0.0% 1,412 0.2% 1,399 3.0% 1,917 6.1%
r=-0.2 992 0.0% 1,275 0.9% 1,430 2.3% 1,971 9.6%
r=-0.1 839 0.0% 1,178 1.0% 1,735 1.3% 2,496 11.9%
r=-0.0 824 0.3% 1,166 3.2% 1,890 2.0% 2,594 7.4%

Subject 13636 Subject 13959

Log Normal Weibull Log Normal Weibull

Threshold Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value
r=0.8 124 74.7% 562 2.7% 299 3.3% 372 27.1%
r=0.7 697 72.3% 840 24.9% 269 71.3% 269 56.7%
r=0.6 1,193 0.3% 1,423 5.8% 223 88.7% 301 99.9%
r=0.5 526 6.0% 539 18.5% 1,071 14.3% 1,194 14.0%
r=0.4 533 12.3% 736 25.6% 1,280 6.7% 1,637 0.4%
r=0.3 619 9.3% 744 31.6% 3,172 1.0% 4,123 38.2%
r=0.2 693 5.0% 701 27.1% 5,875 0.0% 7,149 0.0%
r=0.1 679 3.3% 677 22.3% 5,813 0.7% 8,234 5.3%
r=0.0 664 5.3% 641 16.9% 5,537 0.0% 9,551 5.9%

r=-0.7 740 34.3% 1,146 61.8% 225 71.0% 294 74.6%
r=-0.6 1,400 4.0% 1,721 9.7% 275 28.0% 511 26.4%
r=-0.5 1,971 0.3% 2,384 0.2% 616 72.3% 653 95.3%
r=-0.4 2,334 0.0% 2,998 0.1% 809 8.7% 1,979 18.3%
r=-0.3 2,836 0.0% 3,645 0.0% 2,435 0.7% 5,354 28.2%
r=-0.2 3,326 0.0% 4,313 0.0% 6,502 0.0% 5,013 0.0%
r=-0.1 3,984 0.0% 5,029 0.0% 8,497 0.0% 974 14.3%
r=-0.0 4,353 0.0% 5,096 0.0% 6,445 0.0% 982 12.1%

Subject 18698 Subject 28433

Log Normal Weibull Log Normal Weibull

Threshold Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value
r=0.8 57 94.4% 48 93.2% 83 54.6% 95 90.7%
r=0.7 128 77.8% 203 24.1% 85 82.9% 116 85.3%
r=0.6 142 99.0% 655 12.6% 2,936 0.0% 2,849 0.0%
r=0.5 412 41.6% 729 37.3% 371 11.7% 318 62.3%
r=0.4 264 85.4% 688 77.1% 575 87.1% 681 75.1%
r=0.3 429 76.6% 468 98.3% 1,407 12.9% 1,450 58.1%
r=0.2 473 61.6% 564 96.3% 2,042 5.1% 2,313 12.2%
r=0.1 483 31.2% 544 97.3% 3,274 0.0% 3,352 0.2%
r=0.0 479 32.2% 548 88.0% 8,386 0.0% 7,367 0.0%

r=-0.7 217 39.2% 406 23.6% 47 87.2% 205 12.0%
r=-0.6 226 84.0% 842 37.5% 168 44.9% 430 13.0%
r=-0.5 922 36.7% 1,053 69.9% 378 39.6% 444 83.7%
r=-0.4 1,130 63.4% 1,425 70.0% 463 39.9% 523 77.5%
r=-0.3 1,592 35.3% 1,966 50.0% 1,671 1.6% 2,085 29.3%
r=-0.2 1,721 21.3% 2,115 65.4% 2,067 10.2% 2,671 20.2%
r=-0.1 1,815 12.8% 3,224 46.8% 3,278 4.9% 4,099 6.6%
r=-0.0 2,262 23.3% 3,232 65.1% 4,301 0.8% 4,598 1.2%
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Table 3.7: Results of log-normal and Weibull distribution tests, 10 subjects from
1000 Functional Connectome project, part 2

Subject 30421 Subject 34781

Log Normal Weibull Log Normal Weibull

Threshold Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value
r=0.8 292 52.2% 306 53.5% 277 19.6% 1,142 0.0%
r=0.7 254 58.8% 289 88.8% 389 23.1% 425 71.9%
r=0.6 277 88.0% 287 97.5% 369 87.5% 559 92.4%
r=0.5 560 8.8% 599 34.8% 730 11.7% 804 86.9%
r=0.4 662 26.6% 662 87.9% 954 4.2% 938 63.5%
r=0.3 687 41.6% 770 97.8% 1,018 9.8% 1,051 35.0%
r=0.2 1,020 47.2% 1,111 87.4% 1,040 11.7% 1,076 22.2%
r=0.1 1,059 27.3% 1,398 70.7% 1,043 6.0% 1,055 13.4%
r=0.0 1,464 8.8% 1,671 51.4% 1,053 3.9% 1,137 11.2%

r=-0.7 112 99.7% 707 0.4% 205 97.7% 232 89.9%
r=-0.6 802 0.0% 994 0.2% 225 97.2% 274 94.3%
r=-0.5 546 2.1% 636 16.2% 257 94.2% 1,088 34.2%
r=-0.4 741 1.3% 649 25.6% 1,050 13.6% 1,095 84.5%
r=-0.3 487 71.4% 910 29.2% 1,017 28.7% 1,162 49.8%
r=-0.2 819 26.1% 1,575 16.5% 1,024 38.4% 1,110 57.9%
r=-0.1 1,331 5.0% 1,545 56.7% 1,052 45.7% 1,183 58.7%
r=-0.0 1,356 6.4% 1,535 37.4% 1,048 35.7% 1,231 58.6%

Subject 47659 Subject 75922

Log Normal Weibull Log Normal Weibull

Threshold Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value Number of tail
data

p value
r=0.8 68 94.8% 374 4.1% 467 0.8% 549 0.2%
r=0.7 428 0.1% 1,226 0.0% 1,060 0.0% 510 20.7%
r=0.6 362 1.9% 421 15.5% 274 32.7% 294 45.8%
r=0.5 451 85.2% 387 90.4% 1,453 0.0% 280 76.5%
r=0.4 751 11.7% 921 50.5% 1,893 0.0% 287 84.6%
r=0.3 1,509 1.3% 1,640 13.6% 2,508 0.0% 3,009 0.0%
r=0.2 1,675 4.8% 2,637 6.5% 3,358 0.0% 3,766 0.0%
r=0.1 1,396 18.3% 1,835 44.3% 4,280 0.0% 5,464 0.0%
r=0.0 1,397 51.0% 2,928 59.3% 4,917 0.0% 7,685 0.0%

r=-0.7 143 98.7% 248 95.5% 515 27.8% 619 48.8%
r=-0.6 298 49.4% 559 56.0% 716 39.9% 888 44.3%
r=-0.5 305 38.5% 616 56.4% 824 50.8% 1,044 51.7%
r=-0.4 317 92.3% 676 89.3% 1,288 46.0% 1,409 60.8%
r=-0.3 387 95.1% 1,496 30.6% 1,810 1.0% 2,024 9.4%
r=-0.2 1,217 22.6% 1,422 66.7% 2,139 0.0% 2,450 0.2%
r=-0.1 1,219 24.2% 1,183 58.7% 2,390 0.0% 2,643 0.0%
r=-0.0 1,153 17.5% 1,231 58.6% 2,710 0.0% 9,350 0.0%
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Table 3.8: Results of generalized Pareto distribution tests, 10 subjects from 1000
Functional Connectome project, part 1

Subject 4111 - Generalized Pareto Subject 4619 - Generalized Pareto

Threshold k (shape pa-
rameter)

sigma (scale
parameter)

Number of tail
data

p value k (shape pa-
rameter)

sigma (scale
parameter)

Number of tail
data

p value

r=0.8 -0.40 119.9 894 35.1% -0.59 312.8 1,335 5.7%
r=0.7 -0.52 259.8 1,532 50.9% -0.61 278.7 1,019 22.0%
r=0.6 -0.52 152.5 568 97.6% -0.70 187.1 512 96.3%
r=0.5 -0.52 139.2 537 91.5% -0.70 325.2 1,312 26.7%
r=0.4 -0.53 191.9 943 86.2% -0.70 317.6 1,363 76.7%
r=0.3 -0.55 152.4 635 99.9% -0.68 270.1 1,180 96.3%
r=0.2 -0.55 177.4 916 96.2% -0.66 315.6 1,529 30.0%
r=0.1 -0.75 936.6 5,980 2.7% -0.79 1254.5 6,605 1.0%
r=0.0 -0.74 811.5 5,429 5.5% -0.75 1104.3 6,330 1.7%

r=-0.7 -0.50 248.0 1,412 10.8% -0.46 221.5 762 34.0%
r=-0.6 -0.58 420.5 2,234 4.3% -0.48 231.8 812 25.3%
r=-0.5 -0.63 565.9 2,970 0.0% -0.68 185.1 275 87.3%
r=-0.4 -0.67 693.6 3,591 0.2% -0.56 375.3 1,582 0.7%
r=-0.3 -0.68 789.8 4,348 0.3% -0.55 388.5 1,758 1.0%
r=-0.2 -0.69 792.1 4,543 0.0% -0.51 308.1 1,378 8.3%
r=-0.1 -0.69 740.5 4,472 1.0% -0.50 340.6 1,613 7.7%
r=-0.0 -0.69 665.6 4,113 1.2% -0.49 330.7 1,587 4.0%

Subject 13636 - Generalized Pareto Subject 13959 - Generalized Pareto

Threshold k (shape pa-
rameter)

sigma (scale
parameter)

Number of tail
data

p value k (shape pa-
rameter)

sigma (scale
parameter)

Number of tail
data

p value

r=0.8 -0.51 162.9 787 91.2% -0.46 52.7 402 85.0%
r=0.7 -0.53 344.7 1,666 0.1% -0.23 29.7 269 39.0%
r=0.6 -0.53 219.7 581 99.2% -0.35 55.6 161 99.3%
r=0.5 -0.60 471.1 1,728 9.4% -0.37 149.7 342 88.8%
r=0.4 -0.65 841.4 3,582 1.4% -0.21 298.9 2,078 0.6%
r=0.3 -0.65 916.8 4,222 0.9% -0.08 370.9 4,426 13.8%
r=0.2 -0.61 221.5 539 99.7% -0.51 574.8 1,058 33.1%
r=0.1 -0.59 861.3 4,808 0.1% -0.31 562.4 4,904 0.6%
r=0.0 -0.63 225.7 564 84.0% -0.31 541.4 4,973 0.0%

r=-0.7 -0.39 288.0 1,607 2.0% -0.13 34.5 316 74.4%
r=-0.6 -0.64 265.3 339 88.3% -0.25 93.3 628 55.0%
r=-0.5 -0.68 256.0 301 86.4% -0.17 135.9 419 96.8%
r=-0.4 -0.69 244.9 299 89.8% -0.05 218.6 2,108 32.4%
r=-0.3 -0.43 724.7 4,948 0.0% 0.13 231.0 5,242 1.0%
r=-0.2 -0.40 755.1 5,956 0.0% -0.51 698.4 883 62.2%
r=-0.1 -0.36 737.9 7,409 0.0% -0.47 486.6 702 51.9%
r=-0.0 -0.33 644.6 6,625 0.0% -0.47 471.5 713 63.1%

Subject 18698 - Generalized Pareto Subject 28433 - Generalized Pareto

Threshold k (shape pa-
rameter)

sigma (scale
parameter)

Number of tail
data

p value k (shape pa-
rameter)

sigma (scale
parameter)

Number of tail
data

p value

r=0.8 -0.44 29.3 132 17.1% -0.56 25.7 71 59.4%
r=0.7 -0.32 61.4 410 0.8% 1.25 5.7 1,268 0.0%
r=0.6 -0.27 105.9 817 30.4% 0.49 24.3 2,237 0.0%
r=0.5 -0.29 181.8 1,418 0.3% -0.39 97.5 358 100.0%
r=0.4 -0.37 288.6 1,981 10.9% -0.35 179.2 1,005 36.0%
r=0.3 -0.41 397.6 3,118 1.3% -0.39 272.8 1,943 19.2%
r=0.2 -0.45 495.4 4,164 4.9% -0.39 359.9 3,179 8.6%
r=0.1 -0.46 529.7 5,220 72.7% -0.34 353.7 3,573 4.3%
r=0.0 -0.44 441.0 4,325 76.6% -0.47 280.6 1,066 92.8%

r=-0.7 -0.30 38.8 145 93.3% -0.35 22.9 136 48.4%
r=-0.6 -0.03 66.7 834 39.4% -0.44 62.3 189 96.1%
r=-0.5 -0.12 127.1 1,133 62.8% -0.38 117.5 527 90.0%
r=-0.4 -0.17 193.1 1,783 71.9% -0.30 175.6 1,171 50.1%
r=-0.3 -0.23 270.2 2,740 21.4% -0.28 240.4 2,189 48.4%
r=-0.2 -0.27 334.6 3,830 41.3% -0.25 291.2 3,167 33.6%
r=-0.1 -0.27 347.9 4,642 50.2% -0.16 291.7 4,240 4.8%
r=-0.0 -0.22 296.1 4,507 69.5% -0.08 250.6 4,372 0.5%
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Table 3.9: Results of generalized Pareto distribution tests, 10 subjects from 1000
Functional Connectome project, part 2

Subject 30421 - Generalized Pareto Subject 34781 - Generalized Pareto

Threshold k (shape pa-
rameter)

sigma (scale
parameter)

Number of tail
data

p value k (shape pa-
rameter)

sigma (scale
parameter)

Number of tail
data

p value

r=0.8 -0.55 65.1 113 94.7% -0.45 77.6 358 68.2%
r=0.7 -0.56 212.3 859 84.7% -0.35 72.7 258 78.5%
r=0.6 -0.67 380.5 1,558 9.7% -0.29 70.9 210 91.6%
r=0.5 -0.50 108.5 461 54.0% -0.39 142.8 571 56.1%
r=0.4 -0.39 86.8 397 80.3% -0.42 148.5 604 86.6%
r=0.3 -0.41 129.1 642 69.0% -0.56 680.0 5,873 25.6%
r=0.2 -0.42 155.0 802 61.3% -0.56 589.4 4,784 0.7%
r=0.1 -0.63 707.1 4,863 0.0% -0.54 480.4 4,003 12.6%
r=0.0 -0.45 183.5 1,054 14.7% -0.53 450.9 4,055 15.3%

r=-0.7 -0.50 175.8 693 88.3% -0.40 115.0 422 83.9%
r=-0.6 -0.62 320.3 1,281 42.7% -0.41 195.3 920 22.6%
r=-0.5 -0.72 492.2 2,005 36.7% -0.42 257.7 1,371 85.1%
r=-0.4 -0.59 206.2 808 66.3% -0.41 379.4 3,308 13.9%
r=-0.3 -0.55 218.0 861 75.3% -0.47 483.7 4,334 92.5%
r=-0.2 -0.63 652.6 3,640 11.3% -0.46 416.4 3,348 54.7%
r=-0.1 -0.55 278.7 1,231 52.3% -0.46 401.7 3,568 61.3%
r=-0.0 -0.60 537.7 3,263 4.0% -0.44 368.4 3,462 32.9%

Subject 47659 - Generalized Pareto Subject 75922 - Generalized Pareto

Threshold k (shape pa-
rameter)

sigma (scale
parameter)

Number of tail
data

p value k (shape pa-
rameter)

sigma (scale
parameter)

Number of tail
data

p value

r=0.8 -0.38 61.4 337 13.0% -0.29 84.5 730 0.5%
r=0.7 -0.55 112.0 424 64.5% -0.50 169.2 510 94.1%
r=0.6 -0.44 162.9 1,063 0.4% -0.57 296.8 1,150 38.1%
r=0.5 -0.26 71.6 228 80.0% -0.57 313.3 1,207 29.9%
r=0.4 -0.43 319.8 2,755 11.4% -0.58 518.1 2,500 0.3%
r=0.3 -0.53 520.3 4,784 0.0% -0.54 588.8 3,357 0.0%
r=0.2 -0.46 261.0 1,927 7.4% -0.50 605.4 3,914 0.0%
r=0.1 -0.43 191.9 1,341 30.2% -0.75 463.2 1,052 15.8%
r=0.0 -0.41 152.2 1,045 61.9% -0.29 542.0 9,396 0.0%

r=-0.7 -0.21 42.9 142 99.7% -0.37 144.0 807 91.7%
r=-0.6 -0.37 118.4 704 91.6% -0.47 263.9 1,422 1.6%
r=-0.5 -0.36 174.6 1,077 73.7% -0.37 159.0 655 21.1%
r=-0.4 -0.36 239.9 1,724 64.6% -0.40 232.9 1,044 2.0%
r=-0.3 -0.36 292.9 2,296 18.0% -0.61 260.8 439 81.1%
r=-0.2 -0.38 318.7 2,456 22.9% -0.43 488.8 3,266 0.3%
r=-0.1 -0.40 308.5 2,480 8.2% -0.40 471.1 3,252 0.1%
r=-0.0 -0.40 281.8 2,266 12.9% -0.38 434.0 3,144 0.0%
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Chapter 4

DISCUSSION AND CONCLUSION

Interpretation of Results
To our knowledge, this is the first study of the structure of brain functional net-

works that employs rigorous statistical analysis. In this study we take into account
weighted connections among brain regions. Previous studies have mostly focused
on binary networks, thus introducing more noise into the analysis. In addition, we
examine positive correlation networks, as well as negative correlation networks.
Little attention has been paid to the role of anti-correlation networks in the brain
context. Our study shows that the topological structure of anti-correlation net-
works are consistent with those of positive correlation networks. Anti-correlation
networks, therefore, could bear relevance for understanding brain functions.

Our analysis rejects the hypothesis that the brain functional networks follow a
power-law, or a power-law with exponential cut-off distribution, as postulated in
the literature to date. In addition, an analysis of other popular models of distri-
bution shows that the generalized Pareto model is the most plausible one for the
distribution of brain functional networks.

The distribution model, especially for the tail, of brain functional networks re-
flects the topological structure of the brain functional hubs. Power-law, or scale-
free distribution, indicates the existence of a fat tail, implying larger number of
brain hubs compared to random or other small-world network models, ensuring
efficiency of information processing and resilience ( [13] and [14]). As discussed
in the first chapter, numerous studies have explored the seemingly ubiquitous
presence of scale-free characteristic among biological, technological and social
networks. Network dynamics of scale-free networks were linked with scale-free
structure through the notion of self-organized criticality, which is a property of
dynamical systems which have a critical point as an attractor ( [9], [10], [11],
and [12]). Some authors proposed that consciousness as a phenomenon is realized
through the scale-free organization of the brain operating at critical state. It has
been argued that when a complex system such as the brain operates at the phase
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transition of order and chaos, the system exhibits scale-free structure ( [12]). Our
results showed that brain functional networks are not at all scale-free, as shown
through a consistently very small p-value of power-law distribution tests. The
idea that brain functional networks follow a power-law with truncated exponen-
tial model is similarly rejected. We now turn to a deeper look at the generalized
Pareto distribution model.

Formally, the generalized Pareto distribution can be expressed as:

y = f(x|k, σ, θ) =

(
1

σ

)(
1 + k

(x− θ)
σ

)−1− 1
k

for θ < x when k > 0 and θ < x < −σ/k when k > 0 with k being the shape
parameter and σ being the scale parameter. The following figure demonstrate
the different configurations of the probability density function of the generalized
Pareto distribution corresponding to the signs of the shape parameter k.

Figure 4.1: generalized Pareto distribution corresponding to different shape pa-
rameter k.

Note that when k = 0, the generalized Pareto distribution becomes the expo-
nential distribution. When k > 0, the generalized Pareto distribution is closely
related to the normal power-law distribution, exhibiting a fat-tail behavior. When
k < 0, the generalized Pareto distribution exhibits a short-tail configuration. The
results we have across all data sets show that the tails of brain functional net-
works are topologically approximated by the generalized Pareto model with the
shape parameter k consistently negative. What this means is that unlike previous
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claims from the literature, brain functional networks do not have fat tails. The
case k < 0 also corresponds to the q-exponential distribution in statistical physic
literature where q¡1. q-exponential distribution was originally proposed to model
systems with long-range interactions ( [75]). The link between the q-exponential
distribution and brain functional networks should be further explored in the fu-
ture. Dynamical implications of networks with generalized Pareto distribution
and negative shape parameters should also be investigated for future work.

Given that brain functional networks are not scale-free, we wish to examine
the structure of brain functional networks under a framework of the generalized
Pareto distribution to establish that not only brain networks are efficient, but also
are competitive with the scale-free network from the efficiency point of view. Gen-
erally this requires the comparison of the our original networks with null model, or
randomized networks. We employed the methods laid out in section 2.3 for this
purpose. Previous studies in the literature have developed a ”rewiring” method
for binary networks, effectively reshuffle the links in the network in such a way
that preserves the degree distribution of the network ( [72]). We developed a sim-
ilar ”rewiring” method, as described in section 2.3.1. When implemented, this
method demonstrated that brain networks have high assortativity coefficient and
high clustering coefficient, compared to otherwise randomly reshuffled networks,
which preserve the degree distribution. Table 4.1 showcases one such comparison
between original network of subject 34781 (from 1000 Functional Connectome
project) with a rewired, randomized network. The original network is clearly
more highly clustered and highly assortative compared with the random network.
Note that this holds true across subjects and thresholds.

Table 4.1: Original Network vs. Rewired Network comparison, subject 34781,
threshold r = 0.4

Graph Theoretic Measures Original Functional
Network

Rewired, Randomized
Network

Clustering Coefficient 0.3596 0.1442
Assortativity Coefficient 0.2003 -0.0082

In addition, we compared brain networks from our data sets with two sets
of randomized networks created using the bootstrap method described in section
2.3.2.

• First random bootstrap method: Original networks were compared to boot-
strapped, randomized networks that preserve the same degree distribution
as the original networks (see top half of table 4.2)

• Second random bootstrap method: Original networks were compared to
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bootstrapped, randomized networks that have the scale-free degree distribu-
tions, with varying scaling parameter α (see bottom half of table 4.2)

Table 4.2: Graph-theoretic measures comparison of original vs. randomized,
bootstrapped network for subject 34781, threshold r = 0.4

Graph Theoretic Measures Original Functional Net-
work

Bootstraped Random Net-
work with Same Degree
Distribution

Clustering Coefficient 0.3596 0.1709
Characteristic Path Length 4.7310 3.0020

Global Efficiency 0.2461 0.3522
Assortativity 0.2003 -0.2718

Small-world Measure 1.3351

Graph Theoretic Measures Original Functional Net-
work

Bootstraped Random
Scale-Free Network with
Alpha =5

Clustering Coefficient 0.3596 0.0678
Characteristic Path Length 4.7310 2.7402

Global Efficiency 0.2461 0.3735
Assortativity 0.2003 -0.0609

Small-world Measure 3.0720

Results for subject 34781 (one among the 10 subjects) are displayed in table
4.2. Results for other subjects share the same trends and characteristics. As be-
fore, we can see that our empirical brain networks display high assortativity and
clustering coefficients. Assortativity coefficient measures the tendency of high-
degree nodes to be connected to one another. Networks with high assortativity co-
efficient typically have comparatively resilient cores of mutually inter-connected
hubs, effectively allowing for efficient information processing at the global level.
This feature of brain functional networks possibly compensates for the relatively
less numerous brain hubs compared to scale-free networks. In addition, the pres-
ence of densely connected clusters, as indicated through high clustering coeffi-
cients, could be another factor that explains the efficiency of brain networks in
exchanging information at the local level. Although characteristic path length
of original networks are higher and thus global efficiency of original networks
are lower than both versions of randomized networks, small-worldness indices
in both cases for original networks are both greater than 1, implying brain func-
tional networks possess small-world features in either way that we define random-
ized network. Interestingly and importantly, the small-world measures of original
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networks against randomized networks that preserve degree distribution (1.3351
in table 4.2) are less than those of original networks against randomized, scale-
free networks (3.0720 in table 4.2). This implies the randomized networks with
generalized Pareto distribution could outperform the randomized networks with
scale-free distribution with regards to the small-worldness attributes. Indeed, the
randomized networks with generalized Pareto distributions have relatively sim-
ilar characteristic path lengths and global efficiency measures, but much higher
clustering coefficients than those of randomized networks with scale-free distribu-
tions. The take-away from this observation is that scale-free networks are not in-
herently more efficient than our demonstrated generalized Pareto model. In short,
for our brain functional networks of generalized Pareto distribution with negative
shape parameters, the combination of the robust local density design (high clus-
tering coefficient) and functionally relevant long-range pathways (likely through
assortativity coefficient) provides an economic solution for establishing function-
ally effective paths across the brain.

Conclusion
In summary, we have shown through rigorous statistical analysis that unlike

what has been claimed in the literature to date, brain functional networks are
not scale-free and also do not follow a power-law with exponential cut-off dis-
tribution. Instead, we have demonstrated that the generalized Pareto distribution
with negative shape parameter is the most plausible model for brain functional
networks. This means brain functional networks do not have fat tails. We pro-
pose that brain networks are efficient and competitive with scale-free networks
by having high assortativity coefficients, high clustering coefficients and possess-
ing small-world network features. Future research can investigate further into the
generalized Pareto distribution to understand its implication both to the structural
efficiency of brain networks, as well as to brain network dynamics.
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