### **Complex Network Analysis**

Applications To Human Brain Functional Networks

## Hoang Le

MASTER THESIS - UPF / Year 2012-2013

### Supervisors

Xerxes D. Arsiwalla, Riccardo Zucca, Paul VerschureDepartmentSynthetic, Perceptive, Emotive and Cognitive Systems GroupDepartment of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelona, Spain

RE Constant

### Acknowledgement

I would like to thank my thesis advisors Xerxes D. Arsiwalla, Riccardo Zucca and Paul Verschure for their continuing support and guidance throughout my research. Without them this thesis would not have been completed.

### Abstract

We investigate the topology of human brain functional networks, using fMRI data. We re-examine the question of whether the degree distribution of these networks really scale as power-law (scale-free) and which statistical tests are better suited to answer such questions. Earlier studies have all been based on least-square estimation, which is not a reliable estimator of power-law distributions. Degree distribution of brain functional networks from 10 healthy individuals were analyzed using rigorous statistical analysis. The statistics do not support a power-law, but rather the generalized Pareto distribution. We propose methods to construct synthetic random and power-law networks from our empirical networks as a way to compare efficiency among these different models, using graph-theoretic measures.

**Keywords:** brain functional networks, graph theory, network science, scale-free networks, generalized Pareto distribution.

### **Table of Contents**

| Li | List of figures x  |          |                                               |    |  |  |  |
|----|--------------------|----------|-----------------------------------------------|----|--|--|--|
| Li | List of tables xii |          |                                               |    |  |  |  |
| 1  | INT                | rodu     | JCTION                                        | 1  |  |  |  |
|    | 1.1                | Proble   | em Statement                                  | 1  |  |  |  |
|    | 1.2                | State of | of the Art                                    | 2  |  |  |  |
|    |                    | 1.2.1    | Contemporary Network Science                  | 2  |  |  |  |
|    |                    | 1.2.2    | Basic Definitions and Notations               | 3  |  |  |  |
|    |                    | 1.2.3    | Graph-theoretic Measures                      | 4  |  |  |  |
|    |                    | 1.2.4    | Brain Functional Networks                     | 10 |  |  |  |
|    |                    | 1.2.5    | Methodological Weakness of Previous Studies   | 15 |  |  |  |
| 2  | METHODOLOGY        |          |                                               |    |  |  |  |
|    | 2.1                | Data a   | and Construction of Brain Functional Networks | 19 |  |  |  |
|    |                    | 2.1.1    | Data Acquisition                              | 19 |  |  |  |
|    |                    | 2.1.2    | Network Construction                          | 20 |  |  |  |
|    | 2.2                | Degree   | e Distribution Testing                        | 22 |  |  |  |
|    |                    | 2.2.1    | Testing Power-Law Distribution                | 22 |  |  |  |
|    |                    | 2.2.2    | Other Families of Distribution                | 24 |  |  |  |
|    |                    | 2.2.3    | Model Selection                               | 25 |  |  |  |
|    | 2.3                | Netwo    | orks Model Comparison                         | 27 |  |  |  |
|    |                    | 2.3.1    | Creating Null Model by Rewiring               | 27 |  |  |  |
|    |                    | 2.3.2    | Creating Null Model by Bootstrap Method       | 29 |  |  |  |
| 3  | RESULTS            |          |                                               |    |  |  |  |
|    | 3.1                | Test R   | esults for Different Families of Distribution | 35 |  |  |  |
|    | 3.2                | Test R   | esults for Model Selection                    | 37 |  |  |  |
| 4  | DIS                | CUSSI    | ON AND CONCLUSION                             | 47 |  |  |  |

# **List of Figures**

| 1.1 | illustration of a graph                                                 | 3  |
|-----|-------------------------------------------------------------------------|----|
| 1.2 | example of the correspondence between a graph and its adjacency         |    |
|     | matrix                                                                  | 4  |
| 1.3 | illustrative probability density functions of popular distribution      |    |
|     | <i>models</i>                                                           | 6  |
| 1.4 | illustrative probability density functions of the tails of popular dis- |    |
|     | tribution models, signifying the structure of network hubs              | 6  |
| 1.5 | illustrative assortative and disassortative networks, from [1]          | 7  |
| 1.6 | example of structural and functional networks construction, im-         |    |
|     | age from [2]                                                            | 12 |
| 1.7 | Log-log plot of degree distribution from Eguiluz et al. [3]             | 14 |
| 1.8 | Log-log plot of degree distribution from Achard et al. [4]. The         |    |
|     | plus sign indicates observed data, the solid line is the best-fitting   |    |
|     | exponentially truncated power law, the dotted line is an exponen-       |    |
|     | tial, and the dashed line is a power law.                               | 16 |
| 1.9 | typical FC matrix and binary thresholded adjacency matrix, im-          |    |
|     | age from Eguiluz et al. [3]                                             | 17 |
| 2.1 | sampled image of fMRI session from subject 34781                        | 20 |
| 2.2 | constructed correlation matrix from subject 34781 at resolution         |    |
|     | level V2                                                                | 22 |
| 2.3 | thresholded correlation matrix from subject 34781, $r = 0.4$ , reso-    |    |
|     | lution level V1                                                         | 23 |
| 2.4 | Binary Rewiring Algorithm in the Literature                             | 27 |
| 2.5 | Our algorithm for rewiring weighted networks in order to ran-           |    |
|     | domize connections, while preserving the degree distribution. 4         |    |
|     | random nodes are chosen and their inter-connection strengths are        |    |
|     | modified by a randomly generated number $\gamma$                        | 28 |
| 2.6 | Randomized Network by "Rewiring", subject 34781, $r = 0.4$              | 31 |
| 2.7 | CDF of original vs. synthetic bootstrap networks for constant           |    |
|     | degree sequence and scale-free degree sequence with $\alpha = 5$ , re-  |    |
|     | spectively, subject 34781, $r = 0.4$                                    | 32 |

| 2.8 | transformation of adjacency matrix that preserves degree distribution using bootstrap method, subject 34781, $r = 0.4$                           | 33 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.9 | transformation of adjacency matrix using bootstrap method to<br>achieve scale-free degree sequence with $\alpha = 5$ , subject 34781,<br>r = 0.4 | 34 |
| 3.1 | <i>p-values across different thresholds and different distributions for subject 34781</i>                                                        | 36 |
| 4.1 | generalized Pareto distribution corresponding to different shape parameter k                                                                     | 48 |

# **List of Tables**

| 1.1 | Inaccuracy of LSQ estimation on a priori known power-law dis-<br>tribution with $\alpha = 2$                                                         | 16 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.1 | Other families of distribution, $f(x)$ is the functional form of probability density function (pdf), C is the normalizing constant of the $\infty$   |    |
|     | pdf, such that $\int_{x_{min}} Cf(x) = 1 \dots \dots \dots \dots \dots \dots \dots \dots$                                                            | 25 |
| 3.1 | Summary of results for 10 subjects from 1000 Functional Connec-<br>tome project                                                                      | 37 |
| 3.2 | Results of power-law test, 10 subjects from 1000 Functional Con-<br>nectome project, part 1                                                          | 38 |
| 3.3 | Results of power-law test, 10 subjects from 1000 Functional Con-<br>nectome project, part 2                                                          | 39 |
| 3.4 | Results of power-law with exponential cutoff and exponential dis-<br>tribution tests, 10 subjects from 1000 Functional Connectome project,<br>part 1 | 40 |
| 3.5 | Results of power-law with exponential cutoff and exponential dis-<br>tribution tests, 10 subjects from 1000 Functional Connectome project,           | 10 |
| 3.6 | Results of log-normal and Weibull distribution tests, 10 subjects from 1000 Functional Connectome project, part 1                                    | 43 |
| 3.7 | Results of log-normal and Weibull distribution tests, 10 subjects from 1000 Functional Connectome project, part 2                                    | 44 |
| 3.8 | Results of generalized Pareto distribution tests, 10 subjects from 1000 Functional Connectome project, part 1                                        | 45 |
| 3.9 | Results of generalized Pareto distribution tests, 10 subjects from 1000 Functional Connectome project, part 2                                        | 46 |
| 4.1 | Original Network vs. Rewired Network comparison, subject $34781$ , threshold $r = 0.4$                                                               | 49 |

4.2 Graph-theoretic measures comparison of original vs. randomized, bootstrapped network for subject 34781, threshold r = 0.4. 50

## Chapter 1

## **INTRODUCTION**

### **1.1 Problem Statement**

Much interest in theoretical neuroscience has revolved around graph-theoretic scaling properties of the network of correlations in the human brain. Some authors have attempted to show that the degree distribution of nodes in brain functional networks are scale-free; that is, they obey power-law degree distributions  $P(k) \sim k^{-\alpha}$  (see for example [3], [5], [6], and [7]). The scale-free model is theoretically attractive for several reasons, among which are (i) the seemingly ubiquitous presence of scale-free networks in nature, as claimed by a large body of work from other fields related to scale-free networks, including both non-biological and biological networks (see for example [8]); (ii) the link of scale-free networks to self-organized criticality, as can be seen in [9], [10], [11], and [12]; (iii) the existence of a fat tail, implying larger number of brain hubs compared to random or other small-world network models, ensuring efficiency of information processing and resilience (see [13] and [14]). However, some other authors have claimed that instead of being scale-free, brain functional networks follow a power law with truncated exponential distribution (see [4]).

We noticed a systematic methodological weakness of previous works in the literature ([3], [5], [6], [7], [4]), as they mainly examined the structure of the brain functional networks based on either visual assessment [6], [4], or using least square error fitting on a log-scale to establish their claims [3], [5], [7]. Least square fitting in many case does not give good estimate of the scaling parameter  $\alpha$ . And even when it does, the errors are no longer normally distributed under log-log scale, thus the coefficient of determination  $R^2$ , frequently used to assess the goodness of fit in linear regression, cannot be a reliable goodness of fit indicator in this context.

We deploy rigorous statistical techniques to verify these claims. In addition,

structural and dynamical consequences of brain functional networks are further investigated in light of our results. Concretely:

- (i) We disprove the scale-free hypothesis of the brain functional networks, which has been prevalent in the literature to date
- (ii) We offer our own framework of the brain functional networks structure, verified through rigorous statistical analysis. We argue why our model is competitive with the scale-free models from a efficiency/cost perspective
- (iii) We develop a hubs map of the brain functional networks, including both positive correlation hubs and negative correlation hubs. This map will serve as a basis for our dynamical modeling

### **1.2** State of the Art

#### **1.2.1** Contemporary Network Science

The study of networks in the form of mathematical graph theory is one of the fundamental pillars of discrete mathematics. Euler's celebrated 1735 solution of the Konigsberg bridge problem is often cited as the first true proof in the theory of networks, and during the twentieth century graph theory has developed into a substantial body of knowledge ([15], [16]).

Networks have also been studied extensively in the social sciences. Typical network studies in sociology involve the circulation of questionnaires, asking respondents to detail their interactions with others ([17]). One can then use the responses to reconstruct a network in which vertices represent individuals and edges the interactions between them. Typical social network studies address issues of centrality (which individuals are best connected to others or have most influence) and connectivity (whether and how individuals are connected to one another through the network).

The last decade has witnessed the birth of a new movement of interest and research in the study of complex networks, i.e. networks whose structure is irregular, complex and dynamically evolving in time, with the main focus moving from the analysis of small networks to that of systems with thousands or millions of nodes, and with a renewed attention to the properties of networks of dynamical units. This flurry of activity, triggered by two seminal papers, that by Watts and Strogatz on small-world networks [18], and that by Barabasi and Albert on scale-free networks appeared one year later in Science [19], has been certainly induced by the increased computing powers and by the possibility to study the properties of a plenty of large databases of real networks. These include transportation

networks, phone call networks, the Internet and the World Wide Web, the actors collaboration network in movie databases, scientific co-authorship and citation networks from the Science Citation Index, but also systems of interest in biology and medicine, as neural networks or genetic, metabolic and protein networks. Within neuroscience, the interest in studying human brain from the perspective of network science is rapidly increasing, thanks to concepts and techniques developed from other disciplines, the development of brain imaging technologies, and the wealth of available data sets.

#### **1.2.2** Basic Definitions and Notations

Graph theory is the natural framework for the exact mathematical treatment of complex networks and formally, a complex network can be represented as a graph. Within the scope of this report, we will use the term *network* and *graph* interchangeably. A undirected graph G = (V, E) consists of two sets V and E, such that  $V \neq \emptyset$ , and E is a set of unordered (order) pairs of elements of V. V is called set of *vertices* (also commonly known as *nodes*) and E is a set of *edges* (also commonly called *links*), where elements consist of pair u, v of distinct vertices  $u, v \in V$ .



Figure 1.1: illustration of a graph

A graph can be *undirected* or *directed*, depending on whether the edges in E have an ordering to its vertices (i.e., so that u, v is distinct from v, u, for  $u, v \in V$ ). Also, a graph can be *simple*, or a *multi-graph*, if there are multiples edges connecting two vertices. Within the scope of this report, we will deal mainly with simple, undirected graph.

More importantly, a graph can be *binary*, or *weighted*. A binary graph is one which a link indicates the presence of a relationship between two nodes (relationship either exists or does not exist). A weighted graph also incorporates connection strength into the links among vertices. Any simple, undirected graph can be uniquely represented in the form of an *adjacency* matrix. A graph with n vertices and be isomorphically mapped to a  $n \times n$  square *adjacency* matrix A, with each row (column) represents a vertex. The entry at row i and column j of the adjacency matrix A, or  $a_{ij}$  indicates the connection strength between nodes *i* and *j*. It then follows that a binary graph can be represented by a *symmetric*, *binary* adjacency matrix, whereas a weighted graph is represented by a *symmetric*, *weighted* adjacency matrix. This one-to-one mapping between graphs and adjacency matrices greatly facilitates the study of network graphs with the help of formal mathematical tools, such as linear algebra.



Figure 1.2: example of the correspondence between a graph and its adjacency matrix

The *degree*  $k_i$  of a node *i* is the number of edges incident with the node, and is defined in terms of the adjacency matrix *A* as:  $k_i = \sum_{j \in V} a_{ij}$ . The degree distribution of a network is an important feature in studying network topology. The *weighted degree* of a node is defined similarly.

#### **1.2.3 Graph-theoretic Measures**

#### **Degree Distribution**

The most basic topological characterization of a graph G is its *degree distribu*tion P(k), defined as the probability that a node chosen uniformly at random has degree k or equivalently, as the fraction of nodes in the graph having degree k. The degree distribution provides a natural summary of the connectivity in the graph. During the past decade, it has been found that approximate power-law distributions appears to be ubiquitous in networks across many areas of the sciences [20]. This discovery was originally quite unexpected, as such structure is in contrast to that of networks studied throughout much of the 20th century [16], such as traditional random graphs. In the case of random graphs, vertex degree is of a fairly similar order of magnitude across the graph, homogeneous instead of heterogeneous. The corresponding degree distribution are thus concentrated, and typically decay exponentially fast, rather than like a power-law. A power-law distribution is characterized by a "fat-tail", implying the existence of numerous network hubs, compared to other wise random networks. Due to its seemingly ubiquitous presence in nature, networks with power-law degree distributions have been the focus of a great deal of attention in the literature [21]. They are also referred to as scale-free networks [20]. Formally, the probability density function of a scale-free network takes the form  $P(k) \sim k^{-\alpha}$ . The term scale-free refers to any functional form f(x) that remains unchanged to within a multiplicative factor under a rescaling of the independent variable x. The earliest published example of a scale-free network is Price's network of scientific citations [22], where the value of scaling parameter  $\alpha$  is between 2.5 and 3. More recently, power-law degree distributions have been observed in a wide range of other networks, including other citation networks ([23], [24]), the World Wide Web ([25], [26], [27]), the Internet ([28], [29], [30]), metabolic networks ([31], [32]), telephone call networks ([33], [34]), and the network of human sexual contacts ([35], [36]). Other common functional forms for the degree distribution are exponentials, such that those seen in the power grid [37] and railway networks [38], and power laws with exponential cutoffs, such as those seen in the networks of movie actors [37] and some collaboration networks [39].

#### **Degree Correlation and Mixing Patterns**

The degree distribution is useful as a composite summary of how degree varies across nodes in the network, but it does not provide any information on precisely which nodes are connected to which others. To capture information of this sort, it is helpful to establish summaries that describe the patterns of association among nodes of similar degrees. Traditionally in the context of social network analysis, a pattern of selective linking where highly connected nodes tend to be connected to each other has been studied under the term *homophily*. Recently, a similar concept of *assortative mixing* has been explored for different types of networks [40]. A network is said to be *assortative* if high-degree vertices have a preference to attach to other high-degree ones. This mixing pattern in networks can be summarized through *assortativity coefficient*, defined as:

$$r = \frac{l^{-1} \sum_{(i,j) \in E} k_i k_j - [l^{-1} \sum_{(i,j) \in E} \frac{1}{2} (k_i + k_j)]^2}{l^{-1} \sum_{(i,j) \in E} \frac{1}{2} k_i^2 + k_j^2 - [l^{-1} \sum_{(i,j) \in E} \frac{1}{2} (k_i + k_j)]^2}$$



Figure 1.3: *illustrative probability density functions of popular distribution models* 



Figure 1.4: *illustrative probability density functions of the tails of popular distribution models, signifying the structure of network hubs* 

with  $l = \sum_{(i,j) \in V} a_{ij}$  is the number of links in the network. For weighted networks, the weighted assortativity coefficient can be defined similarly as [41]:

$$r = \frac{l^{-1} \sum_{(i,j)\in E} w_{ij} k_i^w k_j^w - [l^{-1} \sum_{(i,j)\in E} \frac{1}{2} (w_{ij} (k_i^w + k_j^w)]^2}{l^{-1} \sum_{(i,j)\in E} \frac{1}{2} w_{ij} (k_i^2 + k_j^2) - [l^{-1} \sum_{(i,j)\in E} \frac{1}{2} w_{ij} (k_i^w + k_j^w)]^2}$$

with  $w_{ij}$  represents connection weight of link (i, j), and  $k_i^w = \sum_{i \in V} w_{ij}$  is the weighted degree of *i*. Networks with a positive assortativity coefficient are likely to have a resilient core of mutually interconnected high-degree hubs. On the other hand, networks with a negative assortativity coefficient are likely to have widely distributed and consequently vulnerable high-degree hubs. Some examples of assortative networks include scientific coauthorship and film actor collaboration networks [40], while the Internet, World Wide Web, protein interaction networks and networks of food web have been shown to be disassortative [40]. Notably, random networks and the scale-free networks defined by preferential attachment growth model of Barabasi and Albert have assortativity coefficient of 0 [40]. Related measure of assortativity computed on individual nodes is the *average neighbor degree* [42]  $k_{nn,i} = \frac{\sum_{j \in V} a_{ij}k_j}{k_i}$  for binary networks and  $k_{nn,i}^w = \frac{\sum_{j \in V} w_{ij}k_j^w}{k_i^w}$  for weighted networks.



Figure 1.5: illustrative assortative and disassortative networks, from [1]

#### Characterizing Network Cohesion and Connectivity, Small-World Properties

A clear deviation from the behavior of random graphs can be seen in the property of network clustering. In many networks it is found that if vertex A is connected to vertex B, and vertex B to vertex C, then there is increased probability that vertex A will also be connected to vertex C. In the context of social networks, the friend of your friend is also likely to be your friend. This is exhibited in network topology through the number of triangles in the network. It can be quantified by defining a *clustering coefficient* C such as [18]:  $C = \frac{1}{n} \sum_{i \in V} C_i = \frac{1}{n} \sum_{i \in V} \frac{2t_i}{k_i(k_i-1)}$ where  $t_i = \frac{1}{2} \sum_{j,h \in V} a_{ij}a_{ih}a_{jh}$  denotes the number of triangles around node *i*, and  $C_i$  is the clustering coefficient of node *i*. This notion of clustering coefficient can be generalized for weighted networks as [43]:

$$C^{w} = \frac{1}{n} \sum_{i \in V} C_{i}^{w} = \frac{1}{n} \sum_{i \in V} \frac{2t_{i}^{w}}{k_{i}(k_{i}-1)}$$

where  $t_i^w = \frac{1}{2} \sum_{j,h \in V} (w_{ij} w_{ih} w_{jh})^{\frac{1}{3}}$  is the weighted geometric mean of triangles around nodes *i*. Various higher-order clustering coefficients have also been proposed, among which are the k-clustering coefficient that accounts for k-neighbors ([44], [45]), or other measures based on the internal structure of cycles of order four ([46]), or on the number of cycles of a generic order [47]. Some definitions of clustering coefficients without bias of degree correlation have also been proposed ([48], [49]). In general, regardless of which definition of the clustering coefficient is used, the values of real-world networks tend to be considerably higher than those of a random graph with similar number of vertices and edges.

Another important concept that characterizes the cohesion of a network is its *shortest path lengths* among different nodes. Shortest paths play an important role in the communication within a network. The idea has long been explored in the study of graph theory [50]. Shortest path between two nodes in a graph is typically determined computationally through the use of standard Dijkstra's algorithm, or the breadth-first search method. The *efficiency* of the internal structure of a network can be examined by looking at shortest paths among all vertices. A measure of the typical separation between two nodes in the graph is given by the *average shortest path length*, also known as the *characteristic path length* of a network, formally defined as [18]:

$$L = \frac{1}{n} \sum_{i \in V} L_i = \frac{1}{n} \sum_{i \in V} \frac{\sum_{j \in V, j \neq i} d_{ij}}{n - 1}$$

where  $d_{ij}$  is the shortest path length between *i* and *j*. Note that for weighted networks,  $d_{ij}^w = \sum_{a_{uv} \in g_{i \to j^w}} f(w_{uv})$ , where *f* is a map (typically an inverse) from weight to length, and  $g_{i \to j^w}$  is the shortest weighted path between *i* and *j*. For unconnected network,  $d_{ij}$  can be  $\infty$ , thus it is sometimes more convenient to looks at the global efficiency of a network [14]:

$$E = \frac{1}{n} \sum_{i \in V} E_i = \frac{1}{n} \sum_{i \in V} \frac{\sum_{j \in V, j \neq i} d_{ij}^{-1}}{n - 1}$$

where  $E_i$  is the efficiency of node *i*. The definition of *global efficiency* for weighted networks can be derived similarly.

An explosion of interest in network science emerged after a seminal paper from Duncat Watts and Steven Strogatz came out in 1998, in which they studied a set of so-called *small-world* networks [18]. The small-world effect was first studied by Stanley Milgram in the 1960s [51], in which letters passed from person to person were able to reach a designated target individual in only a small number of steps (around 6 in the published case). Watts and Strogatz proposed to define a class of small-world networks as those having both a small value of characteristic path length L, like random graph, and a high clustering coefficient C, like regular lattices. Such a definition corresponds to networks efficient in exchanging information both at a global and local scale. Built on this characterization of smallworld networks, recently a quantitive measure of *small-world-ness* was suggested by [52], in which network small-worldness  $S = \frac{C/C_{rand}}{L/L_{rand}}$  where C and  $C_{rand}$  are the clustering coefficients, and L and  $L_{rand}$  are the characteristic path lengths of the respective tested network and a random network. Small-world networks often have  $S \gg 1$ .

#### **Characterizing Network Hubs, Centrality**

Many questions that might be asked about a node in a network essentially seek to understand its importance in the network. This importance can be expressed through how well it is integrated into the rest of the network, or vice versa, the potential impact of deleting this node from the network. A similar concept can also be defined for the importance of a certain link in a network. In network science, measures of centrality are designed to quantify such notion of importance. The most obvious measure of node centrality is its degree k. Later when we define functional brain networks, however, the degree of a node can take on different meanings, depending on how exactly the network is constructed. Particularly in the context of weighted networks that allow for both positive and negative links,

the definition of hubs will depend on whether we look at positive and negative links as a whole in the network, or treat them separately. Regardless of the treatment, developing a map of network hubs can be very useful in capturing main functionalities, while allowing a certain degree of simplification to take place. This network hubs characterization is helpful especially in the context of modeling dynamical processes in a given network.

Beside degree of nodes, two other measures of node centrality can be used to examine the prominence of nodes in the network. *Closeness centrality* is defined as the inverse of the average shortest path length from one node to all other nodes in the network. A related and often more sensitive measure is *betweenness centrality*, defined as the fraction of all shortest paths in the network that pass through a given node. Formally

$$L_i^{-1} = \frac{n-1}{\sum\limits_{j \in V, j \neq i} d_{ij}}$$

denotes the closeness centrality of node i and betweenness centrality of node i is defined as:

$$b_{i} = \frac{1}{(n-1)(n-2)} \sum_{h,j \in V, h \neq j, h \neq i, j \neq i} \frac{\rho_{hj}^{(i)}}{\rho_{hj}}$$

where  $\rho_{hj}$  is the number of shortest paths between h and j, and  $\rho_{hj}^{(i)}$  is the number of shortest paths between h and j that pass through i

Bridging nodes that connect disparate parts of the network often have a high betweenness centrality. The notion of betweenness centrality is naturally extended to links and could therefore also be used to detect important connections within a network.

#### **1.2.4 Brain Functional Networks**

#### **Overview of Brain Networks**

We now switch our discussion to recent works on various types of brain networks, with a special focus on functional networks. Two main factors contributed to the recent wave of interest in studying the brain through the lens of network science. First, the development of technical tools from graph theory, some of which described above, and increased computational power have reached a point of cross-fertilization where data-rich fields such as computational neuroscience can be meaningfully studied with the help of these new techniques. Second, modern brain mapping techniques, such as diffusion MRI, functional MRI, EEG, and MEG produce increasingly large data sets of anatomical and functional connectivity patterns, gradually allowing researchers for the first time meaningfully map the entire brain in the form of massive networks, also known as Connectome ([53], [54], [55]), in increasingly high level of resolution. Brain connectivity data sets comprise networks of brain regions connected by anatomical tracts or by functional associations. The three main types of brain networks can be broadly classified as follows [56]:

- Structural networks: structural brain networks correspond to fiber density of white matter tracts between pairs of brain regions. Diffusion magnetic resonance imaging allows the mapping of the diffusion process of molecules, mainly water, in biological tissues, in vivo and non-invasively. The results from diffusion MRI can be used to build a tractography of whole brain, providing an estimate of axonal trajectories across the entire white matter [54]. Together with a parcellation of the brain into different regions of interests (ROIs), connection weight between each pair of ROIs can be computed to build a structural network of the brain. Initial studies of structural brain networks showed that individual brain networks have an exponential node degree distribution and their global organization is in the form of a small-world [53]. However, it should be noted that construction of structural networks is still in relatively early phase and thus not many data sets are currently available for more in-depth studies.
- Functional networks: functional brain networks correspond to magnitudes of temporal correlations in activity between pairs of brain regions. Two main methods are typically used to construct functional networks.
  - 1. The functional networks can be derived by calculating cross-correlations between BOLD signals from different brain regions throughout a fMRI session. The smallest unit of brain regions is called brain "voxel" (of dimension  $3x3.475x3.475 mm^3$ ). Magnetic resonance brain activity is measured in each voxel at each time step. Two brain sites are functionally connected if their Pearson temporal correlation exceeds a threshold value  $r_c$ , regardless of their anatomical connectivity. No clear rule exists for the choice of threshold. However, most studies have considered positive thresholds of at least 0.5
  - 2. Alternatively, some researchers applied discrete wavelet transform to fMRI time series to estimate frequency-dependent correlation matrices characterizing functional connectivity between brain regions [4]. Here, wavelet transform effects a time-scale decomposition that partitions the total energy of a signal over a set of compactly supported basis functions, or little waves, each of which is uniquely scaled in frequency and located in time [4]. The result is correlation matrices corresponding to each range of frequency.

Either method arrives at a correlation matrix of connectivity that is dependent on the choice of threshold. After thresholding, connectivity matrices are typically binarized, with functional connection between pairs of brain regions assigned values of 1, with the rest being 0.

• Effective networks: effective brain networks represent direct or indirect causal influences of one region on another and may be estimated from observed perturbations [57]. Causal interactions are computed using transfer entropy, a measure of directed information flow. Thus effective brain networks take the form of directed graphs.

The techniques to construct structural and effective brain networks are evolving and still in relatively early stages. An illustration of the standard method to construct structural and functional brain networks is provided below in figure 1.6. The focus of this thesis will primarily be in the context of functional networks. For the remainder of the report, brain networks will imply functional networks.



Figure 1.6: *example of structural and functional networks construction, image from* [2]

#### **Graph-theoretic Measures in the Context of Brain Networks**

An individual network measure may characterize one or several aspects of global and local brain connectivity. At a macro level, measurement values of all individual degree elements comprise the distribution of brain networks. The degree distribution is an important marker of network development and resilience. The mean network degree is most commonly used as a measure of *density*, or the total wiring cost of the network [58]. Degree distribution of brain networks may hold important clues to the dynamical processes on the networks, as the high-level of interest on the hypothesized scale-free properties of brain functional networks indicate [10], [6], [12], [9]. Furthermore, degree distribution also indicates to a certain extent the resilience of the network. For instance, complex networks with power-law degree distributions may be resilient to gradual random deterioration, but highly vulnerable to disruption of high-degree central nodes [13]. Another useful measure of resilience is the assortativity coefficient. Networks with a positive assortativity coefficient are likely to have a comparatively resilient core of mutually interconnected hubs [56]. The effect of lesions of human brains or the effect of neuro-degeneration can be quantified by looking at these macro measures.

At a lower level, functional segregation in the brain is the ability for specialized processing to occur within densely interconnected groups of brain regions [56]. Measures of segregation, such as *clustering coefficient*, quantify the presence of such groups, known as clusters and modules, within the network. More sophisticated measures of segregation not only describe the presence of densely interconnected groups of regions, but also find the exact size and composition of these individual groups [59]. At the same time, functional integration in the brain is the ability to rapidly combine specialized information from distributed brain regions. Measures of integration, such as the characteristic path length, characterize the ease with which brain regions communicate. Lengths of path consequently estimate the potential for functional integration between brain regions, with shorter path implying stronger potential for integration. Paths in functional networks represent sequences of statistical associations and may not correspond to information flow on anatomical connections [56], and thus provide another dimension for analysis. A combined balance of functional integration and segregation in the form of small-world networks was hypothesized to be a well-design structure, allowing the brain to simultaneously reconcile the opposing demands of processing the information efficiently at both the global and local level. Such a design appears to be a feature of anatomical connectivity [60]. In addition, several studies examining functional networks also report varying degree of small-worldness [4]. Given the more abstract nature of functional paths, a more complete understanding of the relationship between structural dynamics and functional connectivity will help clarify this issue [61].

The characterization of brain hubs provides a way to study the simplified brain networks, while allowing for the capture of main structural / functional properties. The *degree* is the most common indication of brain hubs. Other measures of centrality are based on the idea that central nodes participate in many short paths within a network and consequently act as important controls of information flows [62]. Measures of centrality may have different interpretations in structural and functional networks. For instance, anatomically central nodes often facilitate integration, and consequently enable functional links between anatomically unconnected regions. Such links in turn may make central nodes less prominent and so reduce the sensitivity of centrality measures in functional networks [56].

#### **Topological Properties of Brain Functional Networks**

Much interest in the analysis of brain networks has revolved around topological structure of the networks, especially scaling properties of the network. In the first report on large-scale topology of brain functional networks, Eguiluz et al claimed that functional networks are scale-free, with scaling parameter  $\alpha \approx 2$  [3]. The constructed network in this case came from 36x64x64 brain voxels, each measured at 400 time steps, with 2.5 seconds spacing. The method of establishing scale-free properties, as displayed in figure 1.1, is to create a histogram of degree frequency on a log-log scale, across several different levels of correlation thresholds ( $r_c = 0.5, 0.6, 0.7$  or 0.8). The best fit straight line is then fitted through the data at different thresholds, and the estimated scaling parameter  $\alpha$  would be the slope of this line, as can be seen in figure 1.7. In addition, they claimed that char-



Figure 1.7: Log-log plot of degree distribution from Eguiluz et al. [3]

acteristic path length is small and comparable with those of equivalent random networks, and the clustering coefficient is orders of magnitude larger than those of equivalent random networks. After this study, several other have come out in agreement with the hypothesis that the brain functional networks are scale-free, notably [6], [5], and [7]. The scale-free model is theoretically attractive for several reasons, among which are (i) the seemingly ubiquitous presence of scale-free networks in nature, as claimed by a large body of work from other fields related to scale-free networks, including both non-biological and biological networks [8]; (ii) the link of scale-free networks to self-organized criticality, which is a property of dynamical systems which have a critical point as an attractor [9], [10], [11], and [12]. Their macroscopic behaviour thus displays the spatial and/or temporal scale-invariance characteristic of the critical point of a phase transition; (iii) the existence of a fat tail, implying larger number of brain hubs compared to random or other small-world network models, ensuring efficiency of information processing and resilience (see [13] and [14]).

However, some other authors have claimed that instead of being scale-free, brain functional networks follow a power law with truncated exponential distribution (see [4], [63], [64]). Formally, a power law with exponential cutoff can be expressed by the probability distribution function  $P(k) \sim k^{-\alpha}e^{-\lambda k}$ . Archard et al studied the brain functional networks through constructing networks of 90 nodes, and estimated scaling parameter  $\alpha = 1.8$  and cutoff degree  $\lambda = 0.2$  [4]. Again, log-scale plots of histogram of degree frequency were examined in their study. One such plot is displayed in figure 1.8 below. In addition, they observed global mean path length of 2.49, which is approximately equivalent to a comparable random network, whereas clustering coefficient of 0.53 is two times greater. They concluded that low-frequency functional networks have a small-world architecture, but are not scale-free. In addition, the network is more resilient to targeted attack on its hubs than a comparable scale-free network, but about equally resilient to random error.

#### **1.2.5** Methodological Weakness of Previous Studies

Several methodological issues exist with prior studies on topological structural of functional networks. Here we address several key points which motivate our current study.

• The commonly used method for analyzing the degree distribution of functional networks in prior studies is either least-square fitting or visual assessment. First, using visual assessment is not a reliable way of establishing the power-law relationship, as many heavy-tail distributions can share the feature of noisy data towards the tail of the distribution on a log-log scale, thus can be highly misleading. Second, least-square fitting can produce substantially inaccurate estimates of parameters for power-law distributions. And



Figure 1.8: Log-log plot of degree distribution from Achard et al. [4]. The plus sign indicates observed data, the solid line is the best-fitting exponentially truncated power law, the dotted line is an exponential, and the dashed line is a power law.

even when in cases where such methods return accurate answers, such methods will not be able to give satisfactory indication of whether the data obey a power law [65]. To date, the most common approach for testing empirical data against a hypothesized power-law distribution is to transform the distribution  $P(k) \sim k^{-\alpha}$  into the log form  $\log P(k) = c - \alpha \log k$ . The probability density P(k) can be estimated by constructing a histogram of the data and the resulting function can then be fitted to the linear form by least-square linear regression. The slope of the fit is interpreted as the estimated  $\hat{\alpha}$  of the scaling parameter, and  $r^2$  is taken as an indicator of the quality of the fit. Table 1.1 illustrates how least-square fitting can wildly mis-calculate the scaling parameter, by generating synthetic data sets generated from a priori known power-law distribution curve with  $\alpha = 2$ .

| Number of Synthetic Data Points | LSQ Estimated $\alpha$ |
|---------------------------------|------------------------|
| 50000                           | 1.0589                 |
| 100000                          | 1.1691                 |

Table 1.1: Inaccuracy of LSQ estimation on a priori known power-law distribution with  $\alpha = 2$ 

More seriously, a fit to a power-law distribution can account for a large fraction of the variance even when the fitted data do not follow a powerlaw, and hence high values of  $r^2$  cannot be taken as evidence in favor of



Figure 1.9: typical FC matrix and binary thresholded adjacency matrix, image from Eguiluz et al. [3]

the power-law form. In addition, the fits extracted by regression methods usually do not satisfy basic requirements on probability distributions such as normalization, and hence can be incorrect.

- Previous studies frequently transformed extracted functional correlation (FC) matrices into binary adjacency matrices. This has the potential to introduce more errors into the constructed networks, and ignore important gradient of functional relationships. A binary network with threshold  $r_c = 0.4$ , for example, would view cross-correlation of 0.5 and 0.9 to be functionally equivalent. A typical example can be seen in figure 1.9.
- By considering only positive thresholds, potentially important information regarding anti-correlation relationships in functional networks are ignored by previous studies. Several authors have argued for potential relevance of anti-correlation in functional brain context [66], [67], [68], [69].

## Chapter 2

## METHODOLOGY

### 2.1 Data and Construction of Brain Functional Networks

#### 2.1.1 Data Acquisition

#### **1000 Functional Connectomes Project**

Our primary data source comes from the 1000 Functional Connectomes Project, an open-access repository of resting-state functional MRI datasets [55]. The 1000 Functional Connectomes Project (http://www.nitrc.org/projects/fcon\_1000/) is an international open-access repository of resting-state functional connectivity MRI datasets with subjects recruited in different cohorts across the world. For consistency and due to computational limit, we select 10 healthy, right-handed male subjects from the Ann Arbor, Michigan cohort with age ranging from 18 to 33 for our study. All datasets were reoriented to RPI. Also, the first 5 time points of each time series were discarded, leaving each dataset with 295 time points across 64x64x40 brain voxels. Different levels of resolution were considered. At the lowest resolution level V1, collection of neighboring 4x4x2 brain voxels were combined by taking the average fMRI signal at each time step, effectively transforming the original data into 16x16x20 brain sites. At resolution level V2, collection of neighboring 4x4x1 brain voxels were combined to obtain time series of 16x16x40 brain sites. Similarly at level V3, neighboring 2x2x2 brain voxels were combined to obtain time series data of 32x32x20 brain sites.

#### Task-based fMRI data from Eguiluz et al.

Original task-based fMRI data used in [3] consist of four healthy, right-handed subjects. Subjects were studied using a Siemens-Trio 3.0 Tesla imaging system



Figure 2.1: sampled image of fMRI session from subject 34781

using a birdcage radio-frequency head coil. The data were preprocessed using the package FSL (http://www.fmrib.ox.ac.uk/fsl). Subjects performed on-off finger tapping with threes different protocols. In one case they were instructed verbally to start and stop tapping, in the other one the start or stop cue was a small green or red dot in a video screen, and in the last one the start or stop cue was the entire screen turning green or red [3].

#### **Human Connectome Project**

Recently, a consortium of universities led by Washington University at St. Louis and University of Minnesota has initiated a new effort called Human Connectome Project (http://www.humanconnectome.org/) to collect structural and functional MRI data. The data acquisition and processing are still underway. At this stage, we have received sampled, one subject sets of both resting-state fMRI data set and task-based fMRI data sets for language, emotional, gambling, motor skill, and working memory task.

#### 2.1.2 Network Construction

We adopt the standard approach to construct brain functional networks from fMRI data as presented in the literature [3], [5], [63]. To derive correlation matrix, Pearson correlation coefficient between any pair of brain regions  $x_1$  and  $x_2$  is

defined as:

$$r(x_1, x_2) = \frac{\langle V(x_1, t) V(x_2, t) \rangle - \langle V(x_1, t) \rangle \langle V(x_2, t) \rangle}{\sigma(V(x_1))\sigma(V(x_2))}$$

where the activity of brain region x at time t is denoted as V(x,t),  $\sigma^2(V(x)) =$  $\langle V(x,t)^2 \rangle - \langle V(x,t) \rangle^2$ , and  $\langle . \rangle$  represents temporal averages. Figure 2.2 displays the resulting correlation matrix for subject 34781 from the 1000 Functional Connectome Project. From the FC matrix, functional networks can be extracted by looking at a range of different thresholds. For each threshold r > 0, the *weighted* adjacency matrix is obtained by keeping all values in the correlation matrix that are greater than or equal to r, while other entries become 0. For each threshold r < 0, such adjacency matrix is obtained by keeping the values that are less than or equal to r, while other entries go to 0. We consider 17 different thresholds for each subject, corresponding to 17 different extracted weighted networks. The threshold values range from r = -0.7 to r = 0.8, with each increment of 0.1. Note that for r > 0.8 and r < -0.7, extracted network will become too sparse for meaningful analysis. An example of thresholded matrix corresponding to r = 0.4for subject 34781 at resolution level V2 can be seen in figure 2.3. This adjacency matrix has one-to-one relationship with a functional brain network at the given threshold and resolution level. Each row (column) represents a node in the network. Node degree is simply the sum of each corresponding row (column) of the adjacency matrix. Graph-theoretic measures of the constructed network can be performed on the corresponding weighted adjacency matrix.

Computationally, the construction of brain functional networks and all the analysis were performed using Matlab R2009 (Mathworks Inc.). In many cases where functional networks are sufficiently large (20,000 nodes or more), the network construction process can become computationally expensive. An efficient strategy comprises of following steps is needed to reduce running time: (i) storage of correlation matrix in single format instead of double format to ensure the matrix can be efficiently loaded into random access memory for processing. Note that using single format does not compromise the analysis of the data, given single format in Matlab can be accurate up to 7 decimal digits (ii) utilization of parallel processing toolbox in Matlab. This could help reduce running time by approximately 25 percent (iii) building correlation matrix by dividing the original group of brain sites into multiple blocks. As an example, when the original set of brain sites is divided into 2 blocks (block 1 and block 2), a full correlation matrix can be constructed by concatenating 4 different sub-matrices:  $M1 = block 1 \times block$ 1, M2 = block 1 x block 2, M3 = block 2 x block 2, M4 = block 2 x block 1. This strategy is needed when the number of brain sites becomes too large to hold the entire correlation matrix in random access memory. In practice, M1 and M3 are symmetrical, and M4 is the transpose of M2, thus we can effectively calculate only half of the pair-wise correlation coefficients to build the full correlation matrix.



Figure 2.2: constructed correlation matrix from subject 34781 at resolution level V2

### 2.2 Degree Distribution Testing

#### 2.2.1 Testing Power-Law Distribution

From the previous section, assume that we have constructed a *weighted functional network* with n nodes and a weighted degree sequence  $x_1 \le x_2 \le ... \le x_n$ . To test whether the degree distribution of functional networks follows a power-law, we follow the method suggested by [65], which advocates using Maximum Like-lihood Estimator to estimate the scaling parameter  $\alpha$  and a parametric bootstrap method to test the goodness of fit.

## Estimate the parameters $x_{min}$ and $\alpha$ of the power-law model using method of *maximum likelihood* and Kolmogorov-Smirnov statistic

In practice, few empirical phenomena obey power laws for all values of x. More often the power law applied only for values greater than some minimum  $x_{min}$ . In



Figure 2.3: thresholded correlation matrix from subject 34781, r = 0.4, resolution level V1

such cases the tail of the distribution follows a power law. For each  $\alpha$  and  $x_{min}$ , the probability density function for power-law distribution is given by

$$p(x) = \frac{\alpha - 1}{x_{min}} (\frac{x}{x_{min}})^{-\alpha}$$

. The *likelihood* of the data given the model is the conditional probability that the data were drawn from the model given  $\alpha$ :

$$p(x \mid \alpha) = \prod_{x_i \ge x_{min}} p(x_i \mid \alpha)$$

The data are most likely to have been generated by the model with scaling parameter  $\alpha$  that maximizes this function. Note that given our set of degree sequence, this is a single variable function of  $\alpha$ . Thus finding the *maximum likelihood estimate*, or MLE of scaling parameter  $\hat{\alpha}$  becomes the task of solving for the maxima of this likelihood function. In case of power-law distribution, there is a closed-form solution for  $\hat{\alpha}$ , which is given by:

$$\hat{\alpha} = 1 + k (\sum_{x_i \ge x_{min}} \ln \frac{x_i}{x_{min}})^{-1}$$
(2.1)

with k is the number of  $x_i \ge x_{min}$ . Thus for each possible value of  $x_{min}$ , the estimated scaling parameter is uniquely determined by equation 2.1. There remains

the question of how we should go about choosing  $x_{min}$ . Clauset et al. suggested that we choose  $x_{min}$  that gives the best possible power-law fit out of all possible  $x_{min}$ . Kolmogorov-Statistic, which measures the distance between the *cumulative density functions* (CDFs) of the data and the fitted model, is commonly used to quantify this degree of fitness. For each  $x_{min}$ , Kolmogorov-Smirnov (KS) statistic is given by:

$$D = \max_{x \ge x_{min}} \mid S(x) - P(x) \mid$$

where S(x) is the CDF of the data for the observations with value at least  $x_{min}$ , and P(x) is the CDF for the power-law model that best fits the data in the region  $x \ge x_{min}$ . The estimated  $\hat{x_{min}}$  is the value of  $x_{min}$  that minimizes D.

## Calculate the goodness-of-fit between the data and the power-law using a parametric bootstrap based on the parameters estimated from previous step

Goodness-of-fit test is conducted by generating a large number of power-law distributed synthetic data sets with scaling parameter  $\alpha$  and lower bound  $x_{min}$  equal to those of the distribution that best fits the observed data. We then fit each synthetic data set individually using its own power-law model and calculate the KS statistic for each one relative to its own model. Then we count the fraction of the time the resulting KS statistic is larger than the KS statistic value for the empirical data (as determined from the previous step). This fraction is our p-value. If this p-value is very small (less than 0.1), then power-law distribution is not a good model for our observed data. Otherwise if p-value is greater than 0.1, then we do not reject the hypothesis that the observed data follows a power-law distribution. The Matlab code to conduct the power-law test according to the procedure described here was developed by Clauset [65]. We adopt the code with some minor modifications.

It is very important to note that failure to reject power-law distribution is no guarantee for the power law being the best model for the empirical data. It is entirely possible that other families of distribution may be able to explain the data better. Test for other families of distribution, as well as for model selection, are discussed in the following sections

#### 2.2.2 Other Families of Distribution

A *goodness-of-fit* test as laid out in the previous section can be used to rule out distribution hypothesis in the event the calculated p-value does not satisfy certain critical value threshold. It does not, however, guarantees the tested model to be the best model for the observed data. As such, we expand our analysis to consider
other popular 1-parameter and 2-parameter models that have appeared in the literature. The expression for each of the considered distribution families is given in table 2.1 as p(x) = Cf(x), with C being a constant.

| Distribution Name     | $\int f(x)$                                           |                                                                                                   | Parameter Condi-      |
|-----------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------|
|                       |                                                       |                                                                                                   | tion                  |
| power law with cutoff | $x^{-\alpha}e^{-\lambda x}$                           | $\frac{\lambda^{1-\alpha}}{\Gamma(1-\alpha,\lambda x_{min})}$                                     | $\alpha>0,\lambda>0$  |
| exponential           | $e^{-\lambda x}$                                      | $\lambda e^{\lambda x_{min}}$                                                                     | $\lambda > 0$         |
| log-normal            | $\frac{1}{x} exp[-\frac{(\ln x - \mu)^2}{2\sigma^2}]$ | $\sqrt{\frac{2}{\pi\sigma^2}} \left[ erfc(\frac{\ln x_{min} - \mu}{\sqrt{2}\sigma}) \right]^{-1}$ | $\mu, \sigma \in \Re$ |
| Weibull               | $x^{\beta-1}e^{-\lambda x^{\beta}}$                   | $egin{array}{c} eta\lambda e^{\lambda x^eta}_{min} \end{array}$                                   | $\lambda>0,\beta>0$   |
| generalized Pareto    | $(1+k\frac{x-x_{min}}{\sigma})^{-1-\frac{1}{k}}$      | $\frac{1}{\sigma}$                                                                                | $\sigma > 0$          |

Table 2.1: Other families of distribution, f(x) is the functional form of probability density function (pdf), C is the normalizing constant of the pdf, such that

 $\int_{x_{min}}^{\infty} Cf(x) = 1$ 

Note that in general, the testing procedures described in previous section can also be applied to each of these distribution families. We adapt the Matlab program for power-law distribution test for other distribution families. The implementation, however, is more challenging, as solutions for the *maximum likelihood estimate* do not exist in closed-form expression, with the exception of exponential distribution. Numerical solutions are thus required using Matlab's optimization toolbox.

#### 2.2.3 Model Selection

In the event that two or more distribution families "pass" the statistical test, or more precisely, cannot be ruled out based on criteria described in the previous section, we use *likelihood ratio test* first suggested by [70] to determine which one is a better model for the observed data. The basic idea behind the likelihood ratio test is to compare the likelihood of the data under two competing distributions. The one with the higher likelihood is then the better fit. Alternatively one can calculate the ratio of the two likelihoods, or equivalently the logarithm  $\Re$  of the ratio, which is positive or negative depending on which distribution is better or zero in the event of a tie. The sign of the log likelihood ratio, however, will not definitely indicate which model is the better fit because like other quantities, it is subject to statistical fluctuation. If its true value, meaning its expected value over many independent data sets drawn from the same distribution, is close to zero, then the fluctuations could change the sign of the ratio and hence the results of the test cannot be trusted. In order to make a firm choice between distributions we need a log likelihood ratio that is sufficiently positive or negative that it could not plausibly be the result of a chance fluctuation from a true result that is close to zero. To make a quantitative judgement about whether the observed value of  $\Re$ is sufficiently far from zero, we use the results from [70] to calculate the standard deviation  $\sigma$  of  $\Re$ . This method gives us a p-value that tells us whether the observed sign of  $\Re$  is statistically significant.

In technical terms, consider two candidate distributions of observed data with density function  $p_1(x)$  and  $p_2(x)$  respectively. The *log likelihood ratio* can be derived as:

$$\Re = \sum_{i=1}^{n} \left[ \ln p_1(x_i) - \ln p_2(x_i) \right] = \sum_{i=1}^{n} \left[ \ell_i^{(1)} - \ell_i^{(2)} \right]$$

where  $\ell_i^{(j)} = \ln p_j(x_i)$ . The variance of the difference  $\ell_i^{(1)} - \ell_i^{(2)}$  can be approximated as:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n [(\ell_i^{(1)} - \ell_i^{(2)}) - (\bar{\ell}^{(1)} - \bar{\ell}^{(2)})]^2$$

with  $\bar{\ell}^{(1)} = \frac{1}{n} \sum_{i=1}^{n} \ell_i^{(1)}$  and  $\bar{\ell}^{(2)} = \frac{1}{n} \sum_{i=1}^{n} \ell_i^{(2)}$ . The critical p-value, or the probability that the measured log likelihood ratio has a magnitude as large or larger than the observed value  $|\Re|$ , is given by:

$$p = \frac{1}{\sqrt{2\pi n\sigma^2}} \left[ \int_{-\infty}^{-|\Re|} e^{-t^2/2n\sigma^2} dt + \int_{|\Re|}^{\infty} e^{-t^2/2n\sigma^2} dt \right]$$
$$= |erfc(\Re/\sqrt{2n\sigma})|$$

where  $erfc(z) = 1 - erf(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} \exp{-t^2 dt}$  is the complementary Gaussian error function, which can be calculated using Matlab.

If this p-value is small (p < 0.1) then it is unlikely that the observed sign is a chance result of fluctuations and the sign is a reliable indicator of which model is the better fit to the data. If p is large on the other hand, the sign is not reliable and the test does not favor either model over the other.

### 2.3 Networks Model Comparison

Having rigorously tested different network models, we will incorporate graphtheoretic measures introduced in chapter 1 to compare the topological features between our empirical networks, and equivalent networks of hypothesized models. We are especially interested in examining measures that relate to efficiency of networks, from different graph-theoretic angles. This requires creating equivalent networks of different hypothetical distributions from our empirical network. In other words, from our empirical network, we want to derive null network model for comparison purposes. This issue has not been addressed widely in the literature ([71]). So far, most previous studies have dealt with binary, sparse networks (72], (71). The basic idea is to randomly select four distinct nodes A, B, C and D in a binary, sparse network so that there is a connection from A to B, and from C to D. In addition, the selection criterion is such that no connection exists between A to D, and B to C. At each step, we can replace the connection  $A \leftrightarrow B$ and  $C \longleftrightarrow D$  with those of  $A \longleftrightarrow D$  and  $C \longleftrightarrow B$  [72]. The random, binary network is obtained by repeating this process over many iterations. It is easy to see that for binary, sparse networks, this procedure will preserve the degree distribution of the original network, since the degree of each node does not change after each rewiring operation.



Figure 2.4: Binary Rewiring Algorithm in the Literature

The method of rewiring binary network has been the standard by which null model is created so that graph-theoretic measures such as small-world properties are calculated [56]. However, when dealing with weighted networks, this rewiring method does not work since the connection weight of each pair of nodes can be different. We further develop several methods to work with weighted networks as described in what follows.

#### 2.3.1 Creating Null Model by Rewiring

One way to create a null model for a weighted functional network in a manner similar to binary rewiring so that the degree distribution is preserved, we modify the connection strength among different nodes in a way that preserves the degree of each node at each step of iteration. This method works for both dense and sparse networks.



Figure 2.5: Our algorithm for rewiring weighted networks in order to randomize connections, while preserving the degree distribution. 4 random nodes are chosen and their inter-connection strengths are modified by a randomly generated number  $\gamma$ 

- Step 1: choose 4 different arbitrary nodes in the network, call these A, B, C, and D. Denote the connection strength AD = x, BC = y, AB = w, and CD = t. If there is no connection between two nodes, then the connection strength is 0.
- Step 2: generate a random number γ such that −1 ≤ γ ≤ 1. Modify connection strengths among the four nodes as follows: AD = x + γ, BC = y + γ, AB = w − γ, and CD = t − γ.
- Step 3: check to see if any of connection strength *AB*, *BC*, *AD*, *CD* has absolute value exceeding 1. If yes, repeat step 2
- Step 4: repeat step  $1 \rightarrow 3$  over many iterations (the number of iterations should be at least the number of links in the network)

Figure 2.6 illustrates the outcome of this rewiring strategy after 1,000,000 iterations. It can be seen easily from the algorithm described above that each node maintains its weight degree after each iteration. Thus, this algorithm provides a way to randomize original network without changing its degree distribution. Graph-theoretic measures can then be applied to examine the efficiency of the original network compared to a random network. This method, although perfectly preserves individual degrees, has the weakness of altering the connection strength among nodes in the network. Also, it will be difficult to keep the connection strengths in randomized network to be in the same range as the original network, especially when the functional network becomes sparse due to high correlation threshold.

#### 2.3.2 Creating Null Model by Bootstrap Method

We develop another method, called the bootstrap method, to create null model by transforming the original network into an equivalent network of any degree distribution. Furthermore, the equivalent network can be obtained by preserving the individual connection strength in the original network as well. The trade-off, compared to the previous method, is that the result will be approximate, in the sense that the resulting degree sequence will not be 100 percent coincident with a targeted degree sequence. However, this approximation can work quite well over many iterations (despite being more computationally expensive). Let G = (V, E)be the original weighted network. Let  $\hat{G}$  denote the (dynamic) synthetic network,  $\hat{E}$  be the (dynamic) set of links in  $\hat{G}$ , and  $S = E \setminus \hat{E}$  be the dynamic stack of links that contain all the connections that are in E but not in  $\hat{E}$ . Initially  $\hat{G}, \hat{E} = \emptyset$ , and S = E. The bootstrap algorithm can be carried out as follows:

- Step 1: Design a target degree sequence in decreasing magnitude  $\hat{w}_1, \hat{w}_2, ..., \hat{w}_n$ such that  $\sum_{i=1}^n \hat{w}_i = \sum_{i=1}^n w_i$ , with  $w'_i s$  represent the degree sequence of original network. In other words, design a target degree sequence that preserves the sum of individual degrees of original network. In two special cases, the target degree sequence can be exactly the same as the original degree sequence, or it can follow a scale-free distribution. We discuss how to create a scale-free degree sequence later in this section.
- Step 2: Starting from the highness target degree ŵ<sub>1</sub> to lowest target degree ŵ<sub>n</sub>, pick random links from the stack S, and attach these links to node i in Ĝ, the other ends can be attached to other nodes in Ĝ at random. At the same time, remove these links from stack S. Do this until the constructed degree of node i in Ĝ is within 0.5 of the target degree ŵ<sub>i</sub>, and then move on to node i + 1 in Ĝ. Update the dynamic degree of Ĝ.
- Step 3: At node i+1, if the current degree of node i+1 in G already exceeds w<sub>i+1</sub>, start choosing random links attached to nodes i + 1 and remove these selected links by throwing them back into the dynamic stack S. If not, continue adding links to node i + 1 similar to step 2. With either case, stop when the dynamic degree of node i+1 in Ĝ is within 0.5 of the target degree w<sub>i+1</sub>. Update the dynamic degree of Ĝ.
- Step 4: After all n nodes have been cycled through, due to the random nature of assigning links to nodes, it should be expected that the dynamic degree of Ĝ will differ from the target degree sequence ŵ<sub>i</sub>. We then go back to node 1 and repeat step 2 → 3. One iteration is considered complete when all n nodes have been cycled through by operations in step 2 → 3. The algorithm

can terminate when the all the degrees in the dynamic  $\hat{G}$  are within 0.5 of the target degree sequence, or the maximum number of iterations has been reached.

It can be seen that when the above algorithm terminates, there may still be some links left over in the dynamic stack S, or the degree sequence of  $\hat{G}$  may still differ from the target degree sequence  $\hat{w}_i$  by an amount greater than 0.5 at some points along the degree sequence. However, this difference is reduced with each iteration. Hence, despite being an approximate method, this strategy can work quite well to achieve a synthetic network with any degree sequence of our choosing.

We now return to the specific question of how to design a scale-free degree sequence  $\hat{w}_i$ . Note that for any n random numbers  $r_1, r_2, ..., r_n$  uniformly distributed on [0, 1], and any given  $\alpha$ , the series  $\{x_i\}$  such that  $x_i = (1 - r_i)^{-1/(\alpha - 1)}$  are drawn from a scale-free distribution with scaling parameter  $\alpha$ . Thus, we simply need to rescale  $\{x_i\}$  by a constant parameter into  $\{\hat{w}_i\}$  so that  $\sum_{i=1}^n \hat{w}_i = \sum_{i=1}^n w_i$ . The choice of  $\alpha$ , however, needs to be coordinated with other topological features of the constructed scale-free network to ensure a randomness factor meaningful enough for our comparison purposes.

Figure 2.7 displays the resulting CDFs of synthetic bootstrap networks versus CDF of original network for subject 34781 with correlation threshold r = 0.4. The left hand side chart shows the result for a synthetic network that preserves the degree sequence of the original network. The chart on the right hand side shows the result for a synthetic, scale-free network corresponding to the scaling parameter  $\alpha = 5$ . Both synthetic networks were constructed using 10 iterations. Although the degree sequence is not perfectly preserved, it can be clearly seen that synthetic networks constructed by the bootstrap method can serve as good null models for our comparison goals. Figures 2.8 and 2.9 display the transformation of FC matrix using the algorithm described above to achieve a random network of the same degree distribution as the original network, and a random network with scale-free degree distribution with  $\alpha = 5$ , respectively.



Figure 2.6: Randomized Network by "Rewiring", subject 34781, r = 0.4



Figure 2.7: CDF of original vs. synthetic bootstrap networks for constant degree sequence and scale-free degree sequence with  $\alpha = 5$ , respectively, subject 34781, r = 0.4



Figure 2.8: transformation of adjacency matrix that preserves degree distribution using bootstrap method, subject 34781, r = 0.433



Correlation matrix of original network - subject 34781, r=0.4



0.2

0.1

# Chapter 3

# RESULTS

## **3.1 Test Results for Different Families of Distribu**tion

Procedures to test the power-law distribution hypothesis were carried out in Matlab (Mathworks Inc.) with Statistics and Optimization toolboxes. Each test for each subject was conducted over 17 different thresholds, from r = -0.7 to r = 0.8, with increment of 0.1. Note that outside of this range, the constructed network becomes too sparse for meaningful analysis. Per [65], if we wish the calculated p-value to be accurate within about  $\epsilon$ , then we should generate at least  $\frac{1}{4}\epsilon^{-2}$  synthetic data sets. Based on this, the parametric goodness-of-fit test was conducted over 1000 repetitions, ensuring precision of p-value up to 2 decimal digits. Table 3.2 and table 3.3 illustrate the results of power-law distribution test for 10 chosen subjects from the 1000 Functional Connectome Project at resolution level V2. Note that *number of tail data* indicates the number of nodes with the degree exceeding the cut-off point with which we can establish the best possible fit for a given data set. In our implementation, the *number of tail data* is ensured to be greater than 50 data points, and also greater than 5% of the total number of nonzero data points. This is to prevent trivial scenarios where there are too few data points left at the tail, effectively causing the fit to be less reliable. It can be seen that p-values are consistently below 10% across different thresholds, meaning a synthetically generated data set from the estimated  $\alpha$  parameter tends to always fit better than the empirical data sets from the KS-statistic point of view. This also holds true with other levels of resolution. This means power-law distribution is not suitable for the distribution of brain functional networks.

In a similar, though less straight-forward fashion, other families of distributions can also be tested against the set of empirical data from our constructed networks. Unlike power-law distribution, solving for the best fit parameters using maximum likelihood estimation method for other families of distributions typically requires the use of numerical/optimization methods, due to the lack closedform expression for the maximum likelihood estimation solution. We used a standard numerical method in Matlab (Mathworks Inc.) that finds zeros of functions based on an algorithm originated by T. Dekker ([74]). Note that this optimization method can significantly increase the computation time, thus fully carrying out all tests at resolution level higher than V2 for all subjects was not always practical, especially for power-law with exponential cutoff, Weibull, and generalized Pareto distribution. However, we conducted the test at resolution level V3 for 2-3 subjects for each distribution to confirm that the results stay consistent across resolutions, which is indeed the case with our 10 subjects. Tables 3.4 and 3.5 report the results for the power-law with exponential cutoff distribution and the exponential distribution tests. Similar to above, p-values are consistently low for both distributions. Tables 3.6 and 3.7 display the results for the log-normal distribution and Weibull distribution tests. Here both distributions exhibit high p-values across different thresholds, though not in all cases, implying that we cannot reject the log-normal and Weibull model for the given empirical data sets. Finally, tables 3.8 and 3.9 display test results for the generalized Pareto distribution. Again, we observe high p-values across different thresholds, and consistently negative shape parameter k, which we will discuss in the next chapter.



Figure 3.1: *p*-values across different thresholds and different distributions for subject 34781

Figure 3.1 graphically displays the results across different thresholds and distributions for one of the 10 subjects. In aggregate, table 3.1 shows the test statistics for all 10 subjects. A single distribution test is considered "pass" if corresponding p-value is greater than 10%. In summary, the power-law, power-law with exponential cutoff and exponential distributions can be rejected due to the consistently low p-values, while other distributions deserve further considerations.

 Table 3.1: Summary of results for 10 subjects from 1000 Functional Connectome project

|                                        |                       |                                    | Distribu     | tion Test   |                 |         |
|----------------------------------------|-----------------------|------------------------------------|--------------|-------------|-----------------|---------|
|                                        | generalized<br>Pareto | Power<br>Law<br>with Exp<br>Cutoff | Power<br>Law | Exponential | Log Nor-<br>mal | Weibull |
| $\frac{9}{70}$ pass out of 170 tests   | 65.3%                 | 12.4%                              | 0.6%         | 0.0%        | 50.6%           | 69.4%   |
| of tail data<br>% versus total<br>data | 35.4%                 | 49.0%                              | 15.2%        | 86.1%       | 22.2%           | 27.9%   |

## **3.2** Test Results for Model Selection

As discussed in chapter 2, a low p-value can serve as a basis for rejection of certain hypothesized distribution, but a high p-value is not a guarantee for the hypothesized distribution to be the best possible distribution to explain the data. Based on this, it becomes clear from the results presented in the previous section that the power-law model, together with the power-law with exponential cut-off and the exponential model can be rejected as topological model for brain functional networks. The three remaining plausible models are the **log-normal** distribution, the **Weibull** (a.k.a stretched exponential) distribution and the **generalized Pareto** distribution, which, as previously indicated, is the generalized version of both the power-law and the exponential model. The next step is to use **likelihood ratio** test as laid out in chapter 2 to select which model is the most plausible for our various data sets.

One subtlety deserves some mentioning before we present the results. Note that the likelihood ratio test implicitly assumes the two competing models to be applied to the same set of data, thus implying the comparisons of two data sets with the same number of data points. Frequently, however, as can be seen from the results of distribution test, the *number of tail data* of one model for one particular data set, at one particular threshold, is different from that of another model. In order to enable a fair comparison between two different models in this case, we would truncate the model with the "longer tail" to ensure the equality in tail length.

Table 3.2: Results of power-law test, 10 subjects from 1000 Functional Connectome project, part 1

|                      | Subject 4111 |              |           |         | Subject 4619 |               |              |           |         |
|----------------------|--------------|--------------|-----------|---------|--------------|---------------|--------------|-----------|---------|
|                      | Number of    |              |           |         |              | Number of     |              |           |         |
|                      | non zeros    | alpha (scale | Number of |         |              | non zeros     | alpha (scale | Number of |         |
| Threshold            | of original  | parameter)   | tail data | p value |              | of original   | parameter)   | tail data | p value |
|                      | sample       | •            |           |         |              | sample        | • ·          |           |         |
| r=0.8                | 2,033        | 7.97         | 127       | 0.0%    |              | 2,011         | 9.16         | 188       | 0.0%    |
| r=0.7                | 3,131        | 6.72         | 336       | 0.0%    |              | 3,159         | 7.82         | 438       | 0.0%    |
| r=0.6                | 4,101        | 9.22         | 370       | 0.0%    |              | 4,132         | 7.08         | 829       | 0.0%    |
| r=0.3                | 4,980        | 11.62        | 415       | 0.0%    |              | 4,931         | 8.45<br>8.42 | 905       | 0.0%    |
| r=0.4                | 7 208        | 13.50        | 430       | 0.0%    |              | 7.012         | 8.43<br>9.79 | 1,155     | 0.0%    |
| r=0.2                | 9 4 57       | 15.05        | 618       | 0.0%    |              | 9 468         | 10.40        | 1,100     | 0.0%    |
| r=0.1                | 9,560        | 18.85        | 580       | 0.0%    |              | 9,560         | 10.00        | 1.330     | 0.0%    |
| r=0.0                | 9,560        | 19.51        | 625       | 0.0%    |              | 9,560         | 9.76         | 1,409     | 0.0%    |
| r=-0.7               | 2,431        | 9.31         | 196       | 0.0%    |              | 2,159         | 8.42         | 201       | 0.0%    |
| r=-0.6               | 3,438        | 15.64        | 176       | 0.0%    |              | 2,948         | 7.91         | 409       | 0.0%    |
| r=-0.5               | 4,434        | 6.55         | 795       | 0.0%    |              | 3,857         | 8.47         | 529       | 0.0%    |
| r=-0.4               | 5,515        | 13.23        | 422       | 0.0%    |              | 4,918         | 9.67         | 578       | 0.0%    |
| r=-0.3               | 6,834        | 15.01        | 453       | 0.0%    |              | 6,372         | 10.66        | 608       | 0.0%    |
| r=-0.2               | 9,324        | 16.71        | 475       | 0.0%    |              | 9,034         | 11.34        | 639       | 0.0%    |
| r=-0.1               | 9,560        | 12.23        | 883       | 0.0%    |              | 9,560         | 11.41        | 697       | 0.0%    |
| r=-0.0               | 9,560        | 12.87        | 904       | 0.0%    |              | 9,560         | 11.53        | /10       | 0.0%    |
|                      |              | Subjec       | t 13636   |         |              |               | Subjec       | t 13959   |         |
|                      | Number of    |              |           |         |              | Number of     |              |           |         |
| Threshold            | non zeros    | alpha (scale | Number of | n vəluo |              | non zeros     | alpha (scale | Number of | n vəlue |
| Thresholu            | of original  | parameter)   | tail data | p value |              | of original   | parameter)   | tail data | p value |
| 0.0                  | sample       | 11.00        | 05        | 1.00    |              | sample        | 6.00         | (7        | 0.00    |
| r=0.8                | 1,522        | 11.00        | 95        | 1.0%    |              | 000           | 6.30         | 6/        | 0.0%    |
| r=0.6                | 2,432        | 10.06        | 273       | 0.0%    |              | 2 204         | 8.00         | 198       | 4.0%    |
| r=0.5                | 4 545        | 12.77        | 229       | 0.0%    |              | 4 083         | 3.90         | 682       | 0.0%    |
| r=0.4                | 5 864        | 4 42         | 1 435     | 0.0%    |              | 6 448         | 4 24         | 642       | 0.0%    |
| r=0.3                | 7,269        | 4.66         | 1,661     | 0.0%    |              | 8,408         | 3.42         | 1.302     | 0.0%    |
| r=0.2                | 9,399        | 4.82         | 1,874     | 0.0%    |              | 9,539         | 3.39         | 2,850     | 0.0%    |
| r=0.1                | 9,560        | 4.83         | 2,175     | 0.0%    |              | 9,560         | 4.92         | 2,108     | 0.0%    |
| r=0.0                | 9,560        | 4.98         | 2,268     | 0.0%    |              | 9,560         | 5.41         | 2,158     | 0.0%    |
| r=-0.7               | 2,030        | 5.03         | 353       | 0.0%    |              | 595           | 3.03         | 144       | 0.0%    |
| r=-0.6               | 3,011        | 4.46         | 641       | 0.0%    |              | 1,409         | 5.42         | 129       | 34.5%   |
| r=-0.5               | 4,233        | 4.23         | 987       | 0.0%    |              | 2,650         | 4.27         | 247       | 0.0%    |
| r=-0.4               | 5,597        | 4.30         | 1,218     | 0.0%    |              | 4,954         | 4.14         | 389       | 0.0%    |
| r=-0.3               | /,112        | 4.62         | 1,307     | 0.0%    |              | 7,496         | 3.22         | 921       | 0.0%    |
| r=-0.2               | 9,334        | 4.76         | 1,522     | 0.0%    |              | 9,466         | 2.79         | 2,253     | 0.0%    |
| r=-0.1               | 9,560        | 4.90         | 1,740     | 0.0%    |              | 9,560         | 2.70         | 4,001     | 0.0%    |
| 1=-0.0               | 9,500        | 5.05         | 1,802     | 0.0%    |              | 9,500         | 2.80         | 5,424     | 0.0%    |
|                      |              | Subjec       | t 18698   |         |              |               | Subjec       | t 28433   |         |
|                      | Number of    |              |           |         |              | Number of     |              |           |         |
| Threshold            | non zeros    | alpha (scale | Number of | p value |              | non zeros     | alpha (scale | Number of | p value |
|                      | of original  | parameter)   | tail data |         |              | of original   | parameter)   | tail data |         |
| r=0.8                | sample 474   | 1.87         | 210       | 0.0%    |              | sample<br>504 | 1 48         | 423       | 0.0%    |
| r=0.7                | 1 271        | 1.43         | 1 223     | 0.0%    |              | 1 514         | 1.50         | 1 189     | 0.0%    |
| r=0.6                | 2.377        | 6.68         | 132       | 0.0%    |              | 3,376         | 12.36        | 171       | 0.0%    |
| r=0.5                | 3,505        | 6.56         | 198       | 0.5%    |              | 5,890         | 4.02         | 617       | 0.0%    |
| r=0.4                | 4,429        | 8.15         | 224       | 0.0%    |              | 8,079         | 5.18         | 409       | 0.0%    |
| r=0.3                | 5,602        | 4.80         | 876       | 0.0%    |              | 9,326         | 5.09         | 661       | 0.0%    |
| r=0.2                | 9,287        | 5.69         | 992       | 0.0%    |              | 9,559         | 5.17         | 945       | 0.0%    |
| r=0.1                | 9,560        | 6.84         | 1,013     | 0.0%    |              | 9,560         | 4.60         | 1,641     | 0.0%    |
| r=0.0                | 9,560        | 2.18         | 9,488     | 0.0%    |              | 9,560         | 3.73         | 4,896     | 0.0%    |
| r=-0.7               | 671          | 3.38         | 103       | 0.0%    |              | 370           | 1.86         | 192       | 0.0%    |
| r=-0.6               | 1,407        | 5.20         | 74        | 3.5%    |              | 975           | 5.03         | 87        | 0.0%    |
| r=-0.5               | 2,448        | 4.34         | 195       | 0.0%    |              | 1,875         | 5.31         | 158       | 0.0%    |
| r=-0.4               | 3,673        | 4.49         | 293       | 0.0%    |              | 3,074         | 5.90         | 216       | 0.0%    |
| r=-0.3               | 5,231        | 3.98         | 812       | 0.0%    |              | 4,9/3         | 5.74         | 730       | 0.0%    |
| r = -0.2<br>r = -0.1 | 9,209        | 4.34         | 1 024     | 0.0%    |              | 0,928         | 4.58         | 912       | 0.0%    |
| r=-0.0               | 9.560        | 5.96         | 1.041     | 0.0%    |              | 9,560         | 3.62         | 2.316     | 0.0%    |
| - 0.0                | 1,000        | 5.90         | 1,041     | 0.070   |              | ,             | 5.02         | 2,510     | 0.070   |

| er of                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                 | Subject 34781                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| zeros alpha<br>riginal param     | (scale Number<br>eter) tail data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of p value                                                                                                                                                                                                                                                                                                                                                      | Nun<br>non<br>of<br>sam                                | nber of<br>zeros a<br>original j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | alpha (scale<br>parameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Number of<br>tail data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p value                                                 |
| 1,103                            | 3.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 193 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 1,644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 2,110                            | 7.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 190 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 2,948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 3,039                            | 11.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 201 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 4,185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 3,922                            | 17.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200 0                                                                                                                                                                                                                                                                                                                                                           | .0%                                                    | 5,266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 4,747                            | 15.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 335 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 6,221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 5,775                            | 16.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 292 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 7,291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 9,254                            | 13.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 512 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 9,394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 9,560                            | 14.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 505 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 9,560                            | 15.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 530 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 1,483                            | 13.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76 0                                                                                                                                                                                                                                                                                                                                                            | 0.5%                                                   | 2,273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.5%                                                    |
| 2,349                            | 8.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 221 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 3,464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 3,271                            | 13.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 209 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 4,747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 4,288                            | 10.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 365 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 5,972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 5,501                            | 13.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 277 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 7,192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 9,181                            | 9.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 588 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 9,333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 9,560                            | 11.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 544 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 9,560                            | 12.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 540 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
|                                  | Subject 47659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |
| er of                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                 | Nun                                                    | nber of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |
| zeros alpha<br>riginal param     | (scale Number<br>eter) tail data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of p value                                                                                                                                                                                                                                                                                                                                                      | non<br>of                                              | zeros a<br>original p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | alpha (scale<br>parameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Number of<br>tail data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p value                                                 |
| 1.022                            | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (11)                                                                                                                                                                                                                                                                                                                                                            | sam                                                    | ple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                    |
| 1,023                            | 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 611 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 1,537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 2,500                            | 1.37 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                   | 2,629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 3,581                            | 8.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 193 (                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 3,577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 4,500                            | 9.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 228 0                                                                                                                                                                                                                                                                                                                                                           | 1.0%                                                   | 4,569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 5,211                            | 8.05<br>9.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 549 C                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 5,494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 0,303                            | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 722 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0%                                                    |
| 9,455                            | 9.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 660 0                                                                                                                                                                                                                                                                                                                                                           | 0.0%                                                   | 9,507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0%                                                    |
| 9,500                            | 12.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 575 0                                                                                                                                                                                                                                                                                                                                                           | 0%                                                     | 9,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0%                                                    |
| 9,500                            | 5 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95 G                                                                                                                                                                                                                                                                                                                                                            | 50%                                                    | 9,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0%                                                    |
| 1 030                            | 5.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/0 0                                                                                                                                                                                                                                                                                                                                                           | 0%                                                     | 2 518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 3 180                            | 7.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 183 0                                                                                                                                                                                                                                                                                                                                                           | 0%                                                     | 2,510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 240<br>351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0%                                                    |
| 3,107                            | 7.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233 0                                                                                                                                                                                                                                                                                                                                                           | 0%                                                     | 4 855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 1 634                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 433                                                                                                                                                                                                                                                                                                                                                             | .0 /0                                                  | T.0.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 4,634                            | 5.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 603                                                                                                                                                                                                                                                                                                                                                             | 0%                                                     | 6 3 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 4,634<br>6,359<br>9,326          | 5.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 603 0<br>597 0                                                                                                                                                                                                                                                                                                                                                  | 0.0%                                                   | 6,328<br>9,235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                    |
| 4,634<br>6,359<br>9,326<br>9,560 | 5.52<br>6.65<br>8.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 603 0<br>597 0<br>574 0                                                                                                                                                                                                                                                                                                                                         | 0.0%                                                   | 6,328<br>9,235<br>9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.44<br>5.13<br>5.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 842<br>1,132<br>1,278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0%<br>0.0%<br>0.0%                                    |
|                                  | 1,103         2,110         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,039         3,021         4,747         5,775         9,560         9,560         9,560         9,560         9,455         9,560         9,560         9,560         9,560         9,560         9,560         9,560         1,024         1,939 | $\begin{array}{c ccccc} 1,103 & 3.63 \\ 2,110 & 7.30 \\ 3,039 & 11.79 \\ 3,922 & 17.12 \\ 4,747 & 15.25 \\ 5,775 & 16.94 \\ 9,254 & 13.56 \\ 9,560 & 14.81 \\ 9,560 & 15.62 \\ 1.483 & 13.63 \\ 2,349 & 8.66 \\ 3,271 & 13.54 \\ 4,288 & 10.99 \\ 5,501 & 13.84 \\ 9,181 & 9.87 \\ 9,560 & 11.37 \\ 9,560 & 11.23 \\ \hline {                                 $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | sam         sam           1,103         3.63         193         0.0%           2,110         7.30         190         0.0%           3,039         11.79         201         0.0%           3,039         11.79         201         0.0%           3,039         11.79         201         0.0%           3,022         17.12         200         0.0%           4,747         15.25         335         0.0%           9,254         13.56         512         0.0%           9,560         15.62         530         0.0%           9,560         15.62         530         0.0%           4,288         10.99         365         0.0%           3,271         13.54         209         0.0%           4,288         10.99         365         0.0%           9,181         9.87         588         0.0%           9,560         11.37         544         0.0%           9,560         12.23         540         0.0%           1,023         1.59         611         0.0%           2,306         1.37         2,306         0.0%           4,500 <t< td=""><td>sample         sample           1,103         3.63         193         0.0%         2.948           2,110         7.30         190         0.0%         2.948           3,039         11.79         201         0.0%         4.185           3,022         17.12         200         0.0%         5.266           4,747         15.25         335         0.0%         6.221           5,775         16.94         292         0.0%         9.394           9,560         14.81         505         0.0%         9.560           9,560         15.62         530         0.0%         9.560           1,483         13.63         76         0.5%         2.273           2,349         8.66         221         0.0%         4,747           4,288         10.99         365         0.0%         5.972           5,501         13.84         277         0.0%         7,192           9,181         9.87         588         0.0%         9,333           9,560         11.37         544         0.0%         9,560           9,250         12.23         540         0.0%         3,577</td><td>sample         sample         sample           1,103         3.63         193         0.0%         2.948         5.98           2,110         7.30         190         0.0%         2.948         5.98           3,039         11.79         201         0.0%         4.185         10.40           3,922         17.12         200         0.0%         6.221         10.38           5,775         16.94         292         0.0%         7.291         12.79           9,254         13.56         512         0.0%         9,394         14.41           9,560         15.62         530         0.0%         9,560         15.98           9,560         15.62         530         0.0%         9,560         17.50           1,483         13.63         76         0.5%         2.273         7.41           2,349         8.66         221         0.0%         4,747         6.47           4,288         10.99         365         0.0%         5.972         7.29           5,501         13.84         277         0.0%         7,192         8.72           9,560         11.37         544         0.0%         9,560</td><td><math display="block"> \begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td></t<> | sample         sample           1,103         3.63         193         0.0%         2.948           2,110         7.30         190         0.0%         2.948           3,039         11.79         201         0.0%         4.185           3,022         17.12         200         0.0%         5.266           4,747         15.25         335         0.0%         6.221           5,775         16.94         292         0.0%         9.394           9,560         14.81         505         0.0%         9.560           9,560         15.62         530         0.0%         9.560           1,483         13.63         76         0.5%         2.273           2,349         8.66         221         0.0%         4,747           4,288         10.99         365         0.0%         5.972           5,501         13.84         277         0.0%         7,192           9,181         9.87         588         0.0%         9,333           9,560         11.37         544         0.0%         9,560           9,250         12.23         540         0.0%         3,577 | sample         sample         sample           1,103         3.63         193         0.0%         2.948         5.98           2,110         7.30         190         0.0%         2.948         5.98           3,039         11.79         201         0.0%         4.185         10.40           3,922         17.12         200         0.0%         6.221         10.38           5,775         16.94         292         0.0%         7.291         12.79           9,254         13.56         512         0.0%         9,394         14.41           9,560         15.62         530         0.0%         9,560         15.98           9,560         15.62         530         0.0%         9,560         17.50           1,483         13.63         76         0.5%         2.273         7.41           2,349         8.66         221         0.0%         4,747         6.47           4,288         10.99         365         0.0%         5.972         7.29           5,501         13.84         277         0.0%         7,192         8.72           9,560         11.37         544         0.0%         9,560 | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

Table 3.3: Results of power-law test, 10 subjects from 1000 Functional Connectome project, part 2

|            |                  | Subjec     | et 4111        |         | Subject 4619   |               |                |         |  |
|------------|------------------|------------|----------------|---------|----------------|---------------|----------------|---------|--|
|            | Power Law with e | xp. cutoff | Exponential    |         | Power Law with | exp. cutoff   | Exponenti      | al      |  |
| Threadeald | Number of tail   | - volue    | Number of tail |         | Number of tail | - value       | Number of tail |         |  |
| Threshold  | data             | p value    | data 1.502     | p value | data           | p value       | data           | p value |  |
| r=0.8      | 1,410            | 0.0%       | 1,583          | 0.0%    | 194            | 5.3%          | 1,704          | 0.0%    |  |
| r=0.7      | 2,539            | 0.0%       | 2,000          | 0.0%    | 520            | 0.0%          | 2,742          | 0.0%    |  |
| r=0.5      | 627              | 0.0%       | 4 675          | 0.0%    | 925            | 0.7%          | 4 839          | 0.0%    |  |
| r=0.4      | 919              | 0.7%       | 5 736          | 0.0%    | 1 173          | 0.5%          | 5 732          | 0.0%    |  |
| r=0.3      | 603              | 5.0%       | 6,885          | 0.0%    | 1,147          | 3.0%          | 6,861          | 0.0%    |  |
| r=0.2      | 608              | 3.0%       | 8,462          | 0.0%    | 1,296          | 0.0%          | 8,125          | 0.0%    |  |
| r=0.1      | 9,557            | 0.0%       | 9,560          | 0.0%    | 9,498          | 0.0%          | 9,560          | 0.0%    |  |
| r=0.0      | 9,491            | 0.0%       | 9,560          | 0.0%    | 9,380          | 0.0%          | 9,560          | 0.0%    |  |
| r=-0.7     | 1,950            | 0.0%       | 2,169          | 0.0%    | 216            | 10.7%         | 2,143          | 0.0%    |  |
| r=-0.6     | 174              | 22.7%      | 3,118          | 0.0%    | 377            | 1.0%          | 2,948          | 0.0%    |  |
| r=-0.5     | 3,772            | 0.0%       | 4,179          | 0.0%    | 579            | 0.0%          | 3,857          | 0.0%    |  |
| r=-0.4     | 4,845            | 0.0%       | 5,249          | 0.0%    | 614            | 1.7%          | 4,752          | 0.0%    |  |
| r=-0.3     | 459              | 2.7%       | 6,401          | 0.0%    | 624            | 1.3%          | 5,819          | 0.0%    |  |
| r=-0.2     | /,369            | 0.0%       | 7,897          | 0.0%    | 642            | 1.3%          | 7,220          | 0.0%    |  |
| r= 0.0     | 9,557            | 0.0%       | 9,500          | 0.0%    | 0.558          | 5.7%          | 9,500          | 0.0%    |  |
| 1=-0.0     | 9,491            | 0.0%       | 9,500          | 0.0%    | 9,558          | 0.0%          | 9,500          | 0.0%    |  |
|            |                  | Subject    | t 13636        |         |                | Subjec        | t 13959        |         |  |
|            | Power Law with e | xp. cutoff | Exponential    |         | Power Law with | exp. cutoff   | Exponenti      | al      |  |
| Threshold  | Number of tail   | p value    | Number of tail | p value | Number of tail | p value       | Number of tail | p value |  |
| r-0.8      | data 1 200       | 0.0%       | data 1 339     | 0.0%    | data 483       | 0.0%          | data 565       | 0.0%    |  |
| r=0.7      | 272              | 11.0%      | 2,188          | 0.0%    | 207            | 69.0%         | 1.006          | 0.0%    |  |
| r=0.6      | 730              | 0.7%       | 3.035          | 0.0%    | 591            | 0.3%          | 1.614          | 0.0%    |  |
| r=0.5      | 1,218            | 0.0%       | 4,019          | 0.0%    | 719            | 4.0%          | 2,457          | 0.0%    |  |
| r=0.4      | 1,592            | 0.0%       | 5,140          | 0.0%    | 833            | 7.0%          | 4,224          | 0.0%    |  |
| r=0.3      | 1,806            | 0.3%       | 6,609          | 0.0%    | 5,291          | 3.7%          | 6,756          | 0.0%    |  |
| r=0.2      | 7,605            | 0.0%       | 8,175          | 0.0%    | 3,917          | 0.0%          | 9,377          | 0.0%    |  |
| r=0.1      | 9,531            | 0.0%       | 9,560          | 0.0%    | 2,561          | 0.0%          | 9,560          | 0.0%    |  |
| r=0.0      | 9,162            | 0.0%       | 9,560          | 0.0%    | 2,566          | 0.0%          | 9,560          | 0.0%    |  |
| r=-0.7     | 398              | 26.0%      | 1,948          | 0.0%    | 173            | 55.0%         | 476            | 0.1%    |  |
| r=-0.6     | 1 1 4 2          | 0.7%       | 2,745          | 0.0%    | 129            | 07.0%         | 990            | 0.0%    |  |
| r = 0.3    | 1,142            | 0.0%       | 3,731          | 0.0%    | 2,003          | 0.0%          | 1,965          | 0.0%    |  |
| r=-0.4     | 1,415            | 0.0%       | 6 272          | 0.0%    | 2,280          | 18.0%         | 5 871          | 0.0%    |  |
| r=-0.2     | 1,555            | 0.0%       | 8 016          | 0.0%    | 4,007          | 0.0%          | 8 198          | 0.0%    |  |
| r=-0.1     | 2.053            | 0.0%       | 9,560          | 0.0%    | 5,707          | 0.0%          | 9,560          | 0.0%    |  |
| r=-0.0     | 9,511            | 0.0%       | 9,560          | 0.0%    | 6,252          | 0.0%          | 9,560          | 0.0%    |  |
|            |                  | Subject    | t 18698        |         |                | Subjec        | t 28433        |         |  |
|            | Power Law with e | xp. cutoff | Exponential    |         | Power Law with | exp. cutoff   | Exponenti      | al      |  |
| Threshold  | Number of tail   | n value    | Number of tail | n value | Number of tail | n value       | Number of tail | n value |  |
|            | data             | 0.20       | data 257       | 0.00    | data           | P 1000        | data 245       | 0.00    |  |
| r=0.8      | 328              | 0.5%       | 35/            | 0.0%    | 1 200          | 0.0%          | 245            | 0.0%    |  |
| r=0.7      | 2 122            | 0.0%       | 1.400          | 0.0%    | 2 066          | 0.5%          | 033            | 0.0%    |  |
| r=0.5      | 2,122            | 71.0%      | 2.463          | 0.0%    | 5 395          | 0.0%          | 3,729          | 0.0%    |  |
| r=0.4      | 2,921            | 0.0%       | 3,579          | 0.0%    | 7.408          | 0.0%          | 5,494          | 0.0%    |  |
| r=0.3      | 4,273            | 0.0%       | 4,805          | 0.0%    | 7,944          | 0.0%          | 7,069          | 0.0%    |  |
| r=0.2      | 5,805            | 0.0%       | 6,371          | 0.0%    | 8,894          | 0.0%          | 8,729          | 0.0%    |  |
| r=0.1      | 7,767            | 0.0%       | 9,560          | 0.0%    | 8,852          | 0.0%          | 9,560          | 0.0%    |  |
| r=0.0      | 9,540            | 0.0%       | 9,560          | 0.0%    | 6,766          | 1.0%          | 9,560          | 0.0%    |  |
| r=-0.7     | 400              | 34.7%      | 528            | 0.0%    | 313            | 1.7%          | 302            | 0.1%    |  |
| r=-0.6     | 850              | 48.0%      | 1,079          | 0.0%    | 449            | 17.0%         | 700            | 0.0%    |  |
| r=-0.5     | 603              | 52.3%      | 1,855          | 0.0%    | 1,383          | 0.0%          | 1,292          | 0.0%    |  |
| r=-0.4     | 768              | 16.3%      | 2,792          | 0.0%    | 1,813          | 0.0%          | 2,175          | 0.0%    |  |
| r=-0.3     | 898              | 41.3%      | 4,047          | 0.0%    | 2,731          | 0.0%          | 3,260          | 0.0%    |  |
| r=-0.2     | 941              | 10.5%      | 5,882          | 0.0%    | 9/6            | 5./%<br>0.0%- | 5,057          | 0.0%    |  |
| r=-0.1     | 9 361            | 0.0%       | 9,500          | 0.0%    |                | 25.0%         | 9,500          | 0.0%    |  |
| 1          | 2,501            | 0.070      | 2,000          | 0.070   | 7,723          | 25.070        | 2,300          | 0.070   |  |

Table 3.4: Results of power-law with exponential cutoff and exponential distribution tests, 10 subjects from 1000 Functional Connectome project, part 1

Table 3.5: Results of power-law with exponential cutoff and exponential distribu-tion tests, 10 subjects from 1000 Functional Connectome project, part 2

|                                                                                                                                                        |                                                                                                                                                                            | Subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t 30421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        | Subject 34781                                                                                                                                                              |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                        | Power Law with ex<br>Number of tail                                                                                                                                        | kp. cutoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Exponential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        | Power Law with ex                                                                                                                                                          | p. cutoff                                                                                                                  | Number Exponentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                             |  |
| Threshold                                                                                                                                              | data                                                                                                                                                                       | p value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p value                                                                                | data                                                                                                                                                                       | p value                                                                                                                    | data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p value                                                                                                                                                                                                                                                                                                       |  |
| r=0.8                                                                                                                                                  | 226                                                                                                                                                                        | 11.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0%                                                                                   | 1,359                                                                                                                                                                      | 0.0%                                                                                                                       | 1,279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=0.7                                                                                                                                                  | 1,270                                                                                                                                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 2,764                                                                                                                                                                      | 0.0%                                                                                                                       | 2,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=0.6                                                                                                                                                  | 201                                                                                                                                                                        | 2.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 3,526                                                                                                                                                                      | 0.0%                                                                                                                       | 3,434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=0.5                                                                                                                                                  | 444                                                                                                                                                                        | 2.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 4,254                                                                                                                                                                      | 0.0%                                                                                                                       | 4,678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=0.4                                                                                                                                                  | 356                                                                                                                                                                        | 3.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 5,400                                                                                                                                                                      | 0.0%                                                                                                                       | 5,948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=0.3                                                                                                                                                  | 295                                                                                                                                                                        | 8.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 480                                                                                                                                                                        | 4.7%                                                                                                                       | 7,249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=0.2                                                                                                                                                  | 538                                                                                                                                                                        | 3.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6,871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 526                                                                                                                                                                        | 3.0%                                                                                                                       | 8,790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=0.1                                                                                                                                                  | 528                                                                                                                                                                        | 6.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 591                                                                                                                                                                        | 2.7%                                                                                                                       | 9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=0.0                                                                                                                                                  | 9,556                                                                                                                                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 556                                                                                                                                                                        | 9.3%                                                                                                                       | 9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=-0.7                                                                                                                                                 | 1,159                                                                                                                                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 2,189                                                                                                                                                                      | 0.0%                                                                                                                       | 1,874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=-0.6                                                                                                                                                 | 1,849                                                                                                                                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 2,853                                                                                                                                                                      | 0.0%                                                                                                                       | 2,930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=-0.5                                                                                                                                                 | 417                                                                                                                                                                        | 0.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 3,785                                                                                                                                                                      | 0.0%                                                                                                                       | 4,134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=-0.4                                                                                                                                                 | 525                                                                                                                                                                        | 1.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 5,111                                                                                                                                                                      | 0.0%                                                                                                                       | 5,499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=-0.3                                                                                                                                                 | 306                                                                                                                                                                        | 5.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 643                                                                                                                                                                        | 0.7%                                                                                                                       | 6,874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=-0.2                                                                                                                                                 | 723                                                                                                                                                                        | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6,418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 569                                                                                                                                                                        | 1.3%                                                                                                                       | 8,630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=-0.1                                                                                                                                                 | 6,727                                                                                                                                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 2,019                                                                                                                                                                      | 0.3%                                                                                                                       | 9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
| r=-0.0                                                                                                                                                 | 9,546                                                                                                                                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0%                                                                                   | 2,369                                                                                                                                                                      | 0.0%                                                                                                                       | 9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                        |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |                                                                                                                                                                            |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                        |                                                                                                                                                                            | Subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t 47659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        |                                                                                                                                                                            | Subjec                                                                                                                     | et 75922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                        | Power Law with ex                                                                                                                                                          | Subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t 47659<br>Exponential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [                                                                                      | Power Law with ex                                                                                                                                                          | Subjec                                                                                                                     | et 75922<br>Exponentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                             |  |
| Threshold                                                                                                                                              | Power Law with ex<br>Number of tail                                                                                                                                        | Subject<br><u>xp. cutoff</u><br>p value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t 47659<br>  Number Exponential<br>data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p value                                                                                | Power Law with ex<br>Number of tail                                                                                                                                        | Subjec<br><u>xp. cutoff</u><br>p value                                                                                     | tt 75922<br>Number Exponentia<br>data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p value                                                                                                                                                                                                                                                                                                       |  |
| Threshold<br>r=0.8                                                                                                                                     | Power Law with ex<br>Number of tail<br>data<br>715                                                                                                                         | Subject<br><u>xp. cutoff</u><br>p value<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t 47659<br>  Number Exponential<br>data 646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p value<br>0.0%                                                                        | Power Law with ex<br>Number of tail<br>data<br>310                                                                                                                         | Subject<br><u>xp. cutoff</u><br>p value<br>7.3%                                                                            | tt 75922<br>Number Exponentia<br>data<br>1,086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l<br>p value<br>0.0%                                                                                                                                                                                                                                                                                          |  |
| Threshold<br>r=0.8<br>r=0.7                                                                                                                            | Power Law with ex<br>Number of tail<br>data<br>715<br>2,079                                                                                                                | Subject<br>cp. cutoff<br>p value<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t 47659<br>Number <u>Exponential</u><br>data<br>646<br>1,432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p value<br>0.0%<br>0.0%                                                                | Power Law with exponential data 310 835                                                                                                                                    | Subject<br>sp. cutoff<br>p value<br>7.3%<br>0.0%                                                                           | tt 75922<br>Number Exponentia<br>data<br>1,086<br>1,881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p value<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                                       |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6                                                                                                                   | Power Law with ex<br>Number of tail<br>data 715<br>2,079<br>3,437                                                                                                          | Subject<br><u>xp. cutoff</u><br>p value<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t 47659<br>Number <u>Exponential</u><br>data 646<br>1,432<br>2,526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p value<br>0.0%<br>0.0%<br>0.0%                                                        | Power Law with ex<br>Number of tail<br>data 310<br>835<br>2,190                                                                                                            | Subjec<br><u>cp. cutoff</u><br>p value<br>7.3%<br>0.0%<br>0.0%                                                             | xt 75922<br>Number Exponentia<br>data<br>1,086<br>1,881<br>2,709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p value<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                               |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5                                                                                                          | Power Law with ex<br>Number of tail<br>data 715<br>2,079<br>3,437<br>4,352                                                                                                 | Subject<br>sp. cutoff<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t 47659<br>Number<br>data<br>646<br>1,432<br>2,526<br>3,827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                | Power Law with ex<br>Number of tail<br>data 310<br>835<br>2,190<br>4,386                                                                                                   | Subject<br>sp. cutoff<br>p value<br>7.3%<br>0.0%<br>0.0%<br>0.0%                                                           | xt 75922<br>Number Exponentia<br>data<br>1,086<br>1,881<br>2,709<br>3,674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>p value<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                          |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4                                                                                                 | Power Law with ex<br>Number of tail<br>data 715<br>2,079<br>3,437<br>4,352<br>4,503                                                                                        | Subject<br>p cutoff<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t 47659<br>Number<br>data<br>4646<br>1,432<br>2,526<br>3,827<br>4,857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                | Power Law with ex<br>Number of tail<br>data 310<br>835<br>2,190<br>4,386<br>1,169                                                                                          | Subject<br>sp. cutoff<br>p value<br>7.3%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                   | tt 75922<br>Number of tail<br>data<br>1,086<br>1,881<br>2,709<br>3,674<br>4,813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                  |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3                                                                                        | Power Law with ex<br>Number of tail<br>data 715<br>2,079<br>3,437<br>4,352<br>4,503<br>638                                                                                 | Subject<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>1.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t 47659<br>Number<br>data<br>646<br>1,432<br>2,526<br>3,827<br>4,857<br>5,936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                        | Power Law with ex<br>Number of tail<br>data 310<br>835<br>2,190<br>4,386<br>1,169<br>5,247                                                                                 | Subject<br>cp. cutoff<br>p value<br>7.3%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                           | tt 75922<br>Number of tail<br>data<br>1,086<br>1,881<br>2,709<br>3,674<br>4,813<br>2,604<br>4,813<br>1,086<br>1,881<br>2,709<br>3,674<br>4,813<br>4,615<br>1,051<br>1,051<br>1,051<br>1,051<br>1,051<br>1,051<br>1,051<br>1,051<br>1,051<br>1,051<br>1,051<br>1,051<br>1,051<br>1,051<br>1,051<br>1,051<br>1,051<br>1,051<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055<br>1,055 | 1<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                  |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2                                                                               | Power Law with es<br>Number of tail<br>data 715<br>2,079<br>3,437<br>4,352<br>4,503<br>638<br>803                                                                          | Subject<br>sp. cutoff<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>1.3%<br>1.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t 47659<br><u>Sumber</u><br>data<br><u>646</u><br>1.432<br>2.526<br>3.827<br>4.857<br>5.936<br>7.517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                | Power Law with es<br>Number of tail<br>data 310<br>835<br>2,190<br>4,386<br>1,169<br>5,247<br>6,949                                                                        | Subject<br>cp. cutoff<br>p value<br>7.3%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                   | tt 75922<br>Number of tail<br>data<br>1,086<br>1,881<br>2,709<br>3,674<br>4,813<br>6,051<br>7,632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                     |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1                                                                      | Power Law with ex<br>Number of tail<br>data 715<br>2,079<br>3,437<br>4,352<br>4,503<br>638<br>803<br>659                                                                   | Subject<br>sp. cutoff<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>1.3%<br>1.3%<br>2.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t 47659<br><u>Exponential</u><br>data 646<br>1,432<br>2,526<br>3,827<br>4,857<br>5,936<br>7,517<br>9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                        | Power Law with ex<br>Number of tail<br>data 310<br>835<br>2,190<br>4,386<br>1,169<br>5,247<br>6,949<br>9,551                                                               | Subject<br>sp. cutoff<br>p value<br>7.3%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                           | tt 75922<br>Number<br>data<br>1,086<br>1,881<br>2,709<br>3,674<br>4,813<br>6,051<br>7,632<br>9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                          |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0                                                             | Power Law with ex<br>Number of tail<br>data 715<br>2,079<br>3,437<br>4,352<br>4,503<br>638<br>803<br>659<br>585                                                            | Subject<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>1.3%<br>2.3%<br>3.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t 47659<br><u>Exponential</u><br>data 646<br>1,432<br>2,526<br>3,827<br>4,857<br>5,936<br>7,517<br>9,560<br>9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0                 | Power Law with ex<br>Number of tail<br>data 310<br>835<br>2,190<br>4,386<br>1,169<br>5,247<br>6,949<br>9,551<br>6,675                                                      | Subject<br>sp. cutoff<br>p value<br>7.3%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%           | tt 75922<br>Number of tail<br>data<br>1,086<br>1,881<br>2,709<br>3,674<br>4,813<br>6,051<br>7,632<br>9,560<br>9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0                                                                                                                                                                                                                                   |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7                                                   | Power Law with es<br>Number of tail<br>data 715<br>2,079<br>3,437<br>4,352<br>4,503<br>638<br>803<br>659<br>585<br>872                                                     | Subject<br>sp. cutoff<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>1.3%<br>1.3%<br>1.3%<br>3.7%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t 47659<br><u>Exponential</u><br>data<br>646<br>1,432<br>2,526<br>3,827<br>4,857<br>5,936<br>7,517<br>9,560<br>9,560<br>8,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0                 | Power Law with es<br>Number of tail<br>data 310<br>835<br>2,190<br>4,386<br>1,169<br>5,247<br>6,949<br>9,551<br>6,675<br>284                                               | Subject<br>sp. cutoff<br>p value<br>7.3%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>8.7%                   | tt 75922<br>Number<br>data<br>1,086<br>1,881<br>2,709<br>3,674<br>4,813<br>6,057<br>4,813<br>1,7,632<br>9,560<br>9,560<br>1,248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0                                                                                                                                                                                                                                   |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6                                                  | Power Law with ex<br>Number of tail<br>data 715<br>2,079<br>3,437<br>4,352<br>4,503<br>638<br>803<br>659<br>585<br>872<br>1,164                                            | Subject<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>1.3%<br>1.3%<br>2.3%<br>3.7%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t 47659<br><u>Exponential</u><br>data<br>646<br>1,432<br>2,526<br>3,827<br>4,857<br>5,936<br>7,517<br>9,560<br>9,560<br>838<br>1,457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.1%                | Power Law with ex<br>Number of tail<br>data 310<br>835<br>2,190<br>4,386<br>1,169<br>5,247<br>6,949<br>9,551<br>6,675<br>284<br>344                                        | Subject<br>cp. cutoff<br>p value<br>7.3%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0                      | tt 75922<br>Number<br>data<br>1,086<br>1,881<br>2,709<br>3,674<br>4,813<br>6,051<br>7,632<br>9,560<br>9,560<br>1,248<br>2,040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0                                                                                                                                                                                                                                   |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6<br>r=-0.5                                        | Power Law with es<br>Number of tail<br>data 715<br>2,079<br>3,437<br>4,352<br>4,503<br>638<br>803<br>659<br>585<br>872<br>1,164<br>1,908                                   | Subject<br>sp. cutoff<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>1.3%<br>1.3%<br>2.3%<br>3.7%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t 47659<br><u>Exponential</u><br>data 646<br>1,432<br>2,526<br>3,827<br>4,857<br>5,936<br>7,517<br>9,560<br>9,560<br>838<br>1,457<br>828<br>1,457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0                 | Power Law with ex<br>Number of tail<br>data 310<br>835<br>2,190<br>4,386<br>1,169<br>5,247<br>6,949<br>9,551<br>6,675<br>284<br>344<br>341                                 | Subjec<br>cp. cutoff<br>p value<br>7.3%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>13.3%   | tt 75922<br>Number<br>data<br>1,086<br>1,881<br>2,709<br>3,674<br>4,813<br>6,051<br>7,632<br>9,560<br>9,560<br>1,248<br>2,040<br>2,956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0% |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6<br>r=-0.5<br>r=-0.4                     | Power Law with es<br>Number of tail<br>data 715<br>2,079<br>3,437<br>4,352<br>4,503<br>638<br>803<br>659<br>585<br>872<br>1,164<br>1,908<br>2,533                          | Subject<br>p cutoff<br>p value<br>0.0%<br>0.0%<br>0.0%<br>1.3%<br>1.3%<br>2.3%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t 47659<br>Exponential<br>of tail<br>of tail | p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.1%<br>0.0%<br>0.0         | Power Law with es<br>Number of tail<br>data 310<br>835<br>2,190<br>4,386<br>1,169<br>5,247<br>6,949<br>9,551<br>6,675<br>284<br>344<br>361<br>706                          | Subjec<br>(p. cutoff<br>p value<br>7.3%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>1.3.3%<br>1.3.% | tt 75922<br>Number<br>data<br>1,086<br>1,881<br>2,709<br>3,674<br>4,813<br>6,0574<br>4,813<br>7,632<br>9,560<br>9,560<br>1,248<br>2,040<br>2,956<br>4,020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                  |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.1<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6<br>r=-0.5<br>r=-0.4<br>r=-0.4<br>r=-0.3 | Power Law with es<br>Number of tail<br>data 715<br>2,079<br>3,437<br>4,352<br>4,503<br>638<br>803<br>659<br>585<br>872<br>1,164<br>1,908<br>2,533<br>579                   | Subject<br>p. cutoff<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>1.3%<br>2.3%<br>3.7%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0 | t 47659<br>Exponential<br>data 646<br>1,432<br>2,526<br>3,827<br>4,857<br>5,936<br>7,517<br>9,560<br>9,560<br>838<br>1,457<br>2,255<br>3,327<br>4,885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.1%<br>0.0%<br>0.0         | Power Law with ex<br>Number of tail<br>data 310<br>835<br>2,190<br>4,386<br>1,169<br>5,247<br>6,949<br>9,551<br>6,675<br>284<br>344<br>361<br>706<br>907                   | Subjec<br>sp. cutoff<br>p value<br>7.3%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>13.3%<br>13.3%<br>1.0%  | tt 75922<br>Number<br>data<br>1,086<br>1,881<br>2,709<br>3,674<br>4,813<br>6,051<br>7,632<br>9,560<br>9,560<br>1,248<br>2,040<br>2,956<br>4,020<br>5,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                  |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6<br>r=-0.5<br>r=-0.4<br>r=-0.3<br>r=-0.2          | Power Law with es<br>Number of tail<br>data 715<br>2,079<br>3,437<br>4,352<br>4,503<br>638<br>803<br>659<br>585<br>872<br>1,164<br>1,908<br>2,533<br>579<br>4,749          | Subject<br>p cutoff<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>1.3%<br>1.3%<br>2.3%<br>3.7%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t 47659<br>Number<br>data<br>646<br>1,432<br>2,526<br>3,827<br>4,857<br>5,936<br>7,517<br>9,560<br>9,560<br>838<br>1,457<br>2,255<br>3,327<br>4,885<br>7,086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0                 | Power Law with ex<br>Number of tail<br>data 310<br>835<br>2,190<br>4,386<br>1,169<br>5,247<br>6,949<br>9,551<br>6,675<br>284<br>344<br>361<br>706<br>907<br>6,732          | Subjec<br>sp. cutoff<br>p value<br>7.3%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>13.3%<br>1.0%<br>0.0%           | tt 75922<br>Number<br>data<br>1,086<br>1,881<br>2,709<br>3,674<br>4,813<br>6,051<br>7,632<br>9,560<br>1,248<br>2,040<br>2,956<br>4,020<br>5,300<br>7,023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                  |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6<br>r=-0.4<br>r=-0.3<br>r=-0.2<br>r=-0.1 | Power Law with es<br>Number of tail<br>data 715<br>2,079<br>3,437<br>4,352<br>4,503<br>638<br>803<br>659<br>585<br>872<br>1,164<br>1,908<br>2,533<br>579<br>4,749<br>7,990 | Subject<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>1.3%<br>2.3%<br>3.7%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%   | t 47659<br>Exponential<br>of tail<br>of tail | p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.1%<br>0.0%<br>0.0 | Power Law with es<br>Number of tail<br>data 310<br>835<br>2,190<br>4,386<br>1,169<br>5,247<br>6,949<br>9,551<br>6,675<br>284<br>344<br>361<br>706<br>907<br>6,732<br>8,273 | Subjec<br>p. cutoff<br>p value<br>7.3%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>13.3%<br>1.0%<br>0.0%<br>0.0%    | et 75922<br>Number<br>data<br>1,086<br>1,881<br>2,709<br>3,674<br>4,813<br>6,051<br>7,632<br>9,560<br>1,248<br>2,040<br>2,956<br>1,248<br>2,040<br>2,956<br>4,020<br>5,300<br>7,023<br>9,560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>p value<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                  |  |

Implementing the *log likelihood ratio* for the generalized Pareto model versus the log normal model, and then for the generalized Pareto model versus the Weibull model across all data sets presented in the previous section (170 different tests), the results are as follows:

- The log likelihood of the generalized Pareto model is greater than the log likelihood of the Weibull model for 168 out of 170 tests, 154 of which are significant (meaning the probability that the observed positive sign of the difference between the log likelihood being a chance result of fluctuations is less than 10%)
- The log likelihood of the generalized Pareto model is greater than the log likelihood of the log normal model for 170 out of 170 tests, 164 of which are significant

These results clearly demonstrate that the generalized Pareto model is the best model among the popular models in consideration.

|                  | l              | Subjec         | et 4111 |         |                |        |           | Subje      | ct 4619 |         |               |
|------------------|----------------|----------------|---------|---------|----------------|--------|-----------|------------|---------|---------|---------------|
|                  | Log Norma      | 1              |         | Weibull |                | I      | .og Norma | 1          |         | Weibull |               |
| Thrashold        | Number of tail | - n voluo      | Number  | of tail | n voluo        | Number | of tail   | - n voluo  | Number  | of tail | n voluo       |
| Threshold        | data           |                | data    | 221     |                | data   | 120       |            | data    | 170     |               |
| r=0.8            | 232            | 25.0%          |         | 321     | 50.5%          |        | 430       | 25.7%      |         | 4/8     | /1./%         |
| r=0./            | 1/6            | 84.5%          |         | 919     | 1.9%           |        | 9/5       | 0.7%       |         | 1,280   | 0.0%          |
| r=0.6            | 717            | 2.3%           |         | 1,243   | 6.6%           |        | 1,396     | 0.0%       |         | 1,562   | 0.0%          |
| r=0.5            | 1,161          | 0.3%           |         | 1,227   | 10.4%          |        | 1,728     | 0.0%       |         | 2,146   | 0.0%          |
| r=0.4            | 1,140          | 0.0%           |         | 1,285   | 11.0%          |        | 2,123     | 1.00%      |         | 2,497   | 0.0%          |
| r=0.3            | 1,255          | 2.0%           |         | 1,298   | 11.9%          |        | 2 424     | 1.0%       |         | 2,375   | 0.0%          |
| r=0.2            | 1,383          | 0.0%           |         | 1,337   | 1.1%           |        | 2,424     | 0.0%       |         | 033     | 17.4%         |
| r=0.1            | 1,350          | 0.3%           |         | 1,355   | 4.2%           |        | 2,595     | 0.0%       |         | 683     | 15.8%         |
| r=0.0            | 1,517          | 0.5%           |         | 1,400   | 0.0%           |        | 2,151     | 0.0%       |         | 500     | 20.0%         |
| r=-0./           | 343            | 14.5%          |         | 421     | 92.0%<br>54.0% |        | 061       | 10.1%      |         | 1 210   | 80.7%         |
| 1=-0.6           | 210            | 00.5%<br>96 70 |         | 339     | 22.60          |        | 1 259     | 9.5%       |         | 1,219   | 12.20         |
| 1=-0.3           | 239            | 0.20           |         | 434     | 0.20           |        | 1,236     | 15.0%      |         | 1,410   | 15.5%         |
| r = 0.4          | 951            | 0.5%           |         | 1,105   | 0.2%           |        | 1,373     | 2.0%       |         | 1 017   | 99.0%<br>6.1% |
| 1=-0.3           | 1,010          | 0.0%           |         | 1,412   | 0.2%           |        | 1,399     | 2.0%       |         | 1,917   | 0.1%          |
| r = 0.2          | 992            | 0.0%           |         | 1,273   | 1.0%           |        | 1,450     | 2.5%       |         | 2 406   | 9.0%          |
| 1=-0.1           | 839            | 0.0%           |         | 1,176   | 2.20           |        | 1,755     | 2.00       |         | 2,490   | 7 40          |
| 1=-0.0           | 824            | 0.5%           |         | 1,100   | 5.2%           |        | 1,890     | 2.0%       |         | 2,394   | 7.4%          |
|                  |                | Subjec         | t 13636 |         |                |        |           | Subjec     | t 13959 |         |               |
|                  | Log Norma      | 1              |         | Weibull |                | I      | log Norma | 1          |         | Weibull |               |
| Thursday         | Number of tail | -              | Number  | of tail | 1              | Number | of tail   | -          | Number  | of tail | 1             |
| Inresnoid        | data           | p value        | data    |         | p value        | data   |           | p value    | data    |         | p value       |
| r=0.8            | 124            | 74.7%          |         | 562     | 2.7%           |        | 299       | 3.3%       |         | 372     | 27.1%         |
| r=0.7            | 697            | 72.3%          |         | 840     | 24.9%          |        | 269       | 71.3%      |         | 269     | 56.7%         |
| r=0.6            | 1,193          | 0.3%           |         | 1,423   | 5.8%           |        | 223       | 88.7%      |         | 301     | 99.9%         |
| r=0.5            | 526            | 6.0%           |         | 539     | 18.5%          |        | 1,071     | 14.3%      |         | 1,194   | 14.0%         |
| r=0.4            | 533            | 12.3%          |         | 736     | 25.6%          |        | 1,280     | 6.7%       |         | 1,637   | 0.4%          |
| r=0.3            | 619            | 9.3%           |         | 744     | 31.6%          |        | 3,172     | 1.0%       |         | 4,123   | 38.2%         |
| r=0.2            | 693            | 5.0%           |         | 701     | 27.1%          |        | 5,875     | 0.0%       |         | 7,149   | 0.0%          |
| r=0.1            | 679            | 3.3%           |         | 677     | 22.3%          |        | 5,813     | 0.7%       |         | 8,234   | 5.3%          |
| r=0.0            | 664            | 5.3%           |         | 641     | 16.9%          |        | 5,537     | 0.0%       |         | 9,551   | 5.9%          |
| r=-0.7           | 740            | 34.3%          |         | 1,146   | 61.8%          |        | 225       | 71.0%      |         | 294     | 74.6%         |
| r=-0.6           | 1,400          | 4.0%           |         | 1,721   | 9.7%           |        | 275       | 28.0%      |         | 511     | 26.4%         |
| r=-0.5           | 1,9/1          | 0.3%           |         | 2,384   | 0.2%           |        | 616       | 72.3%      |         | 653     | 95.3%         |
| r=-0.4           | 2,334          | 0.0%           |         | 2,998   | 0.1%           |        | 809       | 8.7%       |         | 1,979   | 18.3%         |
| r=-0.3           | 2,836          | 0.0%           |         | 3,645   | 0.0%           |        | 2,435     | 0.7%       |         | 5,354   | 28.2%         |
| r=-0.2           | 3,326          | 0.0%           |         | 4,313   | 0.0%           |        | 6,502     | 0.0%       |         | 5,013   | 0.0%          |
| r=-0.1           | 3,984          | 0.0%           |         | 5,029   | 0.0%           |        | 8,497     | 0.0%       |         | 9/4     | 14.5%         |
| r=-0.0           | 4,353          | 0.0%           |         | 5,096   | 0.0%           |        | 6,445     | 0.0%       |         | 982     | 12.1%         |
|                  |                | Subjec         | t 18698 |         |                |        |           | Subjec     | t 28433 |         |               |
|                  | Log Norma      | 1              |         | Weibull |                | I      | .og Norma | 1          |         | Weibull |               |
| Thrashald        | Number of tail | - n velve      | Number  | of tail | n velve        | Number | of tail   | - n velue  | Number  | of tail | n velue       |
| Threshold        | data           | p value        | data    |         | p value        | data   |           | p value    | data    |         | p value       |
| r=0.8            | 57             | 94.4%          |         | 48      | 93.2%          |        | 83        | 54.6%      |         | 95      | 90.7%         |
| r=0.7            | 128            | 77.8%          |         | 203     | 24.1%          |        | 85        | 82.9%      |         | 116     | 85.3%         |
| r=0.6            | 142            | 99.0%          |         | 655     | 12.6%          |        | 2,936     | 0.0%       |         | 2,849   | 0.0%          |
| r=0.5            | 412            | 41.6%          |         | 729     | 37.3%          |        | 371       | 11.7%      |         | 318     | 62.3%         |
| r=0.4            | 264            | 85.4%          |         | 688     | 77.1%          |        | 575       | 87.1%      |         | 681     | 75.1%         |
| r=0.3            | 429            | 76.6%          |         | 468     | 98.3%          |        | 1,407     | 12.9%      |         | 1,450   | 58.1%         |
| r=0.2            | 473            | 61.6%          |         | 564     | 96.3%          |        | 2,042     | 5.1%       |         | 2,313   | 12.2%         |
| r=0.1            | 483            | 31.2%          |         | 544     | 97.3%          |        | 3,274     | 0.0%       |         | 3,352   | 0.2%          |
| r=0.0            | 479            | 52.2%          |         | 548     | 88.0%          |        | 8,380     | 0.0%       |         | /,30/   | 0.0%          |
| r=-0.7           | 217            | 59.2%          |         | 406     | 23.6%          |        | 47        | 87.2%      |         | 205     | 12.0%         |
| r=-0.6           | 226            | 84.0%          |         | 842     | 51.5%          |        | 168       | 44.9%      |         | 450     | 13.0%         |
| r=-0.5           | 922            | 50.1%          |         | 1,053   | 69.9%          |        | 5/8       | 39.6%      |         | 444     | 85.1%         |
| r=-0.4           | 1,130          | 03.4%          |         | 1,425   | /0.0%          |        | 405       | 39.9%      |         | 523     | 11.5%         |
| r=-0.3           | 1,592          | 33.5%          |         | 1,966   | 50.0%          |        | 1,0/1     | 1.0%       |         | 2,085   | 29.5%         |
| r=-0.2           | 1,721          | 21.5%          |         | 2,115   | 05.4%          |        | 2,00/     | 10.2%      |         | 2,0/1   | 20.2%         |
|                  | 1 012          | 1.1.2.1.0      |         |         |                |        | 1         | /1 h 11//- |         |         |               |
| 1=-0.1<br>r= 0.0 | 1,815          | 12.8%          |         | 3,224   | 40.8%          |        | 3,278     | 4.9%       |         | 4,099   | 1.20%         |

Table 3.6: Results of log-normal and Weibull distribution tests, 10 subjects from 1000 Functional Connectome project, part 1

Table 3.7: Results of log-normal and Weibull distribution tests, 10 subjects from 1000 Functional Connectome project, part 2

|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      | Subjec                                                                                                                                                               | t 30421                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                       |                                                                                                                                                           | Subjec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t 34781        |                                                                                                                                                                                                                                                                      |                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      | Wai                                                                                                                                                                                                                                                                                                                                                                                                          | bull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | La                                      | Norm                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | Waibull                                                                                                                                                                                                                                                              |                                                                                                                                         |
| Threshold                                                                                                                                                         | Number of tail                                                                                                                                                                                                                                                                                       | p value                                                                                                                                                              | Number of                                                                                                                                                                                                                                                                                                                                                                                                    | tail p value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number o                                | of tail                                                                                                                                                   | p value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number         | of tail                                                                                                                                                                                                                                                              | p value                                                                                                                                 |
| r=0.8                                                                                                                                                             | data 292                                                                                                                                                                                                                                                                                             | 52.2%                                                                                                                                                                | data                                                                                                                                                                                                                                                                                                                                                                                                         | 53.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | data                                    | 277                                                                                                                                                       | 19.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | data           | 1.142                                                                                                                                                                                                                                                                | 0.0%                                                                                                                                    |
| r=0.7                                                                                                                                                             | 254                                                                                                                                                                                                                                                                                                  | 58.8%                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                            | 89 88.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 389                                                                                                                                                       | 23.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 425                                                                                                                                                                                                                                                                  | 71.9%                                                                                                                                   |
| r=0.6                                                                                                                                                             | 277                                                                                                                                                                                                                                                                                                  | 88.0%                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                            | 87 97.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 369                                                                                                                                                       | 87.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 559                                                                                                                                                                                                                                                                  | 92.4%                                                                                                                                   |
| r=0.5                                                                                                                                                             | 560                                                                                                                                                                                                                                                                                                  | 8.8%                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                            | 99 34.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 730                                                                                                                                                       | 11.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 804                                                                                                                                                                                                                                                                  | 86.9%                                                                                                                                   |
| r=0.4                                                                                                                                                             | 662                                                                                                                                                                                                                                                                                                  | 26.6%                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                            | 62 87.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 954                                                                                                                                                       | 4.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 938                                                                                                                                                                                                                                                                  | 63.5%                                                                                                                                   |
| r=0.3                                                                                                                                                             | 687                                                                                                                                                                                                                                                                                                  | 41.6%                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                            | 70 97.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1,018                                                                                                                                                     | 9.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 1,051                                                                                                                                                                                                                                                                | 35.0%                                                                                                                                   |
| r=0.2                                                                                                                                                             | 1,020                                                                                                                                                                                                                                                                                                | 47.2%                                                                                                                                                                | 1,1                                                                                                                                                                                                                                                                                                                                                                                                          | 11 87.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1,040                                                                                                                                                     | 11.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1,076                                                                                                                                                                                                                                                                | 22.2%                                                                                                                                   |
| r=0.1                                                                                                                                                             | 1,059                                                                                                                                                                                                                                                                                                | 27.3%                                                                                                                                                                | 1,3                                                                                                                                                                                                                                                                                                                                                                                                          | 98 70.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1,043                                                                                                                                                     | 6.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 1,055                                                                                                                                                                                                                                                                | 13.4%                                                                                                                                   |
| r=0.0                                                                                                                                                             | 1,464                                                                                                                                                                                                                                                                                                | 8.8%                                                                                                                                                                 | 1,6                                                                                                                                                                                                                                                                                                                                                                                                          | 51.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 1,053                                                                                                                                                     | 3.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 1,137                                                                                                                                                                                                                                                                | 11.2%                                                                                                                                   |
| r=-0.7                                                                                                                                                            | 112                                                                                                                                                                                                                                                                                                  | 99.7%                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                            | 07 0.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 205                                                                                                                                                       | 97.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 232                                                                                                                                                                                                                                                                  | 89.9%                                                                                                                                   |
| r=-0.6                                                                                                                                                            | 802                                                                                                                                                                                                                                                                                                  | 0.0%                                                                                                                                                                 | 9                                                                                                                                                                                                                                                                                                                                                                                                            | 094 0.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 225                                                                                                                                                       | 97.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 274                                                                                                                                                                                                                                                                  | 94.3%                                                                                                                                   |
| r=-0.5                                                                                                                                                            | 546                                                                                                                                                                                                                                                                                                  | 2.1%                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                            | 16.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 257                                                                                                                                                       | 94.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1,088                                                                                                                                                                                                                                                                | 34.2%                                                                                                                                   |
| r=-0.4                                                                                                                                                            | 741                                                                                                                                                                                                                                                                                                  | 1.3%                                                                                                                                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                            | 49 25.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1,050                                                                                                                                                     | 13.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1,095                                                                                                                                                                                                                                                                | 84.5%                                                                                                                                   |
| r=-0.3                                                                                                                                                            | 487                                                                                                                                                                                                                                                                                                  | 71.4%                                                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                            | 29.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 1,017                                                                                                                                                     | 28.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1,162                                                                                                                                                                                                                                                                | 49.8%                                                                                                                                   |
| r=-0.2                                                                                                                                                            | 819                                                                                                                                                                                                                                                                                                  | 26.1%                                                                                                                                                                | 1,5                                                                                                                                                                                                                                                                                                                                                                                                          | 16.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 1,024                                                                                                                                                     | 38.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1,110                                                                                                                                                                                                                                                                | 57.9%                                                                                                                                   |
| r=-0.1                                                                                                                                                            | 1,331                                                                                                                                                                                                                                                                                                | 5.0%                                                                                                                                                                 | 1,5                                                                                                                                                                                                                                                                                                                                                                                                          | 56.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 1,052                                                                                                                                                     | 45.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1,183                                                                                                                                                                                                                                                                | 58.7%                                                                                                                                   |
| r=-0.0                                                                                                                                                            | 1,356                                                                                                                                                                                                                                                                                                | 6.4%                                                                                                                                                                 | 1,5                                                                                                                                                                                                                                                                                                                                                                                                          | 35 37.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1,048                                                                                                                                                     | 35.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 1,231                                                                                                                                                                                                                                                                | 58.6%                                                                                                                                   |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      | Subjec                                                                                                                                                               | t 47659                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                       |                                                                                                                                                           | 0.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                                                                                                                                                                                                                                                      |                                                                                                                                         |
|                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      | c 17057                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                       |                                                                                                                                                           | Subjec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | et 75922       |                                                                                                                                                                                                                                                                      |                                                                                                                                         |
|                                                                                                                                                                   | Log Norma                                                                                                                                                                                                                                                                                            | d                                                                                                                                                                    | Wei                                                                                                                                                                                                                                                                                                                                                                                                          | bull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lo                                      | og Norm                                                                                                                                                   | al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | et 75922       | Weibull                                                                                                                                                                                                                                                              |                                                                                                                                         |
| Threshold                                                                                                                                                         | Log Norma<br>Number of tail                                                                                                                                                                                                                                                                          | l n value                                                                                                                                                            | Wei<br>Number of                                                                                                                                                                                                                                                                                                                                                                                             | bull<br>tail p value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>  Number 0                          | og Norma<br>of tail                                                                                                                                       | al n value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number         | Weibull<br>of tail                                                                                                                                                                                                                                                   | n value.                                                                                                                                |
| Threshold                                                                                                                                                         | Number Of tail                                                                                                                                                                                                                                                                                       | l p value                                                                                                                                                            | Wei<br>Number of<br>data                                                                                                                                                                                                                                                                                                                                                                                     | bull<br>tail p value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Number Lo                               | og Norma<br>of tail                                                                                                                                       | al p value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number<br>data | Weibull<br>of tail                                                                                                                                                                                                                                                   | p value                                                                                                                                 |
| Threshold<br>r=0.8                                                                                                                                                | Number Log Norma<br>data 68                                                                                                                                                                                                                                                                          | ll<br>p value<br>94.8%                                                                                                                                               | Wei<br>Number of<br>data                                                                                                                                                                                                                                                                                                                                                                                     | bull<br>tail p value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lo<br>  Number o<br>  data              | og Norma<br>of tail<br>467                                                                                                                                | p value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number<br>data | Weibull<br>of tail                                                                                                                                                                                                                                                   | p value<br>0.2%                                                                                                                         |
| Threshold<br>r=0.8<br>r=0.7                                                                                                                                       | Number Log Norma<br>data 68<br>428                                                                                                                                                                                                                                                                   | <u>l</u><br>p value<br>94.8%<br>0.1%                                                                                                                                 | Wei<br>Number of<br>data<br>1,2                                                                                                                                                                                                                                                                                                                                                                              | bull           tail         p value           574         4.1%           526         0.0%           521         15.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Number o<br>  Number o<br>  data        | og Norma<br>of tail<br>467<br>1,060                                                                                                                       | al<br>p value<br>0.8%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number<br>data | Weibull<br>of tail<br>549<br>510<br>204                                                                                                                                                                                                                              | p value<br>0.2%<br>20.7%                                                                                                                |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6                                                                                                                              | Number Cog Norma<br>data<br>68<br>428<br>362                                                                                                                                                                                                                                                         | l<br>p value<br>94.8%<br>0.1%<br>1.9%                                                                                                                                | Wei       Number     of       data     3       1,2     4                                                                                                                                                                                                                                                                                                                                                     | bull<br>tail p value<br>74 4.1%<br>226 0.0%<br>221 15.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number o                                | og Norma<br>of tail<br>467<br>1,060<br>274                                                                                                                | al<br>p value<br>0.8%<br>0.0%<br>32.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number<br>data | Weibull<br>of tail<br>549<br>510<br>294                                                                                                                                                                                                                              | p value<br>0.2%<br>20.7%<br>45.8%                                                                                                       |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5                                                                                                                     | Log Norma           Number         of tail           data         68           428         362           451         751                                                                                                                                                                             | ll<br>p value<br>94.8%<br>0.1%<br>1.9%<br>85.2%                                                                                                                      | Wei           Number         of           data         3           1,2         4           3         6                                                                                                                                                                                                                                                                                                       | bull<br>tail p value<br>574 4.1%<br>526 0.0%<br>521 15.5%<br>587 90.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <br>  Number Lo<br>  data               | og Norma<br>of tail<br>467<br>1,060<br>274<br>1,453                                                                                                       | al<br>p value<br>0.8%<br>0.0%<br>32.7%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number<br>data | Weibull<br>of tail<br>549<br>510<br>294<br>280<br>287                                                                                                                                                                                                                | p value<br>0.2%<br>20.7%<br>45.8%<br>76.5%                                                                                              |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4                                                                                                            | Number<br>data<br>68<br>428<br>362<br>451<br>751                                                                                                                                                                                                                                                     | d<br>p value<br>94.8%<br>0.1%<br>1.9%<br>85.2%<br>11.7%                                                                                                              | Wei<br>Number of data                                                                                                                                                                                                                                                                                                                                                                                        | bull           tail         p value           574         4.1%           526         0.0%           521         15.5%           587         90.4%           521         50.5%           40         12.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>  Number Lo<br>  data               | bg Norma<br>of tail<br>467<br>1,060<br>274<br>1,453<br>1,893<br>2,509                                                                                     | al<br>p value<br>0.8%<br>0.0%<br>32.7%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number<br>data | Weibull<br>of tail<br>549<br>510<br>294<br>280<br>287<br>2000                                                                                                                                                                                                        | p value<br>0.2%<br>20.7%<br>45.8%<br>76.5%<br>84.6%                                                                                     |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3                                                                                                   | Number Log Norma<br>data 68<br>428<br>362<br>451<br>751<br>1,509                                                                                                                                                                                                                                     | d<br>p value<br>94.8%<br>0.1%<br>1.9%<br>85.2%<br>11.7%<br>1.3%                                                                                                      | Weil           Number         of           data         3           1,2         4           3         9           1,6         2                                                                                                                                                                                                                                                                              | bull<br>tail p value<br>574 4.1%<br>526 0.0%<br>521 15.5%<br>587 90.4%<br>521 50.5%<br>540 13.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lo<br>  Number o<br>  data              | bg Norma<br>of tail<br>467<br>1,060<br>274<br>1,453<br>1,893<br>2,508<br>2,258                                                                            | al<br>p value<br>0.8%<br>0.0%<br>32.7%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number<br>data | Weibull<br>of tail<br>549<br>510<br>294<br>280<br>287<br>3,009<br>2766                                                                                                                                                                                               | p value<br>0.2%<br>20.7%<br>45.8%<br>76.5%<br>84.6%<br>0.0%                                                                             |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2                                                                                          | Number Log Norma<br>data 68<br>428<br>362<br>451<br>751<br>1,509<br>1,675                                                                                                                                                                                                                            | d<br>94.8%<br>0.1%<br>1.9%<br>85.2%<br>11.7%<br>1.3%<br>4.8%                                                                                                         | Weil           Number         of           data         2           1,2         4           3         5           1,6         2,6                                                                                                                                                                                                                                                                            | bull         p value           174         4.1%           126         0.0%           121         15.5%           187         90.4%           121         50.5%           140         13.6%           137         6.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ $ Number $\frac{\text{Lo}}{\text{o}}$ | og Norma<br>of tail<br>467<br>1,060<br>274<br>1,453<br>1,893<br>2,508<br>3,358<br>4 280                                                                   | al<br>p value<br>0.8%<br>0.0%<br>32.7%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number<br>data | Weibull<br>of tail<br>549<br>510<br>294<br>280<br>287<br>3,009<br>3,766<br>5,464                                                                                                                                                                                     | p value<br>0.2%<br>20.7%<br>45.8%<br>76.5%<br>84.6%<br>0.0%<br>0.0%                                                                     |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1                                                                                 | Log Norma           Number         of         tail           data         68         428           362         451         751           1,509         1,675         1,396           1,207         1,396         1,275                                                                               | d<br>94.8%<br>0.1%<br>1.9%<br>85.2%<br>11.7%<br>1.3%<br>4.8%<br>18.3%                                                                                                | Wei           Number         of           data         3           1,2         4           3         5           1,6         2,6           1,8         2,6           1,2         2,6                                                                                                                                                                                                                         | bull         p value           174         4.1%           174         4.1%           175         5%           187         90.4%           187         90.4%           136         337           6.5%         44.3%           120         50.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number Lo                               | og Norma<br>of tail<br>467<br>1,060<br>274<br>1,453<br>1,893<br>2,508<br>3,358<br>4,280                                                                   | All<br>p value<br>0.8%<br>0.0%<br>32.7%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number<br>data | Weibull<br>of tail<br>549<br>510<br>294<br>280<br>287<br>3,009<br>3,766<br>5,464<br>7,685                                                                                                                                                                            | p value<br>0.2%<br>20.7%<br>45.8%<br>76.5%<br>84.6%<br>0.0%<br>0.0%<br>0.0%                                                             |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=0.7                                                               | Log Norma           Number         of tail           data         68           428         362           451         751           1,509         1,675           1,396         1,396           1,397         1,397                                                                                   | d<br>94.8%<br>0.1%<br>1.9%<br>85.2%<br>11.7%<br>1.3%<br>4.8%<br>18.3%<br>51.0%                                                                                       | Wei           Number         of           data         3           1,2         4           2         1,2           4         3           5         1,6           2,6         1,8           2,5         2,5                                                                                                                                                                                                   | bull           tail         p value           574         4.1%           226         0.0%           121         15.5%           187         90.4%           121         50.5%           337         6.5%           335         44.3%           128         59.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lo<br>Number o<br>data                  | bg Norma<br>of tail<br>467<br>1,060<br>274<br>1,453<br>1,893<br>2,508<br>3,358<br>4,280<br>4,917<br>515                                                   | subject           al           p value           0.8%           0.0%           32.7%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Number<br>data | Weibull<br>of tail<br>549<br>510<br>294<br>280<br>287<br>3,009<br>3,766<br>5,464<br>7,685                                                                                                                                                                            | p value<br>0.2%<br>20.7%<br>45.8%<br>76.5%<br>84.6%<br>0.0%<br>0.0%<br>0.0%<br>0.0%                                                     |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=-0.7<br>r=-0.6                                                             | Log Norma           Number         of tail           data         68           428         362           451         751           1,509         1,675           1,397         1,43           200         200                                                                                        | l<br>p value<br>94.8%<br>0.1%<br>1.9%<br>85.2%<br>11.7%<br>1.3%<br>4.8%<br>18.3%<br>51.0%<br>98.7%                                                                   | Wei         Wei           Number         of           data         2           1,2         1,2           4         3           5         1,6           2,6         1,8           2,5         2,5                                                                                                                                                                                                             | bull           tail         p value           174         4.1%           175         6.1%           174         1.1%           175         15.5%           171         15.5%           172         15.5%           174         13.6%           175         13.6%           175         13.5           176         13.6%           172         50.5%           172         50.5%           175         56.5%           176         56.5%           176         56.5%           176         56.5%           176         56.5%           176         56.5%                                                                                                                                                                                                                                                                                                                                                                                 | <br>Number to o                         | bg Norma<br>of tail<br>467<br>1,060<br>274<br>1,453<br>1,893<br>2,508<br>3,358<br>4,280<br>4,917<br>515<br>716                                            | subject           al           p value           0.8%           0.0%           32.7%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Number<br>data | Weibull           of         tail           549         510           294         280           287         3,009           3,766         5,464           7,685         619                                                                                          | p value<br>0.2%<br>20.7%<br>45.8%<br>76.5%<br>84.6%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>48.8%                                            |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6                                                    | Log Norma           Number         of         tail           data         68         428           362         451         751           1,509         1,675         1,396           1,397         143         298           201         201         201                                             | d<br>p value<br>94.8%<br>0.1%<br>1.9%<br>85.2%<br>11.7%<br>1.3%<br>4.8%<br>18.3%<br>51.0%<br>98.7%<br>49.4%<br>29.5 °C                                               | Weinder         Weinder           Vumber         of           data         3           1,2         4           3         9           1,6         2,6           1,8         2,6           2,5         5                                                                                                                                                                                                       | bull           tail         p value           174         4.1%           1726         0.0%           121         15.5%           187         90.4%           121         50.5%           1337         6.5%           1337         6.5%           128         59.3%           128         59.5%           559         56.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>  Number o<br>  data                | pg Norms<br>of tail<br>467<br>1,060<br>274<br>1,453<br>1,893<br>2,508<br>3,358<br>4,280<br>4,917<br>515<br>716<br>824                                     | subject           al           p value           0.8%           0.0%           32.7%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%           0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number<br>data | Weibull           of         tail           549         510           294         280           287         3,009           3,766         5,464           7,685         619           888         1,044                                                              | p value<br>0.2%<br>20.7%<br>45.8%<br>76.5%<br>84.6%<br>0.0%<br>0.0%<br>0.0%<br>48.8%<br>44.3%                                           |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6<br>r=-0.6<br>r=-0.4                                         | Log Norma           Number         Log Norma           data         of tail           data         68           428         362           451         751           1,509         1,675           1,396         1,397           143         298           305         315                            | 1<br>p value<br>94.8%<br>0.1%<br>1.9%<br>85.2%<br>11.7%<br>1.3%<br>4.8%<br>18.3%<br>51.0%<br>98.7%<br>49.4%<br>38.5%<br>20.2%                                        | Wei         Wei           Number         of           data         3           1,2         4           3         1,2           4         3           5         1,6           2,6         1,8           2,5         2           6         6                                                                                                                                                                   | bull           tail         p value           174         4.1%           126         0.0%           121         15.5%           187         90.4%           121         50.5%           140         13.6%           133         44.3%           128         59.3%           1448         95.5%           1559         56.0%           16         56.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Number of data                          | pg Norms<br>of tail<br>467<br>1,060<br>274<br>1,453<br>1,893<br>2,508<br>3,358<br>4,280<br>4,917<br>515<br>716<br>824                                     | Subject<br>all p value<br>0.8%<br>0.0%<br>32.7%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>39.9%<br>50.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number<br>data | Weibull           of         tail           549         510           294         280           287         3,009           3,766         5,464           7,685         619           888         1,044                                                              | p value<br>0.2%<br>20.7%<br>45.8%<br>76.5%<br>84.6%<br>0.0%<br>0.0%<br>0.0%<br>48.8%<br>44.3%<br>51.7%                                  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.6<br>r=-0.5<br>r=-0.4                                          | Number Log Norma<br>of tail<br>data 68<br>428<br>362<br>451<br>751<br>1,509<br>1,675<br>1,396<br>1,397<br>143<br>298<br>305<br>317                                                                                                                                                                   | d<br>p value<br>94.8%<br>0.1%<br>85.2%<br>11.7%<br>1.3%<br>1.3%<br>18.3%<br>51.0%<br>98.7%<br>49.4%<br>38.5%<br>92.3%                                                | Wei         Wei           Number         of           data         2           1,2         1,2           4         3           9         1,6           2,6         1,8           2,9         2,6           1,6         2,6           1,6         2,6           1,6         2,6           1,6         2,6           1,6         2,6           1,6         2,6           1,6         2,5           6         6 | bull           tail         p value           174         4.1%           126         0.0%           121         15.5%           187         90.4%           121         15.5%           140         13.6%           135         44.3%           128         59.3%           128         59.3%           148         95.5%           159         56.0%           1616         56.4%           162         56.4%           164         56.4%           165         56.4%           166         56.4%           167         56.4%           166         56.4%           165         56.4%           165         56.4%           165         56.4%           165         56.4%           166         56.4%           167         56.4%           167         56.4%           167         56.4%           168         56.4%           168         56.4%           168         56.4%           168         56.4%           168         56.4%< | <br>Number<br>data                      | og Norma<br>of tail<br>467<br>1,060<br>274<br>1,453<br>1,893<br>2,508<br>3,358<br>4,280<br>4,917<br>515<br>716<br>824<br>1,286                            | Subject           all         p value           0.8%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number<br>data | Weibull           of         tail           549         510           294         280           287         3,009           3,766         5,464           7,685         619           888         1,044           1,409         2409                                 | p value<br>0.2%<br>20.7%<br>45.8%<br>76.5%<br>84.6%<br>0.0%<br>0.0%<br>0.0%<br>48.8%<br>44.3%<br>51.7%<br>60.8%                         |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=-0.7<br>r=-0.6<br>r=-0.5<br>r=-0.4<br>r=-0.3                               | Log Norma           Number         of         tail           data         68         428           362         451         751           1,509         1,675         1,396           1,397         143         298           305         317         387                                             | 94.8%<br>94.8%<br>0.1%<br>1.9%<br>85.2%<br>11.7%<br>4.8%<br>11.3%<br>4.8%<br>51.0%<br>98.7%<br>49.4%<br>38.5%<br>92.3%<br>95.1%                                      | Number         Wei           data         3           1,2         4           3         1,2           4         3           5         6           6         1,4           2,5         6           1,2         5           6         1,4                                                                                                                                                                      | bull           tail         p value           174         4.1%           175         6.0%           121         15.5%           187         90.4%           121         15.5%           1337         6.5%           1335         44.3%           128         59.3%           128         59.3%           155         56.0%           161         56.4%           163         56.4%           164         30.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Atta                                    | og Norma<br>f tail<br>467<br>1,060<br>274<br>1,453<br>1,893<br>2,508<br>3,358<br>4,280<br>4,917<br>515<br>716<br>824<br>1,288<br>1,810<br>2,120           | Subject<br>al<br>p value<br>0.8%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0. | Number<br>data | Weibull<br>of         tail           549         510           294         280           287         3,009           3,666         5,464           7,685         619           888         1,044           1,409         2,024           2,024         2,024         | p value<br>0.2%<br>20.7%<br>45.8%<br>84.6%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>48.8%<br>44.3%<br>51.7%<br>60.8%<br>9.4%                  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.4<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6<br>r=-0.4<br>r=-0.3<br>r=-0.4<br>r=-0.2                              | Log Norma           Number         Log Norma           data         68           428         362           451         751           1,509         1,675           1,396         1,397           143         298           305         317           387         1,217           1,217         1,217 | 1<br>94.8%<br>0.1%<br>1.9%<br>85.2%<br>11.7%<br>4.8%<br>18.3%<br>51.0%<br>98.7%<br>49.4%<br>38.5%<br>92.3%<br>95.1%<br>22.6%                                         | Wei         Wei           Number         of           data         3           1,2         4           3         1,2           4         3           5         6           6         6           6         6           1,4         1,4                                                                                                                                                                       | bull           tail         p value           121         1.5.5%           121         15.5%           121         15.5%           121         50.5%           121         50.5%           1337         6.5%           1335         44.3%           1228         59.3%           1448         95.5%           1559         56.0%           161         56.4%           196         30.6%           122         66.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Number of data                          | og Norma<br>of tail<br>467<br>1,060<br>274<br>1,453<br>1,893<br>2,508<br>3,358<br>4,280<br>4,917<br>515<br>716<br>824<br>1,288<br>1,810<br>2,129<br>2,200 | Subject<br>subject<br>0.8%<br>0.0%<br>32.7%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>0.0%<br>39.9%<br>50.8%<br>46.0%<br>0.0%<br>0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number<br>data | Weibull           of         tail           549         510           294         280           287         3,009           3,766         5,464           7,685         619           888         1,044           1,044         2,024           2,024         2,2450 | p value<br>0.2%<br>20.7%<br>45.8%<br>76.5%<br>84.6%<br>0.0%<br>0.0%<br>0.0%<br>48.8%<br>51.7%<br>60.8%<br>9.4%<br>0.2%                  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=-0.0<br>r=-0.5<br>r=-0.4<br>r=-0.2<br>r=-0.1<br>r=-0.2<br>r=-0.2<br>r=-0.2 | Number Log Norma<br>of tail<br>data 68<br>428<br>362<br>451<br>751<br>1,509<br>1,675<br>1,396<br>1,397<br>143<br>298<br>305<br>317<br>387<br>1,217<br>1,219                                                                                                                                          | 94.8%<br>94.8%<br>0.1%<br>1.9%<br>85.2%<br>11.7%<br>11.7%<br>11.3%<br>4.8%<br>18.3%<br>98.7%<br>99.7%<br>99.7%<br>92.3%<br>95.1%<br>92.3%<br>95.1%<br>24.2%<br>24.2% | Wei         Wei           Number         of           data         3           1,2         1,2           4         3           1,2         1,2           1,2         1,2           1,2         1,2           1,2         1,2           1,2         1,2           1,6         2,6           1,6         2,9           2         5           6         6           1,4         1,4           1,4         1,1   | bull           tail         p value           174         4.1%           126         0.0%           121         15.5%           187         90.4%           121         15.5%           121         15.5%           133         4.3%           128         59.3%           128         59.3%           128         59.3%           126         56.0%           135         44.3%           128         59.3%           128         59.3%           1296         56.6%           135         44.3%           128         59.3%           1296         30.6%           1226         66.7%           122         66.7%           122         66.7%           129         58.7%                                                                                                                                                                                                                                                             | <br>Number to o                         | og Norma<br>of tail<br>467<br>1,060<br>274<br>1,453<br>1,893<br>2,508<br>3,358<br>4,280<br>4,917<br>515<br>716<br>824<br>1,288<br>1,810<br>2,139<br>2,390 | Subject           all         p value           0.8%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%           0.0%         0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number<br>data | Weibull<br>of         tail           549         510           294         280           287         3,009           3,766         5,464           7,685         619           888         1,044           1,409         2,024           2,450         2,643         | p value<br>0.2%<br>20.7%<br>45.8%<br>76.5%<br>84.6%<br>0.0%<br>0.0%<br>0.0%<br>48.8%<br>44.3%<br>51.7%<br>60.8%<br>9.4%<br>0.2%<br>0.0% |

|           | Subject 4111 - Generalized Pareto |                            |                        |                | Subject 4619 - Generalized Pareto |                            |                        |                 |  |
|-----------|-----------------------------------|----------------------------|------------------------|----------------|-----------------------------------|----------------------------|------------------------|-----------------|--|
| Threshold | k (shape pa-<br>rameter)          | sigma (scale<br>parameter) | Number of tail data    | p value        | k (shape pa-<br>rameter)          | sigma (scale<br>parameter) | Number of tail<br>data | p value         |  |
| r=0.8     | -0.40                             | 119.9                      | 894                    | 35.1%          | -0.59                             | 312.8                      | 1,335                  | 5.7%            |  |
| r=0.7     | -0.52                             | 259.8                      | 1,532                  | 50.9%          | -0.61                             | 278.7                      | 1,019                  | 22.0%           |  |
| r=0.6     | -0.52                             | 152.5                      | 568                    | 97.6%          | -0.70                             | 187.1                      | 512                    | 96.3%           |  |
| r=0.5     | -0.52                             | 139.2                      | 537                    | 91.5%          | -0.70                             | 325.2                      | 1,312                  | 26.7%           |  |
| r=0.4     | -0.53                             | 191.9                      | 943                    | 86.2%          | -0.70                             | 317.6                      | 1,363                  | 76.7%           |  |
| r=0.3     | -0.55                             | 152.4                      | 635                    | 99.9%          | -0.68                             | 270.1                      | 1,180                  | 96.3%           |  |
| r=0.2     | -0.55                             | 177.4                      | 916                    | 96.2%          | -0.66                             | 315.6                      | 1,529                  | 30.0%           |  |
| r=0.1     | -0.75                             | 936.6                      | 5,980                  | 2.1%           | -0.79                             | 1254.5                     | 6,605                  | 1.0%            |  |
| r=0.0     | -0./4                             | 811.5                      | 5,429                  | 5.5%           | -0.75                             | 1104.3                     | 6,330                  | 1.7%            |  |
| r= 0.6    | -0.30                             | 248.0                      | 1,412                  | 10.8%          | -0.40                             | 221.3                      | 702                    | 34.0%<br>25.2%  |  |
| r=-0.5    | -0.53                             | 565.0                      | 2,254                  | 9.5%           | -0.48                             | 185.1                      | 275                    | 25.570<br>87.3% |  |
| r=-0.4    | -0.67                             | 693.6                      | 3 591                  | 0.0%           | -0.56                             | 375.3                      | 1 582                  | 0.7%            |  |
| r=-0.3    | -0.68                             | 789.8                      | 4.348                  | 0.3%           | -0.55                             | 388.5                      | 1,758                  | 1.0%            |  |
| r=-0.2    | -0.69                             | 792.1                      | 4,543                  | 0.0%           | -0.51                             | 308.1                      | 1,378                  | 8.3%            |  |
| r=-0.1    | -0.69                             | 740.5                      | 4,472                  | 1.0%           | -0.50                             | 340.6                      | 1.613                  | 7.7%            |  |
| r=-0.0    | -0.69                             | 665.6                      | 4,113                  | 1.2%           | -0.49                             | 330.7                      | 1,587                  | 4.0%            |  |
|           |                                   | Subject 13636              | Generalized Pareto     |                |                                   | Subject 13959 -            | Generalized Pareto     |                 |  |
| Threshold | k (shape pa-<br>rameter)          | sigma (scale<br>parameter) | Number of tail<br>data | p value        | k (shape pa-<br>rameter)          | sigma (scale<br>parameter) | Number of tail<br>data | p value         |  |
| r=0.8     | -0.51                             | 162.9                      | 787                    | 91.2%          | -0.46                             | 52.7                       | 402                    | 85.0%           |  |
| r=0.7     | -0.53                             | 344.7                      | 1,666                  | 0.1%           | -0.23                             | 29.7                       | 269                    | 39.0%           |  |
| r=0.6     | -0.53                             | 219.7                      | 581                    | 99.2%          | -0.35                             | 55.6                       | 161                    | 99.3%           |  |
| r=0.5     | -0.60                             | 471.1                      | 1,728                  | 9.4%           | -0.37                             | 149.7                      | 342                    | 88.8%           |  |
| r=0.4     | -0.65                             | 841.4                      | 3,582                  | 1.4%           | -0.21                             | 298.9                      | 2,078                  | 0.6%            |  |
| r=0.3     | -0.65                             | 916.8                      | 4,222                  | 0.9%           | -0.08                             | 370.9                      | 4,426                  | 13.8%           |  |
| r=0.2     | -0.01                             | 221.5                      | 239                    | 99.1%          | -0.51                             | 574.8                      | 1,058                  | 33.1%           |  |
| r=0.1     | -0.59                             | 801.3                      | 4,808                  | 0.1%           | -0.31                             | 502.4                      | 4,904                  | 0.6%            |  |
| r=-0.7    | -0.05                             | 223.7                      | 1 607                  | 84.0%<br>2.0%  | -0.31                             | 341.4                      | 4,975                  | 0.0%<br>74.4%   |  |
| r=-0.6    | -0.59                             | 265.3                      | 339                    | 88.3%          | -0.15                             | 93.3                       | 628                    | 55.0%           |  |
| r=-0.5    | -0.68                             | 256.0                      | 301                    | 86.4%          | -0.17                             | 135.9                      | 419                    | 96.8%           |  |
| r=-0.4    | -0.69                             | 244.9                      | 299                    | 89.8%          | -0.05                             | 218.6                      | 2.108                  | 32.4%           |  |
| r=-0.3    | -0.43                             | 724.7                      | 4,948                  | 0.0%           | 0.13                              | 231.0                      | 5,242                  | 1.0%            |  |
| r=-0.2    | -0.40                             | 755.1                      | 5,956                  | 0.0%           | -0.51                             | 698.4                      | 883                    | 62.2%           |  |
| r=-0.1    | -0.36                             | 737.9                      | 7,409                  | 0.0%           | -0.47                             | 486.6                      | 702                    | 51.9%           |  |
| r=-0.0    | -0.33                             | 644.6                      | 6,625                  | 0.0%           | -0.47                             | 471.5                      | 713                    | 63.1%           |  |
|           |                                   | Subject 18698 -            | Generalized Pareto     |                |                                   | Subject 28433 -            | Generalized Pareto     |                 |  |
| Threshold | k (shape pa-<br>rameter)          | sigma (scale<br>parameter) | Number of tail         | p value        | k (shape pa-<br>rameter)          | sigma (scale<br>parameter) | Number of tail         | p value         |  |
| r=0.8     | -0.44                             | 29.3                       | 132                    | 17.1%          | -0.56                             | 25.7                       | 71                     | 59.4%           |  |
| r=0.7     | -0.32                             | 61.4                       | 410                    | 0.8%           | 1.25                              | 5.7                        | 1,268                  | 0.0%            |  |
| r=0.6     | -0.27                             | 105.9                      | 817                    | 30.4%          | 0.49                              | 24.3                       | 2,237                  | 0.0%            |  |
| r=0.5     | -0.29                             | 181.8                      | 1,418                  | 0.3%           | -0.39                             | 97.5                       | 358                    | 100.0%          |  |
| r=0.4     | -0.37                             | 288.6                      | 1,981                  | 10.9%          | -0.35                             | 179.2                      | 1,005                  | 36.0%           |  |
| r=0.3     | -0.41                             | 397.6                      | 3,118                  | 1.3%           | -0.39                             | 272.8                      | 1,943                  | 19.2%           |  |
| r=0.2     | -0.45                             | 495.4                      | 4,164                  | 4.9%           | -0.39                             | 359.9                      | 3,179                  | 8.6%            |  |
| r=0.1     | -0.46                             | 529.7                      | 5,220                  | 72.7%          | -0.34                             | 353.7                      | 3,573                  | 4.3%            |  |
| r=0.0     | -0.44                             | 441.0                      | 4,325                  | /0.0%          | -0.47                             | 280.6                      | 1,066                  | 92.8%           |  |
| r=-0./    | -0.30                             | 38.8                       | 145                    | 95.5%          | -0.35                             | 22.9                       | 130                    | 48.4%           |  |
| r=-0.6    | -0.03                             | 127.1                      | 8.54                   | 59.4%<br>62.8% | -0.44                             | 02.5                       | 189                    | 90.1%           |  |
| r=-0.4    | -0.12                             | 127.1                      | 1,155                  | 71 00-         | -0.38                             | 117.5                      | 1 171                  | 50.0%           |  |
| r=-0.4    | -0.17                             | 270.2                      | 2 740                  | 21.4%          | -0.30                             | 240.4                      | 2 190                  | 48 10%          |  |
| r=-0.2    | -0.23                             | 334.6                      | 3 830                  | 41.3%          | -0.28                             | 240.4                      | 3 167                  | 33.6%           |  |
| r=-0.1    | -0.27                             | 347.9                      | 4,642                  | 50.2%          | -0,16                             | 291.7                      | 4,240                  | 4.8%            |  |
| r=-0.0    | -0.22                             | 296.1                      | 4,507                  | 69.5%          | -0.08                             | 250.6                      | 4,372                  | 0.5%            |  |

Table 3.8: Results of generalized Pareto distribution tests, 10 subjects from 1000Functional Connectome project, part 1

Table 3.9: Results of generalized Pareto distribution tests, 10 subjects from 1000 Functional Connectome project, part 2

|                                                                                                                                                        |                                                                                                                                                                                   | Subject 30421 -                                                                                                                                                         | Generalized Pareto                                                                                                                               |                                                                                                                                            | Subject 34781 - Generalized Pareto                                                                                                                                       |                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Threshold                                                                                                                                              | k (shape pa-<br>rameter)                                                                                                                                                          | sigma (scale<br>parameter)                                                                                                                                              | Number of tail                                                                                                                                   | p value                                                                                                                                    | k (shape pa-<br>rameter)                                                                                                                                                 | sigma (scale<br>parameter)                                                                                                                                                | Number of tail                                                                                                                                   | p value                                                                                                                                        |  |
| r=0.8                                                                                                                                                  | -0.55                                                                                                                                                                             | 65.1                                                                                                                                                                    | 113                                                                                                                                              | 94.7%                                                                                                                                      | -0.45                                                                                                                                                                    | 77.6                                                                                                                                                                      | 358                                                                                                                                              | 68.2%                                                                                                                                          |  |
| r=0.7                                                                                                                                                  | -0.56                                                                                                                                                                             | 212.3                                                                                                                                                                   | 859                                                                                                                                              | 84.7%                                                                                                                                      | -0.35                                                                                                                                                                    | 72.7                                                                                                                                                                      | 258                                                                                                                                              | 78.5%                                                                                                                                          |  |
| r=0.6                                                                                                                                                  | -0.67                                                                                                                                                                             | 380.5                                                                                                                                                                   | 1,558                                                                                                                                            | 9.7%                                                                                                                                       | -0.29                                                                                                                                                                    | 70.9                                                                                                                                                                      | 210                                                                                                                                              | 91.6%                                                                                                                                          |  |
| r=0.5                                                                                                                                                  | -0.50                                                                                                                                                                             | 108.5                                                                                                                                                                   | 461                                                                                                                                              | 54.0%                                                                                                                                      | -0.39                                                                                                                                                                    | 142.8                                                                                                                                                                     | 571                                                                                                                                              | 56.1%                                                                                                                                          |  |
| r=0.4                                                                                                                                                  | -0.39                                                                                                                                                                             | 86.8                                                                                                                                                                    | 397                                                                                                                                              | 80.3%                                                                                                                                      | -0.42                                                                                                                                                                    | 148.5                                                                                                                                                                     | 604                                                                                                                                              | 86.6%                                                                                                                                          |  |
| r=0.3                                                                                                                                                  | -0.41                                                                                                                                                                             | 129.1                                                                                                                                                                   | 642                                                                                                                                              | 69.0%                                                                                                                                      | -0.56                                                                                                                                                                    | 680.0                                                                                                                                                                     | 5,873                                                                                                                                            | 25.6%                                                                                                                                          |  |
| r=0.2                                                                                                                                                  | -0.42                                                                                                                                                                             | 155.0                                                                                                                                                                   | 802                                                                                                                                              | 61.3%                                                                                                                                      | -0.56                                                                                                                                                                    | 589.4                                                                                                                                                                     | 4,784                                                                                                                                            | 0.7%                                                                                                                                           |  |
| r=0.1                                                                                                                                                  | -0.63                                                                                                                                                                             | 707.1                                                                                                                                                                   | 4,863                                                                                                                                            | 0.0%                                                                                                                                       | -0.54                                                                                                                                                                    | 480.4                                                                                                                                                                     | 4,003                                                                                                                                            | 12.6%                                                                                                                                          |  |
| r=0.0                                                                                                                                                  | -0.45                                                                                                                                                                             | 183.5                                                                                                                                                                   | 1,054                                                                                                                                            | 14.7%                                                                                                                                      | -0.53                                                                                                                                                                    | 450.9                                                                                                                                                                     | 4,055                                                                                                                                            | 15.3%                                                                                                                                          |  |
| r=-0.7                                                                                                                                                 | -0.50                                                                                                                                                                             | 175.8                                                                                                                                                                   | 693                                                                                                                                              | 88.3%                                                                                                                                      | -0.40                                                                                                                                                                    | 115.0                                                                                                                                                                     | 422                                                                                                                                              | 83.9%                                                                                                                                          |  |
| r=-0.6                                                                                                                                                 | -0.62                                                                                                                                                                             | 320.3                                                                                                                                                                   | 1,281                                                                                                                                            | 42.7%                                                                                                                                      | -0.41                                                                                                                                                                    | 195.3                                                                                                                                                                     | 920                                                                                                                                              | 22.6%                                                                                                                                          |  |
| r=-0.5                                                                                                                                                 | -0.72                                                                                                                                                                             | 492.2                                                                                                                                                                   | 2,005                                                                                                                                            | 36.7%                                                                                                                                      | -0.42                                                                                                                                                                    | 257.7                                                                                                                                                                     | 1,371                                                                                                                                            | 85.1%                                                                                                                                          |  |
| r=-0.4                                                                                                                                                 | -0.59                                                                                                                                                                             | 206.2                                                                                                                                                                   | 808                                                                                                                                              | 66.3%                                                                                                                                      | -0.41                                                                                                                                                                    | 379.4                                                                                                                                                                     | 3,308                                                                                                                                            | 13.9%                                                                                                                                          |  |
| r=-0.3                                                                                                                                                 | -0.55                                                                                                                                                                             | 218.0                                                                                                                                                                   | 861                                                                                                                                              | 75.3%                                                                                                                                      | -0.47                                                                                                                                                                    | 483.7                                                                                                                                                                     | 4,334                                                                                                                                            | 92.5%                                                                                                                                          |  |
| r=-0.2                                                                                                                                                 | -0.63                                                                                                                                                                             | 652.6                                                                                                                                                                   | 3,640                                                                                                                                            | 11.3%                                                                                                                                      | -0.46                                                                                                                                                                    | 416.4                                                                                                                                                                     | 3,348                                                                                                                                            | 54.7%                                                                                                                                          |  |
| r=-0.1                                                                                                                                                 | -0.55                                                                                                                                                                             | 278.7                                                                                                                                                                   | 1,231                                                                                                                                            | 52.3%                                                                                                                                      | -0.46                                                                                                                                                                    | 401.7                                                                                                                                                                     | 3,568                                                                                                                                            | 61.3%                                                                                                                                          |  |
| r=-0.0                                                                                                                                                 | -0.60                                                                                                                                                                             | 537.7                                                                                                                                                                   | 3,263                                                                                                                                            | 4.0%                                                                                                                                       | -0.44                                                                                                                                                                    | 368.4                                                                                                                                                                     | 3,462                                                                                                                                            | 32.9%                                                                                                                                          |  |
|                                                                                                                                                        |                                                                                                                                                                                   | Subject 47659 -                                                                                                                                                         | Generalized Pareto                                                                                                                               |                                                                                                                                            |                                                                                                                                                                          | Subject 75922 -                                                                                                                                                           | Generalized Pareto                                                                                                                               |                                                                                                                                                |  |
|                                                                                                                                                        |                                                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                  |                                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                |  |
| Threshold                                                                                                                                              | k (shape pa-<br>rameter)                                                                                                                                                          | sigma (scale<br>parameter)                                                                                                                                              | Number of tail                                                                                                                                   | p value                                                                                                                                    | k (shape pa-<br>rameter)                                                                                                                                                 | sigma (scale<br>parameter)                                                                                                                                                | Number of tail                                                                                                                                   | p value                                                                                                                                        |  |
| Threshold<br>r=0.8                                                                                                                                     | k (shape pa-<br>rameter)<br>-0.38                                                                                                                                                 | sigma (scale<br>parameter)<br>61.4                                                                                                                                      | Number of tail<br>data 337                                                                                                                       | p value<br>13.0%                                                                                                                           | k (shape pa-<br>rameter)<br>-0.29                                                                                                                                        | sigma (scale<br>parameter)<br>84.5                                                                                                                                        | Number of tail<br>data<br>730                                                                                                                    | p value<br>0.5%                                                                                                                                |  |
| Threshold<br>r=0.8<br>r=0.7                                                                                                                            | k (shape pa-<br>rameter)<br>-0.38<br>-0.55                                                                                                                                        | sigma (scale<br>parameter)<br>61.4<br>112.0                                                                                                                             | Number of tail<br>data<br>337<br>424                                                                                                             | p value<br>13.0%<br>64.5%                                                                                                                  | k (shape pa-<br>rameter)<br>-0.29<br>-0.50                                                                                                                               | sigma (scale<br>parameter)<br>84.5<br>169.2                                                                                                                               | Number of tail<br>data<br>730<br>510                                                                                                             | p value<br>0.5%<br>94.1%                                                                                                                       |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6                                                                                                                   | k (shape pa-<br>rameter)<br>-0.38<br>-0.55<br>-0.44                                                                                                                               | sigma (scale<br>parameter)<br>61.4<br>112.0<br>162.9                                                                                                                    | Number of tail<br>data 337<br>424<br>1,063                                                                                                       | p value<br>13.0%<br>64.5%<br>0.4%                                                                                                          | k (shape pa-<br>rameter)<br>-0.29<br>-0.50<br>-0.57                                                                                                                      | sigma (scale<br>parameter)<br>84.5<br>169.2<br>296.8                                                                                                                      | Number of tail<br>data 730<br>510<br>1,150                                                                                                       | p value<br>0.5%<br>94.1%<br>38.1%                                                                                                              |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5                                                                                                          | k (shape pa-<br>rameter)<br>-0.38<br>-0.55<br>-0.44<br>-0.26                                                                                                                      | sigma (scale<br>parameter)<br>61.4<br>112.0<br>162.9<br>71.6                                                                                                            | Number of tail<br>data 337<br>424<br>1,063<br>228                                                                                                | p value<br>13.0%<br>64.5%<br>0.4%<br>80.0%                                                                                                 | k (shape pa-<br>rameter)<br>-0.29<br>-0.50<br>-0.57<br>-0.57                                                                                                             | sigma (scale<br>parameter)<br>84.5<br>169.2<br>296.8<br>313.3                                                                                                             | Number of tail<br>data 730<br>510<br>1,150<br>1,207                                                                                              | p value<br>0.5%<br>94.1%<br>38.1%<br>29.9%                                                                                                     |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4                                                                                                 | k (shape pa-<br>rameter)<br>-0.38<br>-0.55<br>-0.44<br>-0.26<br>-0.43                                                                                                             | sigma (scale<br>parameter)<br>61.4<br>112.0<br>162.9<br>71.6<br>319.8                                                                                                   | Number of tail<br>data 337<br>424<br>1,063<br>228<br>2,755                                                                                       | p value<br>13.0%<br>64.5%<br>0.4%<br>80.0%<br>11.4%                                                                                        | k (shape pa-<br>rameter)<br>-0.29<br>-0.50<br>-0.57<br>-0.57<br>-0.58                                                                                                    | sigma (scale<br>parameter)<br>84.5<br>169.2<br>296.8<br>313.3<br>518.1                                                                                                    | Number of tail<br>data 730<br>510<br>1,150<br>1,207<br>2,500                                                                                     | p value<br>0.5%<br>94.1%<br>38.1%<br>29.9%<br>0.3%                                                                                             |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3                                                                                        | k (shape pa-<br>rameter)<br>-0.38<br>-0.55<br>-0.44<br>-0.26<br>-0.43<br>-0.53                                                                                                    | sigma (scale<br>parameter)<br>61.4<br>112.0<br>162.9<br>71.6<br>319.8<br>520.3                                                                                          | Number of tail<br>data 337<br>424<br>1,063<br>228<br>2,755<br>4,784                                                                              | p value<br>13.0%<br>64.5%<br>0.4%<br>80.0%<br>11.4%<br>0.0%                                                                                | k (shape pa-<br>rameter)<br>-0.29<br>-0.50<br>-0.57<br>-0.57<br>-0.58<br>-0.54                                                                                           | sigma (scale<br>parameter)<br>84.5<br>169.2<br>296.8<br>313.3<br>518.1<br>588.8                                                                                           | Number of tail<br>data 730<br>510<br>1,150<br>1,207<br>2,500<br>3,357                                                                            | p value<br>0.5%<br>94.1%<br>38.1%<br>29.9%<br>0.3%<br>0.0%                                                                                     |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2                                                                               | k (shape pa-<br>rameter)<br>-0.38<br>-0.55<br>-0.44<br>-0.26<br>-0.43<br>-0.53<br>-0.53<br>-0.46                                                                                  | sigma (scale<br>parameter)<br>61.4<br>112.0<br>162.9<br>71.6<br>319.8<br>520.3<br>261.0                                                                                 | Number of tail<br>data 337<br>424<br>1,063<br>228<br>2,755<br>4,784<br>1,927                                                                     | p value<br>13.0%<br>64.5%<br>0.4%<br>80.0%<br>11.4%<br>0.0%<br>7.4%                                                                        | k (shape pa-<br>rameter)<br>-0.29<br>-0.50<br>-0.57<br>-0.57<br>-0.58<br>-0.54<br>-0.50                                                                                  | sigma (scale<br>parameter)<br>84.5<br>169.2<br>296.8<br>313.3<br>518.1<br>588.8<br>605.4                                                                                  | Number of tail<br>data 730<br>510<br>1,150<br>1,207<br>2,500<br>3,357<br>3,914                                                                   | p value<br>0.5%<br>94.1%<br>38.1%<br>29.9%<br>0.3%<br>0.0%<br>0.0%                                                                             |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1                                                                      | k (shape pa-<br>rameter)<br>-0.38<br>-0.55<br>-0.44<br>-0.26<br>-0.43<br>-0.53<br>-0.46<br>-0.43                                                                                  | sigma (scale<br>parameter)<br>61.4<br>112.0<br>162.9<br>71.6<br>319.8<br>520.3<br>261.0<br>191.9                                                                        | Number of tail<br>data 337<br>424<br>1,063<br>228<br>2,755<br>4,784<br>1,927<br>1,341                                                            | p value<br>13.0%<br>64.5%<br>0.4%<br>80.0%<br>11.4%<br>0.0%<br>7.4%<br>30.2%                                                               | k (shape pa-<br>rameter)<br>-0.29<br>-0.50<br>-0.57<br>-0.57<br>-0.58<br>-0.54<br>-0.50<br>-0.75                                                                         | sigma (scale<br>parameter)<br>84.5<br>169.2<br>296.8<br>313.3<br>518.1<br>588.8<br>605.4<br>463.2                                                                         | Number of tail<br>data 730<br>510<br>1,150<br>1,207<br>2,500<br>3,357<br>3,914<br>1,052                                                          | p value<br>0.5%<br>94.1%<br>28.1%<br>29.9%<br>0.3%<br>0.0%<br>15.8%                                                                            |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.2<br>r=0.1<br>r=0.0                                                                      | k (shape pa-<br>rameter)<br>-0.38<br>-0.55<br>-0.44<br>-0.26<br>-0.43<br>-0.53<br>-0.46<br>-0.43<br>-0.43<br>-0.43                                                                | sigma (scale<br>parameter)<br>61.4<br>112.0<br>162.9<br>71.6<br>319.8<br>520.3<br>261.0<br>191.9<br>152.2                                                               | Number of tail<br>data 337<br>424<br>1,063<br>228<br>2,755<br>4,784<br>1,927<br>1,341<br>1,045                                                   | p value<br>13.0%<br>64.5%<br>0.4%<br>80.0%<br>11.4%<br>0.0%<br>7.4%<br>30.2%<br>61.9%                                                      | k (shape pa-<br>rameter)<br>-0.29<br>-0.50<br>-0.57<br>-0.57<br>-0.58<br>-0.54<br>-0.54<br>-0.50<br>-0.75<br>-0.29                                                       | sigma (scale<br>parameter)<br>84.5<br>169.2<br>296.8<br>313.3<br>518.1<br>588.8<br>605.4<br>463.2<br>542.0                                                                | Number of tail<br>data 730<br>510<br>1,150<br>1,207<br>2,500<br>3,357<br>3,914<br>1,052<br>9,396                                                 | p value<br>0.5%<br>94.1%<br>38.1%<br>29.9%<br>0.3%<br>0.0%<br>15.8%<br>0.0%                                                                    |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7                                                   | k (shape pa-<br>rameter)<br>-0.38<br>-0.55<br>-0.44<br>-0.26<br>-0.43<br>-0.53<br>-0.46<br>-0.43<br>-0.41<br>-0.21                                                                | sigma (scale<br>parameter)<br>61.4<br>112.0<br>162.9<br>71.6<br>319.8<br>520.3<br>261.0<br>191.9<br>152.2<br>42.9                                                       | Number of tail<br>data 337<br>424<br>1,063<br>228<br>2,755<br>4,784<br>1,927<br>1,341<br>1,045<br>142                                            | p value<br>13.0%<br>64.5%<br>0.4%<br>80.0%<br>11.4%<br>0.0%<br>7.4%<br>30.2%<br>61.9%<br>99.7%                                             | k (shape pa-<br>rameter)<br>-0.29<br>-0.50<br>-0.57<br>-0.57<br>-0.58<br>-0.58<br>-0.54<br>-0.50<br>-0.75<br>-0.29<br>-0.37                                              | sigma (scale<br>parameter)<br>84.5<br>169.2<br>296.8<br>313.3<br>518.1<br>588.8<br>605.4<br>463.2<br>542.0<br>144.0                                                       | Number of tail<br>data 730<br>510<br>1,150<br>1,207<br>2,500<br>3,357<br>3,914<br>1,052<br>9,396<br>807                                          | p value<br>0.5%<br>94.1%<br>38.1%<br>29.9%<br>0.3%<br>0.0%<br>15.8%<br>0.0%<br>91.7%                                                           |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6                                         | k (shape pa-<br>rameter)<br>-0.38<br>-0.55<br>-0.44<br>-0.26<br>-0.43<br>-0.43<br>-0.43<br>-0.43<br>-0.41<br>-0.21<br>-0.37                                                       | sigma (scale<br>parameter)<br>61.4<br>112.0<br>162.9<br>71.6<br>319.8<br>520.3<br>261.0<br>191.9<br>152.2<br>42.9<br>118.4                                              | Number of tail<br>data 337<br>424<br>1,063<br>228<br>2,755<br>4,784<br>1,927<br>1,341<br>1,045<br>142                                            | p value<br>13.0%<br>64.5%<br>0.4%<br>80.0%<br>11.4%<br>0.0%<br>7.4%<br>30.2%<br>61.9%<br>91.6%                                             | k (shape pa-<br>rameter)<br>-0.29<br>-0.50<br>-0.57<br>-0.57<br>-0.58<br>-0.54<br>-0.50<br>-0.75<br>-0.29<br>-0.37<br>-0.47                                              | sigma (scale<br>parameter)<br>84.5<br>169.2<br>296.8<br>313.3<br>518.1<br>588.8<br>605.4<br>463.2<br>542.0<br>144.0<br>263.9                                              | Number of tail<br>data 730<br>510<br>1,150<br>1,207<br>2,500<br>3,357<br>3,914<br>1,052<br>9,396<br>807<br>1,422                                 | p value<br>0.5%<br>94.1%<br>38.1%<br>29.9%<br>0.3%<br>0.0%<br>0.0%<br>15.8%<br>0.0%<br>91.7%<br>1.6%                                           |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6<br>r=-0.5                               | k (shape pa-<br>rameter)<br>-0.38<br>-0.55<br>-0.44<br>-0.26<br>-0.43<br>-0.43<br>-0.43<br>-0.41<br>-0.21<br>-0.37<br>-0.36                                                       | sigma (scale<br>parameter)<br>61.4<br>112.0<br>162.9<br>71.6<br>319.8<br>520.3<br>261.0<br>191.9<br>152.2<br>42.9<br>118.4<br>174.6                                     | Number of tail<br>data 337<br>424<br>1,063<br>228<br>2,755<br>4,784<br>1,927<br>1,341<br>1,045<br>142<br>704<br>1,077                            | p value<br>13.0%<br>64.5%<br>0.4%<br>80.0%<br>11.4%<br>0.0%<br>7.4%<br>30.2%<br>61.9%<br>99.7%<br>91.6%<br>73.7%                           | k (shape pa-<br>rameter)<br>-0.29<br>-0.50<br>-0.57<br>-0.57<br>-0.58<br>-0.54<br>-0.54<br>-0.50<br>-0.75<br>-0.29<br>-0.37<br>-0.47<br>-0.37                            | sigma (scale<br>parameter)<br>84.5<br>169.2<br>296.8<br>313.3<br>518.1<br>588.8<br>605.4<br>463.2<br>542.0<br>144.0<br>263.9<br>159.0                                     | Number of tail<br>data 730<br>510<br>1,150<br>1,207<br>2,500<br>3,357<br>3,914<br>1,052<br>9,396<br>807<br>1,422<br>655                          | p value<br>0.5%<br>94.1%<br>38.1%<br>29.9%<br>0.3%<br>0.0%<br>0.0%<br>15.8%<br>0.0%<br>91.7%<br>1.6%<br>21.1%                                  |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6<br>r=-0.4                               | k (shape pa-<br>rameter)<br>-0.38<br>-0.55<br>-0.44<br>-0.26<br>-0.43<br>-0.53<br>-0.46<br>-0.43<br>-0.41<br>-0.21<br>-0.37<br>-0.36<br>-0.36                                     | sigma (scale<br>parameter)<br>61.4<br>112.0<br>162.9<br>71.6<br>319.8<br>520.3<br>261.0<br>191.9<br>152.2<br>42.9<br>118.4<br>174.6<br>239.9                            | Number of tail<br>data 337<br>424<br>1,063<br>228<br>2,755<br>4,784<br>1,927<br>1,341<br>1,045<br>142<br>704<br>1,077<br>1,724                   | p value<br>13.0%<br>64.5%<br>0.4%<br>80.0%<br>11.4%<br>0.0%<br>7.4%<br>30.2%<br>61.9%<br>99.7%<br>91.6%<br>73.7%<br>64.6%                  | k (shape pa-<br>rameter)<br>-0.29<br>-0.50<br>-0.57<br>-0.57<br>-0.58<br>-0.54<br>-0.50<br>-0.75<br>-0.29<br>-0.37<br>-0.47<br>-0.40                                     | sigma (scale<br>parameter)<br>84.5<br>169.2<br>296.8<br>313.3<br>518.1<br>588.8<br>605.4<br>463.2<br>542.0<br>144.0<br>263.9<br>159.0<br>232.9                            | Number of tail<br>data 730<br>510<br>1,150<br>1,207<br>2,500<br>3,357<br>3,914<br>1,052<br>9,396<br>807<br>1,422<br>655<br>1,044                 | p value<br>0.5%<br>94.1%<br>38.1%<br>29.9%<br>0.3%<br>0.0%<br>15.8%<br>0.0%<br>91.7%<br>1.6%<br>21.1%<br>2.0%                                  |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6<br>r=-0.5<br>r=-0.4<br>r=-0.4<br>r=-0.3 | k (shape pa-<br>rameter)<br>-0.38<br>-0.55<br>-0.44<br>-0.26<br>-0.43<br>-0.43<br>-0.43<br>-0.41<br>-0.41<br>-0.37<br>-0.36<br>-0.36                                              | sigma (scale<br>parameter)<br>61.4<br>112.0<br>162.9<br>71.6<br>319.8<br>520.3<br>261.0<br>191.9<br>152.2<br>42.9<br>118.4<br>174.6<br>239.9<br>292.9                   | Number of tail<br>data 337<br>424<br>1,063<br>228<br>2,755<br>4,784<br>1,927<br>1,341<br>1,045<br>142<br>704<br>1,077<br>1,724<br>2,296          | p value<br>13.0%<br>64.5%<br>0.4%<br>80.0%<br>11.4%<br>0.0%<br>7.4%<br>30.2%<br>61.9%<br>91.6%<br>73.7%<br>64.6%<br>18.0%                  | k (shape pa-<br>rameter)<br>-0.29<br>-0.50<br>-0.57<br>-0.57<br>-0.58<br>-0.54<br>-0.50<br>-0.75<br>-0.29<br>-0.37<br>-0.47<br>-0.37<br>-0.40<br>-0.61                   | sigma (scale<br>parameter)<br>84.5<br>169.2<br>296.8<br>313.3<br>518.1<br>588.8<br>605.4<br>463.2<br>542.0<br>144.0<br>263.9<br>159.0<br>232.9<br>260.8                   | Number of tail<br>data 730<br>510<br>1,150<br>2,500<br>3,357<br>3,914<br>1,052<br>9,396<br>807<br>1,422<br>655<br>1,044<br>439                   | p value<br>0.5%<br>94.1%<br>38.1%<br>29.9%<br>0.3%<br>0.0%<br>15.8%<br>0.0%<br>91.7%<br>1.6%<br>21.1%<br>2.0%<br>81.1%                         |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6<br>r=-0.5<br>r=-0.4<br>r=-0.3<br>r=-0.2          | k (shape pa-<br>rameter)<br>-0.38<br>-0.55<br>-0.44<br>-0.26<br>-0.43<br>-0.43<br>-0.43<br>-0.46<br>-0.43<br>-0.41<br>-0.21<br>-0.37<br>-0.36<br>-0.36<br>-0.36<br>-0.38          | sigma (scale<br>parameter)<br>61.4<br>112.0<br>162.9<br>71.6<br>319.8<br>520.3<br>261.0<br>191.9<br>152.2<br>42.9<br>118.4<br>174.6<br>239.9<br>292.9<br>318.7          | Number of tail<br>data 337<br>424<br>1,063<br>228<br>2,755<br>4,784<br>1,927<br>1,341<br>1,045<br>142<br>704<br>1,077<br>1,724<br>2,296          | p value<br>13.0%<br>64.5%<br>0.4%<br>80.0%<br>11.4%<br>0.0%<br>7.4%<br>30.2%<br>61.9%<br>91.6%<br>73.7%<br>64.6%<br>18.0%<br>22.9%         | k (shape pa-<br>rameter)<br>-0.29<br>-0.50<br>-0.57<br>-0.57<br>-0.58<br>-0.54<br>-0.54<br>-0.50<br>-0.75<br>-0.29<br>-0.37<br>-0.47<br>-0.37<br>-0.40<br>-0.61<br>-0.43 | sigma (scale<br>parameter)<br>84.5<br>169.2<br>296.8<br>313.3<br>518.1<br>588.8<br>605.4<br>463.2<br>542.0<br>144.0<br>263.9<br>159.0<br>232.9<br>260.8<br>488.8          | Number of tail<br>data 730<br>510<br>1,150<br>1,207<br>2,500<br>3,357<br>3,914<br>1,052<br>9,396<br>807<br>1,422<br>655<br>1,044<br>439<br>3,266 | p value<br>0.5%<br>94.1%<br>38.1%<br>29.9%<br>0.3%<br>0.0%<br>0.0%<br>0.0%<br>91.7%<br>1.6%<br>21.1%<br>2.0%<br>81.1%<br>0.3%                  |  |
| Threshold<br>r=0.8<br>r=0.7<br>r=0.6<br>r=0.5<br>r=0.4<br>r=0.3<br>r=0.2<br>r=0.1<br>r=0.0<br>r=-0.7<br>r=-0.6<br>r=-0.4<br>r=-0.3<br>r=-0.2<br>r=-0.1 | k (shape pa-<br>rameter)<br>-0.38<br>-0.55<br>-0.44<br>-0.26<br>-0.43<br>-0.53<br>-0.46<br>-0.43<br>-0.41<br>-0.21<br>-0.37<br>-0.36<br>-0.36<br>-0.36<br>-0.38<br>-0.38<br>-0.40 | sigma (scale<br>parameter)<br>61.4<br>112.0<br>162.9<br>71.6<br>319.8<br>520.3<br>261.0<br>191.9<br>152.2<br>42.9<br>118.4<br>174.6<br>239.9<br>292.9<br>318.7<br>308.5 | Number of tail<br>data 337<br>424<br>1,063<br>228<br>2,755<br>4,784<br>1,927<br>1,341<br>1,045<br>142<br>704<br>1,077<br>1,724<br>2,296<br>2,480 | p value<br>13.0%<br>64.5%<br>0.4%<br>80.0%<br>11.4%<br>0.0%<br>7.4%<br>61.9%<br>99.7%<br>91.6%<br>73.7%<br>64.6%<br>18.0%<br>22.9%<br>8.2% | k (shape pa-<br>rameter)<br>-0.29<br>-0.50<br>-0.57<br>-0.57<br>-0.58<br>-0.54<br>-0.54<br>-0.50<br>-0.75<br>-0.29<br>-0.37<br>-0.47<br>-0.40<br>-0.61<br>-0.43<br>-0.40 | sigma (scale<br>parameter)<br>84.5<br>169.2<br>296.8<br>313.3<br>518.1<br>588.8<br>605.4<br>463.2<br>542.0<br>144.0<br>263.9<br>159.0<br>232.9<br>260.8<br>488.8<br>471.1 | Number of tail<br>data 730<br>510<br>1,150<br>1,207<br>2,500<br>3,357<br>3,914<br>1,052<br>9,396<br>807<br>1,422<br>655<br>1,044<br>439<br>3,266 | p value<br>0.5%<br>94.1%<br>38.1%<br>29.9%<br>0.3%<br>0.0%<br>0.0%<br>15.8%<br>0.0%<br>91.7%<br>1.6%<br>21.1%<br>2.0%<br>81.1%<br>0.3%<br>0.1% |  |

# Chapter 4

# **DISCUSSION AND CONCLUSION**

#### **Interpretation of Results**

To our knowledge, this is the first study of the structure of brain functional networks that employs rigorous statistical analysis. In this study we take into account weighted connections among brain regions. Previous studies have mostly focused on binary networks, thus introducing more noise into the analysis. In addition, we examine positive correlation networks, as well as negative correlation networks. Little attention has been paid to the role of anti-correlation networks in the brain context. Our study shows that the topological structure of anti-correlation networks are consistent with those of positive correlation networks. Anti-correlation networks, therefore, could bear relevance for understanding brain functions.

Our analysis rejects the hypothesis that the brain functional networks follow a power-law, or a power-law with exponential cut-off distribution, as postulated in the literature to date. In addition, an analysis of other popular models of distribution shows that the **generalized Pareto** model is the most plausible one for the distribution of brain functional networks.

The distribution model, especially for the tail, of brain functional networks reflects the topological structure of the brain functional hubs. Power-law, or scalefree distribution, indicates the existence of a fat tail, implying larger number of brain hubs compared to random or other small-world network models, ensuring efficiency of information processing and resilience ([13] and [14]). As discussed in the first chapter, numerous studies have explored the seemingly ubiquitous presence of scale-free characteristic among biological, technological and social networks. Network dynamics of scale-free networks were linked with scale-free structure through the notion of self-organized criticality, which is a property of dynamical systems which have a critical point as an attractor ([9], [10], [11], and [12]). Some authors proposed that consciousness as a phenomenon is realized through the scale-free organization of the brain operating at critical state. It has been argued that when a complex system such as the brain operates at the phase transition of order and chaos, the system exhibits scale-free structure ([12]). Our results showed that brain functional networks are not at all scale-free, as shown through a consistently very small p-value of power-law distribution tests. The idea that brain functional networks follow a power-law with truncated exponential model is similarly rejected. We now turn to a deeper look at the generalized Pareto distribution model.

Formally, the generalized Pareto distribution can be expressed as:

$$y = f(x|k,\sigma,\theta) = \left(\frac{1}{\sigma}\right) \left(1 + k\frac{(x-\theta)}{\sigma}\right)^{-1-\frac{1}{k}}$$

for  $\theta < x$  when k > 0 and  $\theta < x < -\sigma/k$  when k > 0 with k being the shape parameter and  $\sigma$  being the scale parameter. The following figure demonstrate the different configurations of the probability density function of the generalized Pareto distribution corresponding to the signs of the shape parameter k.



Figure 4.1: generalized Pareto distribution corresponding to different shape parameter k.

Note that when k = 0, the generalized Pareto distribution becomes the exponential distribution. When k > 0, the generalized Pareto distribution is closely related to the normal power-law distribution, exhibiting a fat-tail behavior. When k < 0, the generalized Pareto distribution exhibits a short-tail configuration. The results we have across all data sets show that the tails of brain functional networks are topologically approximated by the generalized Pareto model with the shape parameter k consistently negative. What this means is that unlike previous

claims from the literature, brain functional networks do not have fat tails. The case k < 0 also corresponds to the q-exponential distribution in statistical physic literature where q;1. q-exponential distribution was originally proposed to model systems with long-range interactions ([75]). The link between the q-exponential distribution and brain functional networks should be further explored in the future. Dynamical implications of networks with generalized Pareto distribution and negative shape parameters should also be investigated for future work.

Given that brain functional networks are not scale-free, we wish to examine the structure of brain functional networks under a framework of the generalized Pareto distribution to establish that not only brain networks are efficient, but also are competitive with the scale-free network from the efficiency point of view. Generally this requires the comparison of the our original networks with null model, or randomized networks. We employed the methods laid out in section 2.3 for this purpose. Previous studies in the literature have developed a "rewiring" method for binary networks, effectively reshuffle the links in the network in such a way that preserves the degree distribution of the network ([72]). We developed a similar "rewiring" method, as described in section 2.3.1. When implemented, this method demonstrated that brain networks have high assortativity coefficient and high clustering coefficient, compared to otherwise randomly reshuffled networks, which preserve the degree distribution. Table 4.1 showcases one such comparison between original network of subject 34781 (from 1000 Functional Connectome project) with a rewired, randomized network. The original network is clearly more highly clustered and highly assortative compared with the random network. Note that this holds true across subjects and thresholds.

| Table 4.1:  | Original | Network vs. | Rewired | Network | comparison, | subject | 34781, |
|-------------|----------|-------------|---------|---------|-------------|---------|--------|
| threshold r | r = 0.4  |             |         |         |             |         |        |

| Graph Theoretic Measures  | Original<br>Network | Functional | Rewired, Randomized<br>Network |
|---------------------------|---------------------|------------|--------------------------------|
| Clustering Coefficient    |                     | 0.3596     | 0.1442                         |
| Assortativity Coefficient |                     | 0.2003     | -0.0082                        |

In addition, we compared brain networks from our data sets with two sets of randomized networks created using the bootstrap method described in section 2.3.2.

- *First random bootstrap method:* Original networks were compared to bootstrapped, randomized networks that preserve the same degree distribution as the original networks (see top half of table 4.2)
- Second random bootstrap method: Original networks were compared to

bootstrapped, randomized networks that have the scale-free degree distributions, with varying scaling parameter  $\alpha$  (see bottom half of table 4.2)

Table 4.2: Graph-theoretic measures comparison of original vs. randomized, bootstrapped network for subject 34781, threshold r = 0.4

| Graph Theoretic Measures                                                                                               | Original Functional Net-<br>work                             | Bootstraped Random Net-<br>work with Same Degree<br>Distribution                                   |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Clustering Coefficient                                                                                                 | 0.3596                                                       | 0.1709                                                                                             |
| Characteristic Path Length                                                                                             | 4.7310                                                       | 3.0020                                                                                             |
| Global Efficiency                                                                                                      | 0.2461                                                       | 0.3522                                                                                             |
| Assortativity                                                                                                          | 0.2003                                                       | -0.2718                                                                                            |
| Small-world Measure                                                                                                    | 1.3351                                                       |                                                                                                    |
|                                                                                                                        |                                                              |                                                                                                    |
| Graph Theoretic Measures                                                                                               | Original Functional Net-<br>work                             | Bootstraped Random<br>Scale-Free Network with<br>Alpha =5                                          |
| Graph Theoretic Measures<br>Clustering Coefficient                                                                     | Original Functional Net-<br>work 0.3596                      | Bootstraped Random<br>Scale-Free Network with<br>Alpha =5<br>0.0678                                |
| Graph Theoretic Measures<br>Clustering Coefficient<br>Characteristic Path Length                                       | Original Functional Net-<br>work 0.3596 4.7310               | Bootstraped Random<br>Scale-Free Network with<br>Alpha =5<br>0.0678<br>2.7402                      |
| Graph Theoretic Measures<br>Clustering Coefficient<br>Characteristic Path Length<br>Global Efficiency                  | Original Functional Net-<br>work 0.3596 4.7310 0.2461        | Bootstraped Random<br>Scale-Free Network with<br>Alpha =5<br>0.0678<br>2.7402<br>0.3735            |
| Graph Theoretic Measures<br>Clustering Coefficient<br>Characteristic Path Length<br>Global Efficiency<br>Assortativity | Original Functional Net-<br>work 0.3596 4.7310 0.2461 0.2003 | Bootstraped Random<br>Scale-Free Network with<br>Alpha =5<br>0.0678<br>2.7402<br>0.3735<br>-0.0609 |

Results for subject 34781 (one among the 10 subjects) are displayed in table 4.2. Results for other subjects share the same trends and characteristics. As before, we can see that our empirical brain networks display high assortativity and clustering coefficients. Assortativity coefficient measures the tendency of highdegree nodes to be connected to one another. Networks with high assortativity coefficient typically have comparatively resilient cores of mutually inter-connected hubs, effectively allowing for efficient information processing at the global level. This feature of brain functional networks possibly compensates for the relatively less numerous brain hubs compared to scale-free networks. In addition, the presence of densely connected clusters, as indicated through high clustering coefficients, could be another factor that explains the efficiency of brain networks in exchanging information at the local level. Although characteristic path length of original networks are higher and thus global efficiency of original networks are lower than both versions of randomized networks, small-worldness indices in both cases for original networks are both greater than 1, implying brain functional networks possess small-world features in either way that we define randomized network. Interestingly and importantly, the small-world measures of original

networks against randomized networks that preserve degree distribution (1.3351 in table 4.2) are less than those of original networks against randomized, scale-free networks (3.0720 in table 4.2). This implies the randomized networks with generalized Pareto distribution could outperform the randomized networks with scale-free distribution with regards to the small-worldness attributes. Indeed, the randomized networks with generalized Pareto distributions have relatively similar characteristic path lengths and global efficiency measures, but much higher clustering coefficients than those of randomized networks with scale-free distributions. The take-away from this observation is that scale-free networks are not inherently more efficient than our demonstrated generalized Pareto model. In short, for our brain functional networks of generalized Pareto distribution with negative shape parameters, the combination of the robust local density design (high clustering coefficient) and functionally relevant long-range pathways (likely through assortativity coefficient) provides an economic solution for establishing functionally effective paths across the brain.

#### Conclusion

In summary, we have shown through rigorous statistical analysis that unlike what has been claimed in the literature to date, brain functional networks are not scale-free and also do not follow a power-law with exponential cut-off distribution. Instead, we have demonstrated that the generalized Pareto distribution with negative shape parameter is the most plausible model for brain functional networks. This means brain functional networks do not have fat tails. We propose that brain networks are efficient and competitive with scale-free networks by having high assortativity coefficients, high clustering coefficients and possessing small-world network features. Future research can investigate further into the generalized Pareto distribution to understand its implication both to the structural efficiency of brain networks, as well as to brain network dynamics.

# **Bibliography**

- [1] D. Hao and C. Li, "The dichotomy in degree correlation of biological networks," *PloS one*, vol. 6, no. 12, p. e28322, 2011.
- [2] E. Bullmore and O. Sporns, "Complex brain networks: graph theoretical analysis of structural and functional systems," *Nature Reviews Neuroscience*, vol. 10, no. 3, pp. 186–198, 2009.
- [3] V. Eguiluz, D. Chialvo, G. Cecchi, M. Baliki, and A. Apkarian, "Scale-free brain functional networks," *Physical Review Letters*, vol. 94, p. 018102, JAN 14 2005. PT: J; NR: 20; TC: 420; J9: PHYS REV LETT; PG: 4; GA: 887LQ; UT: WOS:000226308000087.
- [4] S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, "A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs," *Journal of Neuroscience*, vol. 26, pp. 63–72, JAN 4 2006. PT: J; NR: 42; TC: 466; J9: J NEUROSCI; PG: 10; GA: 999LM; UT: WOS:000234390800009.
- [5] M. P. van den Heuvel, C. J. Stam, M. Boersma, and H. E. H. Pol, "Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain," *NeuroImage*, vol. 43, pp. 528–539, NOV 15 2008. PT: J; NR: 71; TC: 132; J9: NEUROIMAGE; PG: 12; GA: 392JY; UT: WOS:000262300200012.
- [6] C. Stam and E. de Bruin, "Scale-free dynamics of global functional connectivity in the human brain," *Human brain mapping*, vol. 22, pp. 97–109, JUN 2004. PT: J; NR: 41; TC: 73; J9: HUM BRAIN MAPP; PG: 13; GA: 824ZZ; UT: WOS:000221727100002.
- [7] B. J. He, J. M. Zempel, A. Z. Snyder, and M. E. Raichle, "The temporal structures and functional significance of scale-free brain activity," *Neuron*, vol. 66, pp. 353–369, MAY 13 2010. PT: J; NR: 97; TC: 71; J9: NEURON; PG: 17; GA: 598HE; UT: WOS:000277825200005.

- [8] R. Albert, "Scale-free networks in cell biology," *Journal of cell science*, vol. 118, pp. 4947–4957, NOV 1 2005. PT: J; NR: 90; TC: 278; J9: J CELL SCI; PG: 11; GA: 989MS; UT: WOS:000233678700007.
- [9] D. Chialvo, "Critical brain networks," *Physica A-Statistical Mechanics and its Applications*, vol. 340, pp. 756–765, SEP 15 2004. PT: J; NR: 36; TC: 65; J9: PHYSICA A; PG: 10; GA: 847LF; UT: WOS:000223393300029.
- [10] C.-W. Shin and S. Kim, "Self-organized criticality and scale-free properties in emergent functional neural networks," *Physical Review E*, vol. 74, p. 045101, OCT 2006. PT: J; NR: 21; TC: 27; J9: PHYS REV E; PN: 2; PG: 4; GA: 101EW; UT: WOS:000241723000001.
- [11] C. Bedard, H. Kroger, and A. Destexhe, "Does the 1/f frequency scaling of brain signals reflect self-organized critical states?," *Physical Review Letters*, vol. 97, p. 118102, SEP 15 2006. PT: J; NR: 29; TC: 59; J9: PHYS REV LETT; PG: 4; GA: 084PK; UT: WOS:000240545600070.
- [12] J. M. Beggs, "The criticality hypothesis: how local cortical networks might optimize information processing," *Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences*, vol. 366, pp. 329–343, FEB 13 2008. PT: J; CT: 9th Experimental Chaos Conference; CY: MAY 29-JUN 01, 2006; CL: San Jose dos Campos, BRAZIL; SP: Natl Inst Space Res; NR: 57; TC: 44; J9: PHILOS T R SOC A; PG: 15; GA: 245IC; UT: WOS:000251927300003.
- [13] R. Albert, H. Jeong, and A. Barabasi, "Error and attack tolerance of complex networks," *Nature*, vol. 406, pp. 378–382, JUL 27 2000. PT: J; NR: 24; TC: 2099; J9: NATURE; PG: 6; GA: 337WC; UT: WOS:000088383800038.
- [14] V. Latora and M. Marchiori, "Efficient behavior of small-world networks," *Physical Review Letters*, vol. 87, p. 198701, NOV 5 2001. PT: J; NR: 25; TC: 588; J9: PHYS REV LETT; PG: 4; GA: 490AT; UT: WOS:000172027200063.
- [15] N. L. Bigg, E. K. Lloyd, and R. J. Wilson, *Graph Theory: 1736-1936*. Oxford University Press, 1976.
- [16] P. ERDOS and A. RENYI, "On the evolution of random graphs," *Bulletin of the International Statistical Institute*, vol. 38, no. 4, pp. 343–347, 1960.
  PT: J; NR: 6; TC: 5; J9: B INT STATIST INST; PG: 5; GA: CAW34; UT: WOS:A1960CAW3400027.

- [17] M. McPherson, L. Smith-Lovin, and J. M. Cook, "Birds of a feather: Homophily in social networks," *Annual review of sociology*, pp. 415–444, 2001.
- [18] D. Watts and S. Strogatz, "Collective dynamics of 'small-world' networks," *Nature*, vol. 393, pp. 440–442, JUN 4 1998. PT: J; NR: 27; TC: 7302; J9: NATURE; PG: 3; GA: ZR842; UT: WOS:000074020000035.
- [19] A. Barabasi, R. Albert, and H. Jeong, "Mean-field theory for scale-free random networks," *Physica a*, vol. 272, pp. 173–187, OCT 1 1999. PT: J; NR: 35; TC: 879; J9: PHYSICA A; PG: 15; GA: 244YZ; UT: WOS:000083079500012.
- [20] A. Barabasi, A., A. L. Barabasi, and R. Albert, "Emergence of scaling in random networks," *Science*, vol. 286, no. 5439, pp. 509–512, 1015. ID: TNwos000083121200054.
- [21] S. H. Strogatz, "Exploring complex networks," *Nature*, vol. 410, no. 6825, pp. 268–276, 2001.
- [22] D. J. de Solla Price, "Networks of scientific papers," *Science*, vol. 149, no. 3683, pp. 510–515, 1965.
- [23] S. Redner, "How popular is your paper? an empirical study of the citation distribution," *The European Physical Journal B-Condensed Matter and Complex Systems*, vol. 4, no. 2, pp. 131–134, 1998.
- [24] P. O. Seglen, "The skewness of science," Journal of the American Society for Information Science, vol. 43, no. 9, pp. 628–638, 1992.
- [25] R. Albert, H. Jeong, and A.-L. Barabási, "Internet: Diameter of the worldwide web," *Nature*, vol. 401, no. 6749, pp. 130–131, 1999.
- [26] A.-L. Barabási, R. Albert, and H. Jeong, "Scale-free characteristics of random networks: the topology of the world-wide web," *Physica A: Statistical Mechanics and its Applications*, vol. 281, no. 1, pp. 69–77, 2000.
- [27] A. Vázquez, R. Pastor-Satorras, and A. Vespignani, "Large-scale topological and dynamical properties of the internet," *Physical Review E*, vol. 65, no. 6, p. 066130, 2002.
- [28] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener, "Graph structure in the web," *Computer networks*, vol. 33, no. 1, pp. 309–320, 2000.

- [29] Q. Chen, H. Chang, R. Govindan, and S. Jamin, "The origin of power laws in internet topologies revisited," in *INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE*, vol. 2, pp. 608–617, IEEE, 2002.
- [30] M. Faloutsos, P. Faloutsos, and C. Faloutsos, "On power-law relationships of the internet topology," in ACM SIGCOMM Computer Communication Review, vol. 29, pp. 251–262, ACM, 1999.
- [31] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, "Lethality and centrality in protein networks," *Nature*, vol. 411, no. 6833, pp. 41–42, 2001.
- [32] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, "The large-scale organization of metabolic networks," *Nature*, vol. 407, no. 6804, pp. 651–654, 2000.
- [33] W. Aiello, F. Chung, and L. Lu, "A random graph model for massive graphs," in *Proceedings of the thirty-second annual ACM symposium on Theory of computing*, pp. 171–180, Acm, 2000.
- [34] W. Aiello, F. Chung, and L. Lu, "Random evolution in massive graphs," in Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pp. 510–519, IEEE, 2001.
- [35] J. H. Jones and M. S. Handcock, "An assessment of preferential attachment as a mechanism for human sexual network formation," *Proceedings of the Royal Society of London. Series B: Biological Sciences*, vol. 270, no. 1520, pp. 1123–1128, 2003.
- [36] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Åberg, "The web of human sexual contacts," *Nature*, vol. 411, no. 6840, pp. 907–908, 2001.
- [37] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, "Classes of small-world networks," *Proceedings of the National Academy of Sciences*, vol. 97, no. 21, pp. 11149–11152, 2000.
- [38] P. Sen, S. Dasgupta, A. Chatterjee, P. Sreeram, G. Mukherjee, and S. Manna, "Small-world properties of the indian railway network," *Physical Review E*, vol. 67, no. 3, p. 036106, 2003.
- [39] M. E. Newman, "The structure of scientific collaboration networks," Proceedings of the National Academy of Sciences, vol. 98, no. 2, pp. 404–409, 2001.

- [40] M. E. Newman, "Assortative mixing in networks," *Physical review letters*, vol. 89, no. 20, p. 208701, 2002.
- [41] C. Leung and H. Chau, "Weighted assortative and disassortative networks model," *Physica A: Statistical Mechanics and its Applications*, vol. 378, no. 2, pp. 591–602, 2007.
- [42] R. Pastor-Satorras, A. Vazquez, and A. Vespignani, "Dynamical and correlation properties of the internet," *Physical review letters*, vol. 87, no. 25, p. 258701, 2001.
- [43] J.-P. Onnela, J. Saramaki, J. Kertesz, and K. Kaski, "Intensity and coherence of motifs in weighted complex networks," *Physical Review E*, vol. 71, no. 6, p. 065103, 2005.
- [44] B. Jiang and C. Claramunt, "Topological analysis of urban street networks," *Environment and Planning B*, vol. 31, no. 1, pp. 151–162, 2004.
- [45] A. Fronczak, J. A. Hołyst, M. Jedynak, and J. Sienkiewicz, "Higher order clustering coefficients in barabási–albert networks," *Physica A: Statistical Mechanics and its Applications*, vol. 316, no. 1, pp. 688–694, 2002.
- [46] G. Caldarelli, R. Pastor-Satorras, and A. Vespignani, "Structure of cycles and local ordering in complex networks," *The European Physical Journal B-Condensed Matter and Complex Systems*, vol. 38, no. 2, pp. 183–186, 2004.
- [47] G. Bianconi and A. Capocci, "Number of loops of size h in growing scalefree networks," *Physical review letters*, vol. 90, no. 7, p. 078701, 2003.
- [48] M. E. Newman, "Ego-centered networks and the ripple effect," Social Networks, vol. 25, no. 1, pp. 83–95, 2003.
- [49] S. N. Soffer and A. Vazquez, "Clustering coefficient without degree correlations biases," arXiv preprint cond-mat/0409686, 2004.
- [50] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, "Shortest paths algorithms: theory and experimental evaluation," *Mathematical programming*, vol. 73, no. 2, pp. 129–174, 1996.
- [51] S. Milgram, "The small world problem," *Psychology today*, vol. 2, no. 1, pp. 60–67, 1967.
- [52] M. D. Humphries and K. Gurney, "Network Ôsmall-world-nessÕ: a quantitative method for determining canonical network equivalence," *PLoS One*, vol. 3, no. 4, p. e0002051, 2008.

- [53] P. Hagmann, M. Kurant, X. Gigandet, P. Thiran, V. J. Wedeen, R. Meuli, and J.-P. Thiran, "Mapping human whole-brain structural networks with diffusion mri," *PloS one*, vol. 2, no. 7, p. e597, 2007.
- [54] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen, and O. Sporns, "Mapping the structural core of human cerebral cortex," *Plos Biology*, vol. 6, pp. 1479–1493, JUL 2008 2008. PT: J; TC: 520; UT: WOS:000257971100019.
- [55] B. B. Biswal, M. Mennes, X.-N. Zuo, S. Gohel, C. Kelly, S. M. Smith, C. F. Beckmann, J. S. Adelstein, R. L. Buckner, S. Colcombe, *et al.*, "Toward discovery science of human brain function," *Proceedings of the National Academy of Sciences*, vol. 107, no. 10, pp. 4734–4739, 2010.
- [56] M. Rubinov and O. Sporns, "Complex network measures of brain connectivity: Uses and interpretations," *NeuroImage*, vol. 52, pp. 1059–1069, SEP 2010. PT: J; NR: 70; TC: 260; J9: NEUROIMAGE; PG: 11; GA: 629FY; UT: WOS:000280181800027.
- [57] K. J. Friston, L. Harrison, W. Penny, et al., "Dynamic causal modelling," *Neuroimage*, vol. 19, no. 4, pp. 1273–1302, 2003.
- [58] S. Achard and E. Bullmore, "Efficiency and cost of economical brain functional networks," *Plos Computational Biology*, vol. 3, pp. 174–183, FEB 2007. PT: J; NR: 52; TC: 295; J9: PLOS COMPUT BIOL; PG: 10; GA: 143HQ; UT: WOS:000244711500003.
- [59] M. E. Newman, "Modularity and community structure in networks," Proceedings of the National Academy of Sciences, vol. 103, no. 23, pp. 8577– 8582, 2006.
- [60] D. S. Bassett and E. Bullmore, "Small-world brain networks," *The neuroscientist*, vol. 12, no. 6, pp. 512–523, 2006.
- [61] C. Honey, O. Sporns, L. Cammoun, X. Gigandet, J.-P. Thiran, R. Meuli, and P. Hagmann, "Predicting human resting-state functional connectivity from structural connectivity," *Proceedings of the National Academy of Sciences*, vol. 106, no. 6, pp. 2035–2040, 2009.
- [62] L. C. Freeman, "Centrality in social networks conceptual clarification," Social networks, vol. 1, no. 3, pp. 215–239, 1979.
- [63] S. Hayasaka and P. J. Laurienti, "Comparison of characteristics between region-and voxel-based network analyses in resting-state fmri data," *Neuroimage*, vol. 50, no. 2, pp. 499–508, 2010.

- [64] K. E. Joyce, P. J. Laurienti, J. H. Burdette, and S. Hayasaka, "A new measure of centrality for brain networks," *PLoS One*, vol. 5, no. 8, p. e12200, 2010.
- [65] A. Clauset, C. R. Shalizi, and M. E. J. Newman, "Power-law distributions in empirical data," *SIAM Review*, vol. 51, pp. 661–703, DEC 2009.
  PT: J; NR: 69; TC: 505; J9: SIAM REV; PG: 43; GA: 522FO; UT: WOS:000271983500002.
- [66] M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, "The human brain is intrinsically organized into dynamic, anticorrelated functional networks," *Proceedings of the National Academy* of Sciences of the United States of America, vol. 102, no. 27, pp. 9673–9678, 2005.
- [67] L. Q. Uddin, A. Clare Kelly, B. B. Biswal, F. Xavier Castellanos, and M. P. Milham, "Functional connectivity of default mode network components: correlation, anticorrelation, and causality," *Human brain mapping*, vol. 30, no. 2, pp. 625–637, 2009.
- [68] M. D. Fox, D. Zhang, A. Z. Snyder, and M. E. Raichle, "The global signal and observed anticorrelated resting state brain networks," *Journal of neurophysiology*, vol. 101, no. 6, pp. 3270–3283, 2009.
- [69] X. J. Chai, A. N. Castañón, D. Öngür, and S. Whitfield-Gabrieli, "Anticorrelations in resting state networks without global signal regression," *Neuroimage*, vol. 59, no. 2, pp. 1420–1428, 2012.
- [70] Q. VUONG, "Likelihood ratio tests for model selection and non-nested hypotheses," *Econometrica*, vol. 57, pp. 307–333, MAR 1989. PT: J; NR: 48; TC: 932; J9: ECONOMETRICA; PG: 27; GA: U7126; UT: WOS:A1989U712600002.
- [71] M. E. Newman, S. H. Strogatz, and D. J. Watts, "Random graphs with arbitrary degree distributions and their applications," *Physical Review E*, vol. 64, no. 2, p. 026118, 2001.
- [72] S. Maslov and K. Sneppen, "Specificity and stability in topology of protein networks," *Science*, vol. 296, no. 5569, pp. 910–913, 2002.
- [73] A. Clauset, C. Moore, and M. E. J. Newman, "Hierarchical structure and the prediction of missing links in networks," *Nature*, vol. 453, pp. 98–101, MAY 1 2008. PT: J; NR: 30; TC: 224; J9: NATURE; PG: 4; GA: 294ID; UT: WOS:000255398800046.

- [74] R. P. Brent, *Algorithms for minimization without derivatives*. Courier Dover Publications, 1973.
- [75] C. TSALLIS, "Possible generalization of boltzmann-gibbs statistics," *Journal of Statistical Physics*, vol. 52, pp. 479–487, JUL 1988. PT: J; NR: 4; TC: 2946; J9: J STAT PHYS; PG: 9; GA: Q2401; UT: WOS:A1988Q240100029.