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Abstract 

In a panel setting, we analyse the speed of (beta) convergence of (cause-specific) 

mortality and life expectancy at birth in EU countries between 1995-2009. Our 

contribution is threefold. First, in contrast to earlier literature, we allow the convergence 

rate to vary and thereby uncover significant differences in the speed of convergence 

across time and regions. Second, we control for spatial correlations across regions. 

Third, we estimate convergence among regions, rather than countries, and thereby 

highlight noteworthy variations within a country. Although we find (beta) convergence 

on average, we also identify significant differences in the catching-up process both 

across time and regions. Moreover, we use the coefficient of variation to measure the 

dynamics of dispersion levels of mortality and life expectancy (sigma convergence) 

and, surprisingly, find no reduction on average in dispersion levels. Consequently, if the 

reduction of dispersion is the ultimate measure of convergence then, to the best of our 

knowledge, our study is the first that shows a lack of convergence in health across EU 

regions. 

 

Key words:  health convergence, beta-convergence, sigma-convergence, catching-up, 

spatio-temporal modelling, Bayesian models, INLA.  
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1.- Introduction 

Numerous previous studies have analysed economic convergence, i.e. the reduction of 

disparities in GDP per capita and productivity, and its determinants (for a survey, see 

Durlauf et al. [1]). Economic convergence, however, can only give a partial picture of 

the dynamics of inequalities across countries [2]. Well-being is multifaceted and 

typically involves many aspects beyond income. Therefore, to analyse the reduction of 

disparities in well-being across countries, it would appear that simple income measures 

are insufficient. It is of course impossible to directly control for all the dimensions of life 

quality. However, it is possible to employ summary measures that encompass a wider 

range of factors of well-being [3,4]. In this paper, in an effort to look beyond income, we 

analyse convergence using life expectancy and (cause-specific) mortality in the EU-27 

regions from 1995 to 2009. 

Both life expectancy and mortality have been suggested as valid measures for the 

quality of life. Sen [4] and Maslow [5] argue, for instance, that one of our most basic 

needs is to prevent diseases and premature death. Furthermore, Becker et al. [6] 

propose longevity (i.e. life expectancy at birth) as not only a quantity but also a quality 

measure of well-being. Mayer [7] also proposes life expectancy as a suitable measure, 

arguing that it is the best indicator of population welfare available. Similarly, Sen [3] 

advocates mortality as an indicator of social ill-being. Mortality is directly and naturally 

related to many factors that determine quality of life. For instance, mortality can be 

taken as a summary measure of the availability of health care, social services and 

orderliness of urban living, among others. 

From another point of view, there is abundant literature dealing with income-dependent 

health inequalities [8-18]. The literature indicates a causal relationship between health 

inequalities and income. However this causation can be bidirectional [19]. This topic 

has motivated the construction of different measures of health inequalities. In this 

sense, the Concentration Index measures the socioeconomic inequality of health taking 

into account both the level of health of each individual and as well as the rank of each 

individual in the socioeconomic domain [17]. This index, similar to the Gini coefficient 

used in our paper, is not without controversy related to, among others, the mirror 

property and the invariance to measurement scale [20-27].  

Starting with Wennberg and Gittelsohn [28], there is also a large health economics 

literature on ‘small area variations’, analysing regional differences in health care 
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spending and outcomes1. In fact, this connects with another brand of literature, more 

general from a macroeconomic point of view, on the concept of ‘agglomeration’. One of 

the earliest and well-known theory is the Myrdal ‘cumulative causation’ [29]. According 

to this, one region will grow at the expense of another. Following Myrdal’s 

agglomeration concept, Friedmann [30] attributes concentration to industrial and capital 

investment growth, Keeble et al [31] introduced the problem of accessibility and 

Krugman [32] with the ‘New Economic Geography’ aimed to explain the formation of 

economic agglomeration in certain geographical areas. These last theories have 

encouraged different applications of the concepts aiming to understand the variations 

among regions. For instance, a recent paper of Felder and Tauchman [33], uses these 

lasts concepts to determine the differences in the efficiency of health production in the 

German regions.  

 

Convergence and Health 

The concept of convergence, in its most general sense, is the reduction or equalising of 

disparities [34]. Convergence is a real and long-term phenomenon directly related to 

growth processes; that is, convergence exists when two or more countries’ levels of 

wellbeing or development tend towards one another over time [35]. 

There are two well-known convergence hypotheses; the absolute and the conditional 

convergence hypothesis. In the former, the per capita income of countries or regions 

converges in the long term without taking into account initial conditions. Poorer 

countries and regions tend to grow faster than richer ones and there is a negative 

relationship between average growth rates and initial levels of income. It is assumed 

that all economies converge to the same stationary state [36].  

On the other hand, the conditional convergence hypothesis assumes that the per 

capita income of countries and regions converge in the long term provided that their 

structural characteristics (i.e. technology, human capital, institutions, population growth 

rates, preferences) are the same [36,37]. With absolute convergence, the initial 

conditions are irrelevant. However, with conditional convergence, the equilibrium in 

each economy varies and each tends toward its own equilibrium.  

Beta and sigma convergence 

                                                 
1
 Pointed out by one of the anonymous reviewers 
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The customary and most widely used instrument for measuring convergence is beta-

convergence analysis. This began with the studies conducted by Baumol [38] and 

steadily grew in popularity [35, 36, 39, 40]. Beta-convergence is defined as the 

negative relationship between the initial level of income and the subsequent income 

growth. 

Another instrument used to measure convergence, which became popular with the 

work of Quah [41], is sigma-convergence. This author showed that the traditional 

relationship in initial growth level did not give a clear answer for convergence, as it 

tended to be negative if differences in income were not reduced. According to his 

theory, there is sigma-convergence if the dispersion and inequalities between countries 

are reduced over time. Sigma-convergence can be calculated using different dispersion 

measures (variance, standard deviation or coefficient of variation). 

Health convergence 

Life expectancy and mortality, instead of GDP, have both been suggested as valid 

measures for the quality of life. In a cross-country study comprising of virtually the 

entire world, Preston [42] showed that while keeping income constant, the change in 

the longevity-income profile represented gains of fifteen years in life expectancy. In 

fact, macroeconomic studies of economic growth, such as Barro [43], have already 

found that life expectancy is a key predictor of economic growth. Pritchett and 

Summers [44] corroborated by using instrumental variables that countries with higher 

incomes enjoy greater health, suggesting, as did Anand and Ravallion [45], that the 

main reason for this relationship is the income levels of the poor in addition to public 

expenditure on healthcare. Wilson [46] studied the world distribution of life expectancy 

and found a decrease in its dispersion (i.e. sigma-convergence). Becker et al. [6], also 

in a worldwide study examining whether there is a positive correlation between 

longevity and income per capita, showed that convergence exists with longevity, while 

it does not with income. Glei et al. [47] find that there is no sigma-convergence for life 

expectancy at older ages in high-income countries. Edwards [48] points out that there 

is beta-convergence but not sigma-convergence in life expectancy at birth across 

countries (although he finds sigma-convergence within countries). Clark [49], however, 

does not find beta-convergence, but rather that improvements in life expectancy have 

been greater for developing countries. Similarly, Eggleston and Fuchs [50], studying life 

expectancy in industrialised countries, point out that most gains in life expectancy have 

occurred in adult mortality, in particular for those over 65.  
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In terms of mortality, Edwards and Tuljapurkar [51] examining differences in the age 

pattern of mortality between countries over time (for practically the whole world), show 

that there is no sigma-convergence in mortality in industrialised countries. In the study 

previously referred to, Clark [49] finds that reductions in infant mortality are greater in 

high-income countries. Edwards [48] finds that reductions in infant mortality are greater 

in high income countries. If there is  a positive correlation between initial income and 

mortality, then we could say that neither Edwards [48] and Clark [49] find (beta) 

convergence. Finally, d’Albis et al. [52] did not find (beta and sigma) convergence 

across countries when they considered the entire sample of industrialised countries, 

but they do provide some evidence of (sigma) convergence among a subset of 

countries.  

Earlier literature does not give conclusive results for the use of these variables as 

measures of well-being. The main reason is that these variables have little variation in 

the short run. Significant changes are needed in social, health and demographic factors 

to provoke sufficient variation in mortality and life expectancy. However, in the long run, 

mortality and life expectancy variables can be more sensitive to changes than GDP [3].  

EU-27 convergence 

Our interest in the regions of the twenty-seven countries of the European Union (EU-

27) lies specifically in one of the main priorities of the Treaty establishing the European 

Community: specifically economic and social cohesion. In keeping with Monfort [53], 

Article 158 of the Treaty (and its updated version Article 174) states, ‘In particular, the 

Community shall aim at reducing the disparities between the levels of development of 

the various regions and the backwardness of the least favoured regions or islands, 

including rural areas.’ Although it is true that the purpose of the cohesion policy goes 

far beyond mere economic convergence, the reduction of regional disparities has been 

measured as the convergence of regional levels of GDP per capita. In fact, pure 

economic convergence has become a major aspect in assessing the effectiveness of 

the European Cohesion Policy [53].  

In respect of this, and adhering to Eckey and Türk [54], despite differences in model 

specification and observations, most studies on convergence in regional GDP per 

capita estimated (beta) convergence among EU countries, at both EU-15 and EU-27 

level. However, the speed of convergence is not constant, neither in time nor between 

regions [53, 55]. With regards to sigma-convergence, Monfort [26] shows that 

convergence between EU-15 regions was strong up until the mid-90s and stabilised 
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thereafter (his analysis ends in 2005). However, as he found that disparities continued 

to decrease rapidly for the EU-27 regions, he concluded that the poorest regions in the 

new Member States were catching up with the Union’s richer territories.  

In summary, we formulate three hypotheses. Our first hypothesis is that by analysing 

regions instead of countries we can observe sufficient variability in the health variables 

of interest to estimate the (dis)similarity of their distribution over time. Since, at least at 

the aggregate level, there is much evidence of a positive association between income 

and health, our second hypothesis is that, when considering the time period at the end 

of the economic boom (i.e. 2005-2009), there will be beta-convergence in health 

between the EU-27 regions, but not sigma-convergence. Our third hypothesis is that, 

like economic convergence, the speed of health convergence is neither constant in 

time nor between regions. 

Our contribution in this paper is threefold. First, we look beyond economic convergence 

and use life expectancy and mortality to capture a wider set of dimensions for the 

quality of life. Second, in contrast to earlier literature, we allow the convergence rate to 

vary and thereby uncover significant differences in the speed of convergence across 

time and space. Third, our dataset is more disaggregated because it comprises of 

regions rather than countries, and allows us to develop a more detailed picture of 

disparity dynamics. 

The rest of the paper is organised as follows. We explain the methodology in section 

two. The results of the model are explained and discussed in section three. Finally, we 

conclude in section four. 

2.- Methods 

Data setting 

We use data from 271 regions of the 27 EU member countries from 1995 to 2009. Data 

are obtained from EUROSTAT [56]. 

Our rationale for using regional data is twofold. First, it is the regions, rather than the 

countries, which are the subject of cohesion policies. Second, as we will explain below, 

with limited time series (T), as in our case (i.e., 1995-2009, 15 years), in order to obtain 

consistent estimates of the parameters of interest we needed a large N (thus instead of 

only seventeen countries, we have two hundred seventy-one regions). 
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Econometric model 

Models are specified based on the well-known beta-convergence hypothesis [35-39], 

originally specified as a cross-section model: 

 

( )INuuyg uT
2

0 ,0~ σβα ++=        {1} 

 

where gT  denotes the vector of (dependent variable) average growth rate in the period 

(0,T); y0 is the vector of (dependent variable) initial levels; u is a zero-mean and 

homoskedastic ( 2
uσ  is the constant variance) normally distributed disturbance term; 

and α and β denote (unknown) parameters. 

 

The absolute β-convergence hypothesis (equation {1}) rests on the assumption that 

there is a negative correlation between the initial level (of the dependent variable) and 

the growth rate (of such a variable). Therefore, β–convergence exists if the estimated 

value for β, the coefficient of interest, is (statistically significant) negative. If this is true, 

poorer economies (periphery) grow faster than richer ones (core) and will catch them 

up in the long run.  

 

However, it is more reasonable to assume that a negative correlation exists between 

growth rate and, rather than level, the distance the level of the dependent variable is 

from its steady state equilibrium. Therefore, poorer regions do not necessarily grow 

faster than richer regions, because the latter may be even further from their steady 

state equilibria [57]. As a consequence, in this paper we use the conditional 

specification of the β-convergence hypothesis: 

 

( )INuuXyg uT
2

0 ,0~ σγβα +++=       {2} 

 

where X is a matrix of explanatory variables (of convergence); and γ the associated 

(unknown) parameters.  

 

In contrast to more standard studies, we do not specify cross-section, but rather spatio-

temporal models, i.e. dynamic panel data, from a Bayesian approach. In fact, we want 

to explicitly consider the time dimension in our data. As we have argued, the 

convergence rate may have been different for each country and/or have varied during 
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the period under analysis. Furthermore, with small T, we need a large N in order to 

obtain consistent estimates. 

 

In particular, we have specified the following model: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ijtijt

ijtijtjtijtijt

jtjtjtjtjt

jtjtjtijtjtjijt

uS

ufyumypubuniv

Ginirategdppcrategdppcgdppc

gdppcgdppcyy

++

+++++

++++

++++=

−−−

−−

bpglog

loglogexploglogseclog

loglogloglog

loglogloglog

12

1110987

6251423

1211

γ
γγγγγ

γγγγ
γγβα

                

{3} 

Where y denotes one of the four dependent variables we chose. First, as in most 

previous studies on health (in concurrence with the seminal paper of Sen [4]), we use 

life expectancy at birth (in years). However, instead of using total mortality, we prefer to 

use here (several) cause-specific mortality. Total mortality is actually a combination of 

many phenomena that could undermine this variable as an indicator of social ill-being 

[3]. In particular, we chose those causes of mortality most associated with 

socioeconomic deprivation in the literature [58-60]: ischemic heart disease mortality; 

cancer mortality; and larynx, trachea, bronchus and lung cancer mortality (cause-

specific mortality was standardised as death rate per 100,000 inhabitants, 3-year 

average).  

The subscript i denotes region (i=1,…,271); j country (j=1,…,27); t year (t=1995 

1996,…, 2009); α, β  and γ denote unknown parameters; S denotes spatial random 

effects (see below); and u normally distributed disturbance term. Some data is missing 

for the four dependent variables mainly for the beginning of the period and specifically 

for some regions of Belgium, Denmark, Italy, Poland, Romania and Slovenia.  

 
The main explanatory variables of the growth rate of the dependent variables are the 

GDP per capita (gdppc) (data available regionally), and the Gini index (Gini) (data 

available only at country level). We believe that the growth rate of the dependent 

variables is determined not only by the level of GDP per capita in absolute terms but 

also by its growth rate (gdppcrate). Note that we assume that the effects, if any, of 

GDP per capita (both in levels and as rates) on health convergence, are distributed in 

time. Hence, we include the current level (t) and two lags (t-1 and t-2) of GDP per 

capita and two lags (t-1 and t-2) of GDP per capita rate.  
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According to the EUROSTAT [56], the Gini index is defined as the relationship of 

cumulative shares of the population arranged according to the level of equivalised 

disposable income, to the cumulative share of the equivalised total disposable income 

received by them. More conveniently, it can be defined as twice the covariance 

between income and income ranks2. The Gini coefficient ranges between 0 and 1, with 

0 signifying complete income equality and 1 signifying complete inequality. In a meta-

analysis of multilevel studies, involving a total of more than 61 million subjects, Kondo 

et al. [61] conclude that people living in regions with high income inequality (a higher 

Gini coefficient) have an increased risk of premature death, regardless of individual 

socioeconomic status, age, or gender. In particular, the mortality risk increases 8% per 

0.05 increase in the Gini coefficient. Furthermore, these authors also seem to confirm a 

theoretical ‘threshold effect’ (a Gini coefficient equal to 0.3) above which disparities in 

health outcomes are observed. 

Moreover, we also consider additional variables that may secondarily contribute to 

health convergence. These variables are available both at the regional and country 

level. The panel that we create with these data is unbalanced. Data was not available 

for all period and for all regions.  

Regional level:  

Umy: Youth male unemployment rate. Unemployment rate (15-24 years old) for young males from 

1999 to 2009 in average for the regions of EU. For some 

regions, some data is missing for some years, mainly for the 

last period.  

                                                 
2 We appreciate this definition from the other anonymous reviewers. 
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Ufy: Youth female unemployment rate Unemployment rate (15-24 years old) for young female from 

1999 to 2009.  

Sec: Percentage of secondary 

students 

Ratio of the sum of level 2 students (lower secondary or 

second stage of basic education), level 3 students (upper 

secondary education) and level 4 students (post-secondary 

non-tertiary education) over total population from 1999 to 

2009. Some data is missing, mainly from Germany, Greece, 

Spain and United Kingdom regions.  

Univ: Percentage of university 

students 

Ratio of the sum of level 5 and 6 students (tertiary education) 

over total population from 1999 to 2009. Data is missing also 

for the same countries as for the secondary students 

variables. These countries do not report to EUROSTAT all 

data on education. 

 

Country level: 

Bpg: External balance  The ratio of exported goods minus imported goods over the 

country’s GDP. All data available from 1995 to 2009, except 

for the first years of the period in Greece.  

Pubexp: Public expenditure rate Ratio of goods and services bought by the State over the 

country’s GDP. All data available from 1995 to 2009. 

 

There are three reasons that led us to include these variables. First, since the main 

explanatory variable is the convergence of GDP per capita and given that in a previous 

study we found them to be associated with economic convergence in the EU (see 

details in Maynou et al. [28]), these additional variables might influence, at least, the 

initial situation prior to convergence. Second, some of these variables could be clearly 

associated with socioeconomic deprivation, e.g. unemployment and percentage of 

secondary and tertiary students [56]. Third, when estimating the models these 

variables are the ones giving us the best model in terms of goodness of fit (DIC 

criteria).  
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Some of the coefficients, and in particular the coefficient of interest, β, have subscripts. 

In fact, we specify (dynamic) random coefficient panel data models [62] or, in mixed 

models terminology, we allow (some of the) coefficients to be random effects [63]. In 

other words, we have allowed them to be different for the various levels we have 

considered. Thus, for example, the coefficient of interest, β, varies per year, 

 

tt νββ +=  

 

and also per country, 

  

jtjt υββ +=  

 

With respect to the other explanatory variables, the random effects are associated with 

different levels depending on the final model3.   

 

When the random effects vary by country, we assume they are identical and 

independent Gaussian random variables with constant variance, i.e. ( )2,0~ υσυ Njt . 

When the random effects vary by year, we assume a random walk of order 1 (i.e. 

independent increments) for the Gaussian random effects vector (although we also 

assume a constant variance) [65]. 

 

( )2

1 ,0~ υσυυυυ Njtjtjtjt ∆−=∆ +  

 

We explicitly use a (dynamic) random coefficient specification because, when using a 

very complex design with multiple levels (regions, countries) and dimensions (spatial 

and temporal), there is an important heterogeneity both the initial conditions (ie 

intercept) in the coefficient of interest, as in the coefficients associated with the other 

explanatory variables. In fact, we are not only interested in control for this 

heterogeneity but also in model it, in particular as regards to the coefficient of interest. 

 

                                                 
3
 We have a preliminary estimation of all models allowing variation on the three levels 

(country/time) for all coefficients. In the specification shown, we have provided only the best 

final models. Results not shown can be requested from the authors.  
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Spatio-temporal adjustment 

 

In all models, the disturbance terms, although Gaussian, are not identically and 

independently distributed. In fact, with spatial data, as is in our case, it is necessary to 

distinguish between two sources of extra variability [66, 67]. First, the largest source is 

usually named ‘spatial dependence’, or clustering, and is a consequence of the 

correlation between the spatial unit and the neighbouring spatial units, generally the 

adjacent geographical areas. The closer areas are much more similar than the more 

distant ones. Part of this dependence is not really a structural dependence, but mainly 

due to variables (with a spatial behaviour too) that are not included in the analysis. The 

second source is independent, spatially uncorrelated extra variability, called 

uncorrelated or non-spatial heterogeneity, which is due to unobserved non-spatial 

variables that could influence the dependent variable [66, 67]. In our case, as we have 

the time dimension in our data, there is also temporal dependency (i.e. serial 

autocorrelation).  Again, maybe not results of a dynamic behaviour of the dependent 

variable per se, but rather the omission of time-varying explanatory variables. 

To take into account this spatio-temporal extra-variability, we introduce some structure 

into the model. Heterogeneity is captured by using the random effect associated with 

the intercept (αj) (varying at a country level j). Temporal dependency is approximated 

through the random walk of order 1, and linked to the random effect associated with the 

parameter of interest, βt (varying at a year level, t). 

For spatial dependency, we follow the recent work of Lindgren et al. [68], and specify a 

Matérn structure [69]. In short, we use a representation of the Gaussian Markov 

Random Field (GMRF) explicitly constructed through stochastic partial differential 

equations (SPDE) which has as a solution a Gaussian Field (GF) with a Matérn 

covariance function [68]. To sum up, instead of using the Matérn in a regular lattice, 

which is the usual practice and would imply an estimation with a high computational 

cost as well as one that would be weak in terms of efficiency [68], we specify the 

structure of the spatial Matérn covariance in a triangulation (Delaunay triangulation – 

[70]) of the studied area with a low computational cost and, more importantly in our 

context, much greater efficiency.  

Inference 

As is well-known in random coefficient panel data models that unless the initial levels of 

the dependent variables are fixed constants [71], or the assumption of independence 
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between the regressors and the random effects is fulfilled, the estimates of the 

parameters will be inconsistent, even for sufficiently large T and N [62]. In dynamic 

panel data models, with the lagged dependent as the explanatory variable and, 

typically, with finite T, the assumption of independence does not hold [72-74]. However, 

Hsiao et al. [71] show that, even in this case, the use of a Bayesian approach 

performed fairly well. Under the Bayesian perspective, Zhang and Small [75], building 

on the Hsiao et al. estimator [71], allow the initial values to be correlated with the unit-

specific coefficients and imposing stationarity on the unit-specific AR(1) coefficients. 

Their approach provides good estimates even when T is small. Maynou and Saez [76] 

show how the greater flexibility of the Bayesian estimation, a consequence of its 

hierarchical strategy, leads to better control of the biases associated to dynamic panel 

data models. This control allows us to obtain estimates of the parameter of interest with 

less bias and greater efficiency than other estimators commonly used in dynamic panel 

data models (in particular, GMM estimates).  

 

Here inferences are performed using a Bayesian framework. This approach (more or 

less pure) is considered the most suitable for accounting model uncertainty, both in the 

parameters and in the specification of the models, either in cross-sectional studies [77-

79] or in panel data models [71, 62, 80, 81]. Furthermore, only under the Bayesian 

approach is possible to model both spatial (heterogeneity and spatial dependence) and 

temporal extra variability, with relatively sparse data in some cases (see Table 1). 

Finally, within the Bayesian approach, it is easy to specify a hierarchical structure on 

the (observable) data and (unobservable) parameters, all considered random 

quantities.  

 

Moreover, in this paper we prefer to relax the assumption of strict exogeneity, allowing 

a weak exogeneity of the lagged dependent variable, that is to say, that current shocks 

only affect future values of the dependent variable [80]. By doing this, we are able to 

obtain consistent estimates of the parameters of interest (even with fixed T). It is 

important to point out that this relaxation involves two requirements; first, a large N; i.e. 

obtained in our case by considering regional data; second, identically and 

independently distributed error terms. This can only be achieved by the space-time 

adjustment explained above, imposing a certain structure on the original disturbance 

term. 

 

Within the (pure) Bayesian framework, we follow the Integrated Nested Laplace 

Approximation (INLA) approach [82] (see [83] for further details).  
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All analyses are made with the free software R (version 2.15.3) [84], though the INLA 

library [65, 82]. 
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3.- Results and discussion 

Descriptive 

In Tables 1 to 7 we provide some descriptive data. Table 1 collects the descriptive data 

for life expectancy at birth and Figure 1 show the evolution of life expectancy over time 

and across regions. We find heterogeneity between EU countries, in terms of life 

expectancy during the last fifteen years, ranging from Latvia (mean: 71.413) to Italy 

(mean: 80.317). However, the trend of this variable in all countries has been a gradual 

increase. The countries with higher life expectancy over the past fifteen years were 

Italy, Sweden and Spain, while Latvia, Lithuania and Estonia had the lowest life 

expectancy of the EU. Changes in life expectancy are seen in the long run. Although 

we only analyse fifteen years, we can see that regions are moving towards the upper 

levels of life expectancy. 

Descriptive data for mortality due to ischemic heart disease are presented in Table 2 

and in Figure 2. The trend for this variable in EU countries over the last fifteen years 

has been a gradual reduction. However, this rate has not been homogenous among 

the twenty-seven EU countries. Lithuania, Latvia and Estonia have had the highest 

rates of ischemic heart disease mortality, while France, Spain and Portugal have had 

the lowest. The map in Figure 2 shows that fewer and fewer regions suffer ischemic 

heart disease mortality. Eastern European countries are those with the higher rates, 

although these were falling. 

In Table 3 and Figure 3, we have collected the descriptive data for cancer mortality. 

The common EU trend has been a gradual decrease, even if the map shows that this 

reduction has been mainly in the centre and south, but not in the east. The countries 

with higher rates of cancer death were Hungary, the Czech Republic and Poland, 

while, Cyprus, Finland and Sweden had the lowest rates in the period studied, 1995 to 

2009.  

The descriptive data for mortality due to lung cancer are collected in Table 4 and 

Figure 4. For this standardised death rate, there was no common trend among the EU 

countries from 1995 to 2009. The EU countries with higher lung cancer death rates 

were Malta, Hungary and Poland, and those with lower rates were Lithuania, Sweden 

and Finland. In Figure 4, we observe that mainly for the centre of Europe rates of lung 

cancer mortality have generally stayed the same or have increased.  
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Table 5 shows GDP per capita in the EU from 1995 to 2009. During the period studied, 

there was a common growth in GDP per capita among all EU countries. Luxembourg 

had the highest GDPPC, followed by Austria and Italy. Bulgaria had the lowest 

GDPPC, behind Portugal and Latvia. The map in Figure 5 does not show any sizeable 

changes in the EU regions in terms of GDPPC. However, while until 2005 some levels 

rose, after that date some central regions experienced a drop in their GDPPC. 

Table 6 and Figure 6 collect descriptive data for the Gini Index. During the past fifteen 

years, inequalities have increased or decreased in EU countries, with no common path. 

Portugal, Latvia and Estonia were the countries with higher inequalities, while Slovenia, 

Sweden and Denmark were more equal (Table 6). The map shows us the 

representation of the Gini Index for the EU regions. The regions with more inequalities 

were in the east, while for the southern and central regions there has been a reduction 

in inequalities in last fifteen years. 

Finally, in Table 7 we show the descriptive for the rest of explanatory variables, without 

distinguishing between countries or time period. 

Results of estimating health convergence models 

The results of estimating the models are shown in Tables 8. As stated above, the 

coefficient of interest in this analysis was β, which shows whether convergence or 

divergence existed between countries. However, we are not only interested in the 

existence of convergence; we also want to see the rate/speed of 

convergence/divergence. For this reason, we use the formula proposed by Šlander and 

Ogorevc [85] to compute the average speed of convergence4.  

In Table 8.1, we show the results of the estimations for the four models. For the 

variable corresponding to life expectancy, we found significant convergence between 

EU countries, as the coefficient was negative, -0.819%, (that is to say, a convergence 

rate equal to 0.819%) and statistically significant (the 95% credible interval did not 

contain the zero). The only explanatory variable which had a (statistically) significant 

effect on the convergence of life expectancy was external balance (0.0001%). For 

mortality due to ischemic heart disease, we also found convergence between EU 

countries, as the coefficient of interest was negative, -1.557%, and statistically 
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significant. In this model the significant explanatory variables which have an effect on 

convergence were GDP rates, 0.1214% (lag 1) and 0.12% (lag 2), and public 

expenditure,                -0.0045%. As for standardised cancer rates, the model also 

showed convergence, -1.934%. In this case, the explanatory variables which had an 

effect on the convergence of cancer mortality were secondary students, -0.00183%, 

university students, 0.00075%, and young unemployed male,          -0.00047%. For 

lung cancer mortality, we also found significant convergence among EU countries,     -

0.744%. The explanatory variables which had an effect on the convergence of lung 

cancer mortality were GDPPC, -0.00429% (lag 1), secondary students, -0.00269%, 

university students, 0.00142% young unemployed female, -0.00051%, and external 

balance, 0.00205%. 

Summing up, our results indicate that there was (statistically) significant beta-

convergence in life expectancy and mortality (ischemic heart disease, lung cancer and 

cancer) among the EU-27 regions for the studied period. In particular, the speed of the 

beta-convergence was, on average       -1.934% per year (cancer mortality); -1.557% 

per year (mortality for ischemic heart disease);             -0.819% per year (life 

expectancy); and -0.819% (mortality for lung cancer).   

This means that, in terms of health, there was a catching-up process between the EU-

27 regions between 1995 and 2009. Given the association (in the aggregate) between 

income and health variables, it might be reasonable to suppose that this catching-up 

process reflected the same process followed by economic convergence. The lower rate 

in beta-convergence in most of the health variables analysed for 2008 and 2009, two 

years after the start of the economic crisis, might exemplify this. 

Table 8.2 shows the results of estimating the random effects. Note that the coefficients 

of some variables that were not statistically significant as fixed effects were estimated 

as statistically significant when considering them random effects. This was the case 

with the Gini coefficient. Our interpretation, therefore, is that although the Gini 

coefficient had no effect on convergence in health on average, it did have an effect on 

health convergence for some countries and in some of the years. Note also that this 

effect was very heterogeneous.  

Although there was average beta-convergence for the regions of the EU-27 in the four 

health variables considered (i.e., the coefficient of interest, β, was negative and 

statistically significant), there were discontinuities in both convergence and the speed 

of this convergence between countries and over time. While there was no divergence 
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in any country, the rate of convergence in life expectancy at birth was less than 

average in Malta and higher in Portugal and the UK (in that order). As regards to 

mortality from ischemic heart disease, note that in Estonia, Luxembourg, Romania and 

Malta (in descending order) there was no convergence (because the coefficient 

associated, which was the sum of both the fixed and random effect for that country, 

was positive). Moreover, even with convergence (because in this case, the sum of both 

the fixed and random effect for that country, was still negative), it was not as fast as the 

average for the Netherlands but faster than Finland, Bulgaria and Greece. With regard 

to cancer mortality, France, Romania, and Ireland and, to a much lesser extent, Spain 

showed divergence. Moreover, the convergence rate was somewhat lower than 

average in the UK and higher in Greece, Finland, Portugal and Italy. Finally, with 

regard to mortality from lung cancer, we estimate a very slight divergence in Poland, 

Hungary and Austria. Among the converged countries, France and the United Kingdom 

converged at a slower rate and Greece at a much faster than average speed. 

As regards to discontinuities in time, we estimated divergence only in cancer mortality 

for the year 2009. There were, however, differences in the rate of convergence for all 

variables. We estimated an above average rate for mortality from cancer (year 2008) 

and only slightly higher for lung cancer mortality (year 1999) and life expectancy 

(2003). Mortality from ischemic heart disease (2009) and lung cancer (2008 and 2009) 

were below average. 

That is to say, although we find (beta) convergence on average, we also identify 

significant differences in the catching-up process both across time and regions. This 

spatio-temporal heterogeneity is not only different from those found for the European 

regions in economic convergence analysis (Eckey and Türk [54]. for EU-15 and EU-27; 

Monfort [53] for EU-27; Maynou et al. [55], for the Eurozone) but also from the health 

convergence analysis between countries [52], suggesting that beta-convergence in 

health may be the result of different phenomena than those affecting economic 

convergence. In this respect, for instance, following their entry into the EU in 2004, 

eastern European countries benefited from the EU cohesion policies that had boosted 

economic convergence; although in view of the results it is not clear that these policies 

also promote health convergence, at any rate for all of these countries and for all of the 

health variables. This can perhaps be attributed to the fact that prior to 2004 the health 

system in these countries had already reached quite high standards.  

In order to analyse sigma convergence, we used the coefficient of variation for each 

health variable (Figure 7). It is important to note, however, that instead of using the 
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coefficient of variation calculated on the original variables, we used the calculated on 

the fitted values from the model {3}5. Note that sigma convergence did not occur in all 

cases. Only in life expectancy and lung cancer mortality were disparities reduced 

among the regions of the EU-27 for 1995-2009. However, the greatest reductions in 

disparities in life expectancy at birth occurred between 1995 and 2003, before 

increasing and then remaining stable from 2005 onwards. In the case of lung cancer 

mortality, disparities were reduced in 1999, before increasing until 2008 and then falling 

in the final year considered. 

 
Using the coefficient of variation as a summary measure of sigma-convergence, we 

were unable to estimate a reduction in disparities between EU-27 regions over the 

fifteen years. As Sala-i-Martin [36] states, beta convergence is a necessary but not a 

sufficient condition for sigma convergence. But also, beta and sigma convergence do 

not always show up together because they capture different aspects [36]. Sigma 

convergence analyses whether the cross-country distribution of the (health, in our 

case) variable shrinks over time or not, while beta convergence relates to mobility 

within the given variable distribution. Therefore, we have estimated mobility within the 

distribution but the distribution itself has remained unchanged. In summary, if, as Quah 

[41] and other authors suggest, the concept of sigma-convergence is that which best 

reveals the reality of convergence, we cannot conclude that there was convergence in 

health among the regions of the EU-27 between 1995 and 2009. 

Although we allowed the parameters, and in particular those of interest, to vary 

regionally, we were only able to estimate heterogeneity at a country-level. In a previous 

work on economic convergence between European regions, albeit in a smaller 

geographic area (the Eurozone), we were not able to estimate a spatial heterogeneity 

at the regional level either [55]. We believe that this is a consequence of how European 

policies are implemented, which, even if they have a regional dimension, are 

operational on a country level. 

The effect of unequal income distribution, measured by means of the Gini index, on 

health convergence was very heterogeneous both between countries and between 

years.  

                                                 
5 That is to say, ( ) ( )( )2

1

ijtijt yVaryECV = , both estimated in model {3}. Also note that this 

calculation can only be done easily following a the Bayesian approach, where it is easier to 
make inferences about functions of parameters and/or predictions, in particular when the 
function is non-linear, as in our case (i.e. the dependent variables in {3} were non-linear 
functions of the health variables). 
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Discussion 

The work could have several limitations. Let us discuss that in the same hierarchy used 

in the estimation of our models. First, we might have chosen other variables that would 

have explained the growth rate of the health dependent variables. We considered this 

possibility, but they could not be included due to a lack of data. In this respect, data for 

some variables are available at country level up to a maximum of three years, such as 

the abortion rate in the case of life expectancy, lifestyle as a percentage of smokers or 

drinkers, or the prevalence of obesity in cause-specific mortality. Other variables, such 

as immigrants from developing countries, are available at a country level for very few 

countries throughout the entire period considered in our paper (1995-2009). We 

preferred to include the Gini index as a proxy for income inequality and not include 

other variables such as poverty and social exclusion because of a lack of conclusive 

evidence regarding these variables, at least compared to the high position in the 

hierarchy of evidence provided by the study of Kondo et al. [61]. 

Second, the consistency of the estimates is totally dependent on the fulfilment of the 

hypothesis of weak exogeneity. This, in turn, depends on, at least one of their 

requirements. Once we made the spatio-temporal adjustment, the error terms should 

be identically and independently distributed. In this sense, we checked the absence of 

autocorrelation, or spatial or temporal, in the standardized residuals of all three models. 

In addition, using cross-correlation functions, we also checked the absence of 

(contemporary) correlation between the error terms and each of the regressors, 

including lagged dependent variables in particular. 

 

Third, as in any Bayesian analysis, the choice of the prior may have a considerable 

impact on the results. In the second stage of the hierarchy we used, we allowed 

variation on the different levels for all coefficients, i.e. we allowed all the coefficients to 

be random effects. Then, we tested that the variance of the effects was equal to zero, 

i.e. the effects were actually fixed. Only when we rejected this null hypothesis, did we 

maintain the coefficient as a random effect. Furthermore, as regards to the third stage 

in the hierarchy, by increasing the precision (lowering the variance) we performed 

sensitivity analyses to assess how the prior on the hyperparameters influences the 

estimation. We found no significant differences. 

 

An alternative structure for the spatial dependence would be the non-parametric 

approximation, conditional autoregressive model, CAR, either in its intrinsic [86] (the 

between-area covariance matrix is not positive definite) or proper [87] (matrix positive 
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definite) versions. To use this approach, areas (regions in our case) are taken to be 

neighbours if they share a common boundary. This approach provides good results if 

all regions are of a similar size and are arranged in a regular pattern, but results are not 

promising in other sets of circumstances [88]. In fact, as Simpson et al. [89] point out, 

CAR relies heavily on the regularity of the lattice and it is quite difficult to construct a 

CAR on an irregular lattice that is resolution consistent [90]. This is the main reason we 

chose to follow the SPDE approach in our work. As we mentioned earlier, instead of 

relying on a regular lattice, we specified the structure of the spatial Matérn covariance 

in a triangulation of the studied area, implying a low computational cost and much 

greater efficiency. 

 

4.- Conclusions 

Our main objective was to analyse the speed of convergence (beta) of (cause-specific) 

mortality and life expectancy at birth in EU regions between 1995-2009. Our results 

show that, in terms of health, there has been a catching-up process among the EU 

regions. Although we found (beta) convergence on average, we also identified 

significant differences in the catching-up process both across time and regions. This 

last finding differs from other studies done for the EU regions. Moreover, by using the 

coefficient of variation to measure the dynamics of dispersion levels of mortality and life 

expectancy (sigma convergence), we, surprisingly, find no reduction on average in 

dispersion levels. Consequently, if the reduction of dispersion is the ultimate measure 

of convergence, as various authors have agreed (e.g. Quah, [15]), then our study 

shows a lack of convergence of health across EU regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

23 

 

 

Conflicts of Interest 

 

There are no conflicts of interest for any of the authors. All authors freely disclose any 

actual or potential conflict of interest including any financial, personal or other 

relationships with other people or organisations within three years of beginning the 

submitted work that could inappropriately influence, or be perceived to influence, their 

work. 

 

 

Acknowledgements 

 

This work was partly funded by the Short Term Grant Abroad for PhD European, 

CIBER of Epidemiology and Public Health (CIBERESP), Spain, benefiting Laia 

Maynou, who is also a beneficiary of the Grant for Universities and Research Centres 

for the Recruitment of New Research Personnel (FI-DGR 2012), AGAUR, Government 

of Catalonia (Generalitat de Catalunya). We appreciate the comments of the attendees 

at ‘the Health Economists' Study Group (HESG) Summer 2013 Conference’, on June 

26-28, 2013, at the University of Warwick, UK; at the ‘New Directions in Welfare III 

2013 OECD-Universities Joint Conference’, on July 3-5, 2013, in Paris, France; and at 

the 53rd European Regional Science Association, ERSA, on August 27-31, 2013, 

Palermo, Italy, where a preliminary version of this work was presented. We also 

appreciate the members of the Department of Economics, City University London, UK, 

and in particular of Prof. Mireia Jofre-Bonet for their very valuable comments on a 

previous version of this paper. We appreciate the comments of two anonymous 

reviewers that, without doubt, help us improve our work. 

 



 

24 

 

 

References  

1.- Durlauf SN, Johnson PA, Temple JRW. Growth econometrics. In Aghion P, Durlauf 

SN (eds). Handbook of Economic Growth, pp. 555-677, Elsevier(2005). 

2.- Kenny C. Why are we worried about income? Nearly everything that matters is 

converging. World Development 33(1), 1-19 (2005). 

3.- Sen A. Mortality as an Indicator of Economic Success and Failure. Economic 

Journal 108(446), 1-25 (1998). 

4.- Sen A. Development as freedom. Random House: New York (1999). 

5.- Maslow A. A theory of Human Motivation. Psychological Review 50, 370-396 

(1943). 

6.- Becker G, Phillipson T, Soares R.The quantity and quality of life and the evolution of 

world inequality. NBER Working Paper Series, No. 9765 (2003). 

7.- Mayer D. Convergence Clubs in Cross-Country Life Expectancy Dynamics. In van 

der Hoeven R, Shorrocks A (eds). Perspectives on Growth and Poverty’. pp. 144-171, 

United Nations University Press (2003). 

8.- Wagstaff A, Paci P, van Doorslaer E. On the measurement of inequalities in health. 

Social Science and Medicine. 33(5):545–557, (1991). 

9.- Van Doorslaer E, Wagstaff A, Bleichrodt H, Calonge S, Gerdtham U, Gerfin M, 

Geurts J, Gross L, Häkkinen U, Leu R, O'Donell O, Propper C, Puffer F, Rodríguez M, 

Sundberg G, Winkelhake O. Income-related inequalities in health: some international 

comparisons. Journal of Health Economics, 16(1):93-112 (1997). 

10.- Clarke PM, Gerdtham UG, Johannesson M, Bingefors K, Smith L. On the 

measurement of relative and absolute income-related health inequality. Social Science 

and Medicine, 55:1923–1928, (2002). 

11.- Oliver A, Healey A, Le Grand J. Addressing health inequalities. The Lancet, 

360:565–567, (2002). 

12.- Wagstaff A. Inequality aversion, health inequalities, and health achievement. 

Journal of Health Economics. 21:627–641, (2002).  

 

13.- Van Ourti, T. Socio-economic inequality in ill-health amongst the elderly. Should 



 

25 

 

 

one use current or permanent income?. Journal of Health Economics,22(2):219-41 

(2003). 

14.- Van Doorslaer E, Jones AM. Inequalities in self-reported health: validation of a 

new approach to measurement. Journal of Health Economics, 22:61–87, (2003). 

15.- O’Donnell O, van Doorslaer E, Wagstaff A, Lindelöw M. Analyzing Health Equity 

Using Household Survey Data: A Guide to Techniques and Their Implementation. The 

World Bank; Washington DC: (2008). 

16.- Fleurbaey M, Schokkaert E. Unfair inequalities in health and health care. Journal 

of Health Economics, 28(1):73–90, (2009). 

17.- Erreygers, G. and Van Ourti, T.  ‘Measuring socioeconomic inequality in health, 

health care and health financing by means of rank-dependent indices: A recipe for 

good practice’, Journal of Health Economics; 30(4): 685–694 (2011)  

18.- Frick, J. and Zeibarth, N. Welfare-related health inequality: does the choice of 

measure matter?. The European Journal of Health Economics, 14 (3), 431-442, (2013). 

 

19.- Wagstaff. A. Poverty and health sector inequalities. Bulletin of the WTO, 80(2):97-

102 (2002). 

20.- Wagstaff A. The bounds of the concentration index when the variable of interest is 

binary, with an application to immunization inequality. Health Economics, 14(4):429–

432 (2005).  

21.- Erreygers G. Correcting the concentration index. Journal of Health Economics, 

28:504–515, (2009). 

22.- Erreygers G. Correcting the concentration index: A reply to Wagstaff. Journal of 

Health Economics, 28:521–524 (2009). 

23.- Wagstaff A. Correcting the concentration index: A comment. Journal of Health 

Economics, 28:516–520, (2009). 

24.- Erreygers G, Van Ourti T. Putting the cart before the horse. Comment on “The 

concentration index of a binary outcome revisited” Health Economics, (2011). 

25.- Wagstaff A. The concentration of a binary outcome revisited. Health Economics, 

(2011). 



 

26 

 

 

26.- Wagstaff A. Reply to Guido Erreygers and Tom Van Ourti’s comment on “The 

concentration index of a binary outcome revisited” Health Economics, (2011) 

27.- Erreygers, G., Clarke, P. and Van Ourti, T. “Mirror, mirror, on the wall, who in this 

land is fairest of all?”—Distributional sensitivity in the measurement of socioeconomic 

inequality of health. Journal of Health Economics, 31, 257-270, (2012) 

28.- Wennberg, J. and Gittelsohn, A. Small area variations in health care delivery. 

Science, 182(4117):1102-8, (1973). 

29.- Myrdal, G. Economic Theory and Underdeveloped Regions, London: General 

Duckworth (1957). 

30.- Friedmman, J. ‘Regional Development Policy: A Case Study of Venezuela’ 

Cambridge Massachussets: The MIT Press, (1966). 

31.- Keeble, D., Oxford, J. and Walker, S. Periphery regions in a Community of twelve 

Member States, Luxembourg: EC Offcicial Publications, (1988). 

32.- Krugman, P. Increasing Returns and Economic Geography. Journal of Political 

Economy, 99(3), pp. 483-499, (1991). 

33.- Felder, S. and Tauchmann, H. Federal state differentials in the efficiency of health 

production in Germany: an artefact of spatial dependence?. European Journal of 

Health Economics, 14:21-39, (2013). 

34.- Paas T, Kuusk A, Schlitte F, Võrk A. Econometric analysis of income convergence 

in selected EU countries and their nuts 3 level regions. University of Tartu (2007). 

35.- Barro R, Sala-i-Martin X. Economic Growth. The MIT Press; Boston (1991). 

36.- Sala-i-Martin X. The Classical Approach to Convergence Analysis. Economic 

Journal, 106(437), 1019-1036 (1996). 

37.- Sala-i-Martin X. Regional cohesion: Evidence and theories of regional growth and 

convergence. European Economic Review, 40(6), 1325–1352 (1996) 

38.- Baumol W. Productivity growth, convergence, and welfare: What the long run data 

show. American Economic Review, 76(5), 1072–1085 (1986) 

39.- Barro R, Sala-i-Martin X. Convergence. Journal of Political Economy, 100(2), 223–

251 (1992). 



 

27 

 

 

40.- Fischer M, Stirböck C. Regional income convergence in the enlarged Europe, 

1995–2000: A spatial econometric perspective. ZEW Discussion Paper No. 04–42 

(2004) [available at: http://www.econstor.eu/bitstream/10419/24051/1/dp0442.pdf, 

accessed on January, 19, 2013] 

41.- Quah D. Galton’s Fallacy and the Convergence Hypothesis. Scandinavian Journal 

of Economics,  95, 427–443 (1993). 

42.- Preston S. The changing relation between mortality and level of economic 

development. Population Studies, 29, 231-248 (1975). 

43.- Barro R. Economic growth in a cross section of countries. Quarterly Journal of 

Economics, 106(2), 407-443 (1991). 

44.- Pritchett L, Summers L. Wealthier is Healthier, Journal of Human Resources, 

31(4), 842-868 (1996). 

45.- Anand S, Ravallion M. Human development in poor countries: On the role of 

private incomes and public Services. Journal of Economic Perspectives, 7(1), 133-150 

(1993) 

46.- Wilson C. On the scale of global demographic convergence 1950-2000. Population 

and Development Review, 27(1):155-171 (2011). 

47.- Glei DA, Meslé F, Vallin J. Diverging trends in life expectancy at age 50: A look at 

causes of death. In Eileen, M; Crimins, S.H.P. and Cohen, B. (eds.). International 

Differences in Mortality at Older Ages: Dimensions and Sources. pp. 103-151. The 

National Academies Press: Washington, DC, (2010). 

48.- Edwards RD. Changes in world inequality in length of life:1970-2000. Population 

and Development Review, 37(3), 499-528 (2011) 

49.- Clark R. World health inequality: Convergence, divergence, and development. 

Social Science & Medicine, 72(4), 617-624 (2011) 

50.- Eggleston KN, Fuchs VR. The new Demographic Transition: Most gains in life 

expectancy now realized late in life. Journal of Economic Perspectives, 26(3), 137-156 

(2012). 

51.- Edwards RD, Tuljapurkar S. Inequality in life spans and a new perspective on 

mortality convergence across industrialized countries. Population and Development 

Review, 31(4), 645-674, 2005. 



 

28 

 

 

52.- d’Albis H, Esso LJ, Pifarré, H. Mortality convergence across high-income 

countries: An econometric approach. Documents de Travail du Centre d’Economie de 

la Sorbonne, Université Paris 1, 2012.76 (2012). 

53.- Monfort P. Convergence of EU regions. Measures and evolution. European Union, 

Regional Policy Working Paper 01/2008 (2008). 

54.- Eckey HF, Türk M. Convergence of EU-Regions: A literature review. Discussion 

Paper at the Economic Department of the University of Kassel, 86/06, Kassel (2006). 

55.- Maynou L, Saez M, Bacaria, J. Analysis of regional convergence in the euro area 

(1990-2010) [in Spanish]. Ekonomiaz, 82, 200-217 (2013). 

56.- Eurostat database [available at 

http://epp.eurostat.ec.europa.eu/portal/page/portal/region_cities/regional_statistics/data

/database] 

57.- Baumont C, Ertur C, Le Gallo J. The European Regional Convergence Process, 

1980–1995: Do Spatial Regimes and Spatial Dependence Matter?. EconWPA, Series 

on Econometrics, number 0207002 (2002) [available at: 

http://econpapers.repec.org/paper/wpawuwpem/0207002.htm, accessed on January, 

19, 2013]. 

58.- Borrell C, Marí-Dell'olmo M, Serral G, Martínez-Beneito M, Gotsens M and 

MEDEA Members. Inequalities in mortality in small areas of eleven Spanish cities (the 

multicenter MEDEA project). Health Place, 16(4), 703-711 (2010). 

59.- Puigpinós-Riera R, Marí-Dell'Olmo M, Gotsens M, Borrell C, Serral G, Ascaso C, 

Calvo  M, Daponte A, Domínguez-Berjón FM, Esnaola S, Gandarillas A, López-Abente 

G, Martos CM, Martínez-Beneito MA, Montes-Martínez A, Montoya I, Nolasco A, 

Pasarín IM, Rodríguez-Sanz M, Saez M, Sánchez-Villegas P. Cancer mortality 

inequalities in urban areas: a Bayesian small area analysis in Spanish cities. 

International Journal of Health Geographics, 10, 6 (2011). 

60.- Salcedo N, Saez M, Bragulat B, Saurina C. Does the effect of gender modify the 

relationship between deprivation and mortality?. BMC Public Health, 12, 574 (2012).. 

61.- Kondo N, Sembajwe G, Kawachi I, van Dam R, Subramanian S, Yamagata Z. 

ncome inequality, mortality, and self rated health: meta-analysis of multilevel studies. 

British Medical Journal, 339, b4471 (2009). 



 

29 

 

 

62.- Hsiao C, Pesaran MH. Random coefficient panel data models. In Mátyás L, 

Sevestre P. (eds) The Econometrics of Panel Data. Advances Studies in Theoretical 

and Applied Econometrics Vol 46. pp. 185-213. Springer: Berlin, Heidelberg (2008).  

63.- Pinheiro JC, Bates D. Mixed-effects Models in S and S-Plus. Springer-Verlag: New 

York (2000). 

65.- R-INLA project [Available at: http://www.r,inla.org/, last accessed on August 2, 

2013]. 

66.- Lawson AB, Browne WJ, Vidal-Rodeiro CL. Disease mapping with WinBUGS and 

MLwiN. John Wiley & Sons: Chichester (2003).. 

67.- Barceló MA, Saez M, Saurina C. Spatial variability in mortality inequalities, 

socioeconomic deprivation, and air pollution in small areas of the Barcelona 

Metropolitan Region, Spain’. Science of the Total Environment, 407(21), 5501-5523 

(2009). 

68.- Lindgren F, Rue H, Lindström J. An explicit link between Gaussian fields and 

Gaussian Markov random fields: the stochastic partial differential equation approach 

(with discussion). Journal of the Royal Statistical Society, Series B, 73(4), 423-498 

(2011) [Available at: http://www.math.ntnu.no/~hrue/spde-jrssb.pdf , accessed on 

January 19, 2013]. 

69.- Stein ML. Statistical Interpolation of Spatial Data: Some Theory for Kriging. 

Springer: New York, (1999). 

70.- Hjelle O Daehlen M. Triangulations and Application’. Springer: Berlin (2006). 

71.- Hsiao C, Pesaran MH, Tahmiscioglu AK. Bayes estimation of short-run coefficients 

in dynamic panel data models. In Hsiao C, Lee LF, Lahiri, K, Pesaran MH (eds). 

Analysis of Panels and Limited Dependent Variables Models. pp. 268-206. Cambridge 

University Press: Cambridge (1999). 

72.- Nickell S. Biases in dynamic models with fixed effects. Econometrica, 49(6), 1417-

1426 (1981). 

73.- Anderson TW, Hsiao C. Estimation of dynamic models with error components. 

Journal of the American Statistical Society, 76, 598-606 (1981). 

74.- Anderson TW Hsiao C. Formulation and estimation of dynamic models using panel 

data. Journal of Econometrics, 18, 47-82 (1982). 



 

30 

 

 

75.- Zhang P, Small D. Bayesian inference for random coefficient dynamic panel data 

models. Department of Statistics, The Wharton School, University of Pennsylvania 

(2006) [Available at: http://www-

stat.wharton.upenn.edu/~dsmall/randomcoefficientmodel_submittedversion.pdf, accessed on 

July 26, 2013]. 

76.- Maynou L, Saez M. Bayesian estimation of small dynamic panel data models. 

Research Group on Statistics, Econometrics and Health (GRECS), University of Girona 

(2013). 

77.- Raftery A. Bayesian model selection in social research. Sociological Methodology, 

25, 111-163 (1995). 

78.- Fernández C, Ley E, Steel M. Model uncertainty in cross-country growth 

regressions. Journal of Applied Econometrics, 16, 563-576 (2001). 

79.- Sala-i-Martin X, Doppelhofer G, Miller R. Determinants of long-term growth: A 

Bayesian averaging of classical estimates (BACE) approach. American Economic 

Review,  94(4), 813-835 (2004). 

80.- Moral-Benito E. Determinants of economic growth: a Bayesian panel data 

approach. Documento de Trabajo 1031, Madrid: Banco de España (2010). 

81.- Rendon SR. Fixed and random effects in classical and Bayesian regression. 

Oxford Bulletin of Economics and Statistics, 75(3), 460-476 (2012). 

82.- Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian 

models by using integrated nested Laplace approximations (with discussion). Journal 

of the Royal Statistical Society, Series B, 71, 319-392 (2009) [Available at: 

http://www.math.ntnu.no/~hrue/r-inla.org/papers/inla-rss.pdf, accessed on January 19, 

2013]. 

83.- Blangiardo M, Cameletti M, Baio G, Rue H. Spatial and spatio-temporal models 

with R-INLA. Spatial and Spatio-temporal Epidemiology, 4, 33-49 (2013). 

84.- R Development Core Team. R: A language and environment for statistical 

computing. Vienna, Austria: R Foundation for Statistical Computing, ISBN 

3,900051,07,0, 2012 [Available at: http://www.R,project.org accessed on December 9, 

2012]. 



 

31 

 

 

85.- Šlander S, Ogorevc M. Labour costs convergence in the EU: Spatial econometrics 

approach. Privredna kretanja i ekonomska politika, 122, 27-51 (2010) [Available at: 

http://www.hrcak.srce.hr/file/80468 accessed on January 26, 2013]. 

86.- Besag J. Spatial interaction and the statistical analysis of lattice systems (with 

discussion) Journal of Royal Statistical Society, Series B, 36, 192–236 (1974). 

87.- Cressie NA. Statistics for Spatial Data. Wiley: New York (1993). 

88.- Kelsall J, Wakefield J. Modeling spatial variation in disease risk: A geostatistical 

approach. Journal of the American Statistical Association, 97(459), 692-701 (2002). 

89.- Simpson D, Illian J, Lindgren F, Sørbye SH, Rue H. Going off grid: 

Computationally efficient inference for log-Gaussian Cox processes. Preprint Statistics 

No 10/2011, Norwegian University of Science and Technology, Trondheim, Norway 

(2011) [available at http://www.r-inla.org/papers accessed on March 23, 2013]  

90.- Rue H, Held L. Gaussian Markov Random Fields. Chapman & Hall/CRC: pp. 263. 

Boca Raton, London, New York, Singapore (2005).   

 
 

 



 

32 

 

 

Table 1.- Descriptive data for the dependent variab le: Life expectancy at 
birth, males and females- Years. (1995-2009) 
 
Countries   Mean            sd    Median          (Q1, Q3) 

AUSTRIA  79.258        (1.280)    79.250       (78.400,80.100) 

BELGIUM  78.328        (1.502)   78.400       (77.400,79.225) 

BULGARIA  72.077        (1.051)   72.100       (71.400,72.800) 

CYPRUS  78.840        (1.283)   78.900       (77.700,80.100) 

CZECH REPUBLIC  75.466        (1.533)   75.500       (74.300,76.600) 

DENMARK  78.687        (0.538)   78.700       (78.300,79.000) 

ESTONIA  71.513        (1.959)   71.100       (70.100,73.100) 

FINLAND  78.651        (1.545)   78.500       (77.400,79.700) 

FRANCE  79.529        (1.457)   79.500       (78.500,80.500) 

GERMANY  79.540        (0.945)   79.500       (78.800,80.100) 

GREECE  78.964        (1.114)   79.100       (78.300,79.700) 

HUNGARY  72.259        (1.477)   72.200       (71.175,73.300) 

IRELAND  77.823        (1.473)   77.900       (76.200,79.200) 

ITALY  80.317        (1.295)   80.300       (79.300,81.300) 

LATVIA  71.413        (0.976)   71.100       (70.825,72.175) 

LITHUANIA  71.480        (0.945)   71.800       (71.100,72.000) 

LUXEMBOURG  78.480        (1.312)   78.000       (77.300,79.500) 

MALTA  78.667        (1.045)   78.800       (77.500,79.500) 

NETHERLANDS  79.615        (0.971)   79.600       (78.725,80.400) 

POLAND  74.205        (1.443)   74.400       (73.025,75.275) 

PORTUGAL  76.323        (2.139)   76.400       (74.950,78.200) 

ROMANIA  72.837        (0.980)   73.000       (71.950,73.375) 

SLOVAKIA  74.154        (1.113)   74.000       (73.300,74.800) 

SLOVENIA  78.660        (1.381)   78.600       (77.400,79.700) 

SPAIN  79.824        (1.506)   79.800       (78.700,81.000) 

SWEDEN  80.063        (0.864)   79.900       (79.500,80.700) 

UNITED KINGDOM  79.043        (1.448)   79.100       (78.100,80.000) 

       
Source: Eurostat and own construction 
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Table 2.- Descriptive data for the dependent variab le: Ischemic Heart 
Disease mortality, males and females. Standardised death rate per 100,000 
inhabitants – 3 year average 

Countries   Mean            sd    Median          (Q1, Q3) 

AUSTRIA 119.293      (23.587)   116.400     (100.375,137.825) 

BELGIUM 76.652        (14.225)   79.450       (64.950,83.925) 

BULGARIA 151.364      (31.366)   150.400     (124.350,169.250) 

CYPRUS 83.929        (9.609)   80.400       (79.600,83.200) 

CZECH REPUBLIC 194.024     (36.157)   186.950     (169.475,209.500) 

DENMARK   

ESTONIA 306.700     (56.295)   313.750     (254.925,348.475) 

FINLAND 149.936     (35.946)   147.800     (124.575,174.775) 

FRANCE 42.998       (9.824)   43.350       (37.400,49.375) 

GERMANY 115.898     (40.540)   106.900     (92.125,126.575) 

GREECE 77.181       (14.547)   75.100       (65.650,86.125) 

HUNGARY 239.116     (25.280)   234.600     (219.450,254.875) 

IRELAND 136.396     (28.920)   128.450     (111.675,161.700) 

ITALY 72.040       (11.595)   70.750       (63.500,80.000) 

LATVIA 297.333     (25.607)   291.300     (281.775,315.525) 

LITHUANIA 337.175     (21.100)   334.550     (322.575,343.300) 

LUXEMBOURG 73.146       (12.855)   76.600       (66.050,78.950) 

MALTA 149.838     (22.658)   143.900     (134.575,173.250) 

NETHERLANDS 74.925       (20.390)   73.300       (57.100,89.100) 

POLAND 115.180     (27.738)   113.250     (89.600,134.400) 

PORTUGAL 70.519       (31.803)   63.600       (45.375,87.925) 

ROMANIA 222.756     (65.135)   193.300     (177.125,287.425) 

SLOVAKIA 266.829     (39.175)   275.200     (252.425,294.325) 

SLOVENIA   

SPAIN 58.308       (14.849)   55.900       (47.300,67.500) 

SWEDEN 118.223     (21.189)   115.800     (101.000,132.375) 

UNITED KINGDOM 126.641     (29.900)   124.300     (104.475,145.300) 

 
Source: Eurostat and own construction 
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Table 3.- Descriptive data for the dependent variab le: Cancer mortality, 
males and females. Standardised death rate per 100, 000 inhabitants - 3 
year average  

Countries   Mean            sd    Median          (Q1, Q3) 

AUSTRIA 168.925      (12.120)   167.050     (159.925,176.375) 

BELGIUM 181.085      (28.325)   183.150     (169.075,197.600) 

BULGARIA 178.567      (32.769)   170.100     (157.300,183.650) 

CYPRUS 124.286      (27.643)   120.000     (108.800,122.400) 

CZECH REPUBLIC 234.582      (29.550)   228.650     (215.675,246.175) 

DENMARK   

ESTONIA 198.292      (3.996)   197.850     (196.275,202.050) 

FINLAND 144.751      (16.585)   144.100     (137.975,150.025) 

FRANCE 173.752      (23.580)   176.550     (162.725,187.650) 

GERMANY 174.224      (27.764)   171.250     (163.000,180.300) 

GREECE 160.672      (23.178)   153.500     (145.375,168.350) 

HUNGARY 257.084      (15.871)   257.400     (245.350,269.425) 

IRELAND 188.946      (10.067)   187.850     (182.000,197.800) 

ITALY 169.671      (20.367)   170.100     (153.000,183.000) 

LATVIA 194.892      (1.369)   195.000     (193.525,196.100) 

LITHUANIA 196.125      (1.851)   195.800     (195.052,196.725) 

LUXEMBOURG 171.400      (14.006)   168.000     (159.250,180.425) 

MALTA 163.254      (12.975)   157.600     (153.400,171.725) 

NETHERLANDS 194.230      (9.990)   192.700     (186.450,201.950) 

POLAND 212.609      (17.686)   216.500     (199.575,226.675) 

PORTUGAL 164.252      (34.997)   158.100     (150.325,179.325) 

ROMANIA 179.820      (20.558)   183.500     (165.150,192.075) 

SLOVAKIA 198.196      (20.728)   205.200     (196.925,211.025) 

SLOVENIA   

SPAIN 164.302      (11.531)   164.500     (156.800,172.000) 

SWEDEN 154.339      (6.761)   154.000     (150.200,159.250) 

UNITED KINGDOM 186.493      (16.1118)   184.200     (173.800,195.425) 

 
 
Source: Eurostat and own construction 
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Table 4.- Descriptive data for the dependent variab le: Lung cancer 
mortality, males and females. Standardised death ra te per 100,000 
inhabitants – 3 year average  

Countries   Mean            sd    Median          (Q1, Q3) 

AUSTRIA 37.062       (8.433)   32.900      (30.900,42.450) 

BELGIUM 46.915       (8.975)   47.900      (42.075,52.200) 

BULGARIA 40.728       (7.799)   37.750      (35.025,42.725) 

CYPRUS 32.575       (0.805)   32.150      (32.000,33.550) 

CZECH REPUBLIC 50.062       (9.721)   48.150      (43.800,53.150) 

DENMARK   

ESTONIA 31.492       (1.864)   30.550      (29.950,33.600) 

FINLAND 30.120       (6.781)   27.850      (25.100,37.000) 

FRANCE 36.573       (7.307)   36.950      (34.725,39.950) 

GERMANY 35.970       (8.037)   36.100      (29.300,40.700) 

GREECE 41.430       (6.401)   40.350      (37.700,43.800) 

HUNGARY 58.405       (13.725)   63.900      (40.700,70.575) 

IRELAND 39.675       (3.354)   38.450      (37.125,42.775) 

ITALY 34.965       (8.125)   35.950      (28.025,41.800) 

LATVIA 37.113       (2.564)   37.350      (34.525,38.900) 

LITHUANIA 21.700       (6.385)   20.900      (18.300,22.400) 

LUXEMBOURG 39.625       (1.235)   39.750      (39.150,40.625) 

MALTA 80.982       (1.664)   80.800      (80.500,81.600) 

NETHERLANDS 47.475       (8.597)   47.500      (44.050,50.675) 

POLAND 51.342       (9.370)   52.750      (46.375,57.575) 

PORTUGAL 34.034      (17.765)   28.100      (24.200,30.000) 

ROMANIA 41.577      (7.398)   41.150      (36.600,43.100) 

SLOVAKIA 37.350      (3.746)   37.350      (35.000,40.500) 

SLOVENIA 38.205      (6.057)   37.900      (32.100,44.100) 

SPAIN 38.466      (4.597)   37.700      (35.600,41.100) 

SWEDEN 26.557      (3.427)   26.100      (23.800,29.525) 

UNITED KINGDOM 41.414      (10.297)   40.400      (34.425,48.275) 

       
 

Source: Eurostat and own construction 
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Table 5.- Descriptive data for the variable: Gross Domestic Product per 
capita in PPS.  

Countries   Mean            sd    Median          (Q1, Q3) 

AUSTRIA 29559.259     (5626.535)   30500         (25400,32900) 

BELGIUM 23558.788     (9399.397)   20700         (17675,26125) 

BULGARIA 6434.444       (2857.875)   5800          (4500,7100) 

CYPRUS 18206.667    (3830.417)   18100        (14600,21400) 

CZECH REPUBLIC 15670.833    (7002.681)   13800        (11300,16475) 

DENMARK 23844           (5007.083)   23600       (20100,27000) 

ESTONIA 11300           (3992.878)   10750       (7600,14900) 

FINLAND 22856           (6587.155)   22100       (18100,26800) 

FRANCE 19103.077    (4953.832)   19200       (15900,21400) 

GERMANY 22998.632    (6163.492)   22000       (18950,26425) 

GREECE 16657.949    (4135.598)   16300       (13600,19100) 

HUNGARY 13580.952    (5455.696)   10.800      (10075,14625) 

IRELAND 24250           (8228.368)   22950       (18400,31800) 

ITALY 25157.143    (6175.334)   26800       (18800,30200) 

LATVIA 9100             (3059.915)   8600         (6400,12000) 

LITHUANIA 9666.667      (3352.753)   9100         (6900,12800) 

LUXEMBOURG 50080          (12520.224)   49200       (37000,62500) 

MALTA 17227.273    (1618.698)   16800       (16200,19000) 

NETHERLANDS 25020.556    (6258.025)   24300       (20525,28900) 

POLAND 9398.417      (3062.026)   8800         (7200,10800) 

PORTUGAL 16174.286    (4610.941)   15500       (12800,18500) 

ROMANIA 7251.667      (4206.198)   5850         (4700,8500) 

SLOVAKIA 13986           (9116.078)   10400       (7900,16400) 

SLOVENIA 17103.33      (4947.621)   16550       (13300,20000) 

SPAIN 19640.351    (5556.054)   19300       (15500,23350) 

SWEDEN 23947.5        (5565.65)   23400       (19525,26300) 

UNITED KINGDOM 22042.018    (8792.323)   20600       (17275,24125) 

       
Source: Eurostat and own construction 
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Table 6.- Descriptive data for the variable: Gini I ndex (percentage) 

Countries   Mean             sd    Median          (Q1, Q3) 

AUSTRIA 25.629          (1.031)   25.900      (25.000,26.200) 

BELGIUM 27.743         (1.090)   27.900      (27.000,28.300) 

BULGARIA 28.780         (4.453)   26.000      (25.000,33.400) 

CYPRUS 28.671         (0.867)   28.800      (28.300,29.100) 

CZECH REPUBLIC 25.233         (0.403)   25.200      (25.000,25.300) 

DENMARK 23.318         (2.188)   23.900      (21.000,25.100) 

ESTONIA 34.030         (1.975)   34.050      (33.100,35.000) 

FINLAND 24.914         (1.721)   25.900      (24.000,26.000) 

FRANCE 28.167        (1.035)   28.000      (27.000,29.000) 

GERMANY 26.967        (2.065)   26.450      (25.000,29.075) 

GREECE 33.929        (0.777)   34.000      (33.100,34.700) 

HUNGARY 26.489        (2.650)   25.600      (25.000,27.000) 

IRELAND 31.421        (1.556)   31.700      (30.000,33.000) 

ITALY 31.369        (1.339)   31.500      (31.000,32.200) 

LATVIA 36.633        (1.847)   36.750      (35.400,37.700) 

LITHUANIA 33.800        (2.094)   34.000      (31.000,35.500) 

LUXEMBOURG 27.193        (1.159)   27.200      (26.500,27.800) 

MALTA 27.550        (1.307)   27.100      (26.900,27.900) 

NETHERLANDS 27.193        (1.156)   27.000      (26.400,27.600) 

POLAND 32.071        (1.821)   32.000      (30.000,33.300) 

PORTUGAL 36.662        (0.832)   36.800      (36.000,37.000) 

ROMANIA 32.270        (2.870)   31.000      (30.000,34.900) 

SLOVAKIA 25.460        (1.588)   24.800      (24.500,26.200) 

SLOVENIA 22.756        (0.758)   22.700      (22.000,23.400) 

SPAIN 32.373        (1.328)   32.000      (31.200,34.000) 

SWEDEN 23.260        (1.050)   23.400      (23.000,24.000) 

UNITED KINGDOM 32.857        (1.386)   32.450      (32.000,34.000) 

 

Source: Eurostat and own construction 
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Table 7.- Descriptive data for the explanatory vari ables. 

Explanatory variables   Mean             sd    Median          (Q1, Q3) 

Youth male unemployment 

rate (%) 

17.996       (10.093)   16.100      (10.900,22.600) 

Youth female 

unemployment rate (%) 

20.072       (13.035)   16.800      (10.100,26.500) 

Secondary students (%) 9.757         (1.661)   9.786        (8.751,10.814) 

University students (%) 22.105       (3.721)   21.853      (19.581,24.585) 

External balance (%) -1.429        (6.829)   -1.200      (-5.000,3.300) 

Public expenditure rate (%)  46.524       (5.582)   46.900     (43.000,51.000) 

 

Source: Eurostat and own construction 
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Table 8.1.- Results of estimating the models. Fixed  effects. 

 
1mean (standard deviation); the 95% credible interval did not contain the zero (statistically significant). 
Source: own construction 

Dependent variables  Life expectancy  Ischemic heart disease crude 
rate 

Cancer standardized 
rate 

Lung c ancer crude rate  

Β  -0.1307(0.0142)**1 -0.2630(0.0830)** -0.3366(0.1407)**  -0.1181(0.0413)** 

Fixed effects: 
GDPPC  
GDPPC_1 
GDPPC_2 
GDPPC rate_1 
GDPPC rate_2 
Sec 
Univ 
Pubexp 
Umy 
Ufy 
Bpg 
Gini 

 
 0.0031(0.0023) 
 0.0001(0.0001) 
 -0.0002(0.0001) 
 -0.0068(0.0038) 
 0.00055(0.0045) 
 -0.000004(0.00005) 
 -0.00003(0.00006) 
 -0.00007(0.00002) 
 -0.00002(0.00002) 
 0.000007(0.00001) 
 0.00011(0.00004)** 
 -0.01526(0.0189) 

 
-0.00151(0.0174) 
-0.00141(0.0020) 
0.00146(0.0049) 
0.1214(0.0510)** 
0.1200(0.0565)** 
-0.00145(0.0007) 
-0.00004(0.0003)) 
-0.0045(0.0012)** 
0.00038(0.00027) 
0.000001(0.00022) 
-0.00043(0.0008) 
-0.2553(0.2820) 

 
-0.00454(0.0145) 
0.00304(0.0018) 
-0.0038(0.00436) 
0.09215(0.0462) 
0.02609(0.0539) 
-0.00183(0.0006)** 
0.00075(0.0003)** 
0.00045(0.0009) 
-0.00047(0.0002)** 
-0.00026(0.0002) 
0.00089(0.0007) 
-0.0531(0.3206) 

 
 0.00150(0.0017) 
 -0.00429(0.0020)** 
 0.0007(0.0028) 
 0.0481(0.052) 
 -0.0355(0.0544) 
 -0.00269(0.00075)** 
 0.00142(0.00035)** 
 0.0014(0.00098) 
 0.000203(0.00029) 
 -0.00051(0.00024)** 
 0.00205(0.0008)**   
 0.02948(0.1091) 

Standard deviation of 
random effects: 
Heterogeneity 
αj 
βj  
βt 

γgdppc j 
γgdppc t 

γgini j 
γgini t 

 
 
 0.0461(0.0007) 
 0.7777(0.1201) 
 0.0759(0.0121) 
 0.0031(0.0006) 
 0.0110(0.0016) 
 0.0028(0.0005) 
 0.0271(0.0062) 
 0.0040(0.0009) 

 
 
0.0504(0.0008) 
3.0965(0.4745) 
0.3217(0.0397) 
0.0726(0.0144) 
 
0.0347(0.0090) 
0.8757(0.1340) 
0.1929(0.0503) 

 
 
0.0376(0.0008) 
2.6601(0.4717) 
0.4497(0.0679) 
0.2829(0.0537) 
0.0435(0.0117) 
0.00729(0.0029) 
0.8743(0.1449) 
0.3672(0.0781) 

 
 
 0.06362(0.0012) 
 0.01068(0.0064) 
 0.1800(0.0332) 
 0.00625(0.00212) 
  
 
 0.1942(0.03500) 
 0.0067(0.0023) 

DIC 
Effective number of 
parameters 
-log(mean(cpo)) 

 -28009.40 
 
 2710.75 
 -1.6383 

-6554.70 
 
254.13 
-1.639 

-7514.33 
 
303.63 
-1.6395 

 -5577.65 
  
135.88 
 -1.6394 
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Table 8.2.- Results of estimating the models. Rando m effects 1. 
 

1Only those coefficients where the 95% credible interval did not contain the zero (statistically significant); 2 mean (standard deviation) 
Source: own construction 

Standard 
deviation of 
random effects 

Life expectancy  Ischemic heart disease crude rate  Cancer standardized rate  Lung cancer crude rate  

αj  Bulgaria 7.9855(1.4220) 
Czech Republic -5.9847(1.3797) 
Finland 9.6170(1.3112) 
Poland -5.0229(1.4860) 

Finland 6.8965(0.9709) 
Greece -5.4328(1.0596) 
Portugal 4.1434(1.4078) 
UK -3.0494(1.0514) 

 

βj Malta -0.0436(-0.0235)2 
Portugal 0.0332(0.0163) 
UK 0.0245(0.0125) 

Bulgaria -0.7441(0.1117) 
Estonia 2.8070(0.1396) 
Finland -0.5451(0.1025) 
Greece -1.0776(0.0925) 
Luxembourg 0.4856(0.1516) 
Malta 0.3493(0.1596) 
Netherlands 0.1761(0.0874) 
Romania 0.3714(0.1053) 

Finland -0.7364(0.1173) 
France 2.6596(0.1234) 
Greece -1.4436(0.1113) 
Ireland 0.4454(0.2001) 
Italy -0.5197(0.1185) 
Portugal -0.5399(0.1165) 
Romania 0.4549(0.1315) 
Spain 0.3640(0.1269) 
United Kingdom 0.3108(0.1165) 

 Austria 0.12168(0.0549) 
 Finland -0.1267(0.0637) 
 France 0.0990(0.0447) 
 Greece -0.7050(0.0736) 
 Hungary 0.1225(0.05299) 
 Netherlands 0.0993(0.0503) 
 Poland 0.1283(0.0549) 
 UK 0.0971(0.0438) 

βt 2003 -0.00316(0.0015) 2009 0.2010(0.0279) 2008 -0.2162(0.0986) 
2009 0.5854(0.1011) 

 1999 -0.0131(0.0073) 
 2008 0.01674(0.0089) 
 2009 0.02255(0.0101) 

γ gdppc j Cyprus 0.0129(0.0061) 
Malta 0.0474(0.0025) 
Poland -0.00517(0.0026) 

 Czech Republic -0.05786(0.0245) 
Greece 0.1038(0.0330)) 
 

 

γ gdppc t 1998 0.00050(0.00024) 
2003 0.00063(0.00023) 
2005 0.00067(0.00024) 
2008 -0.0022(0.00072) 

2009 0.0870(0.0229) 2008 -0.1255(0.0066) 
2009 -0.0230(0.0103) 

 

γ gini j Greece 0.0379(0.01494) 
Malta -0.0820(0.02891) 

Austria 1.1912(0.6014) 
Bulgaria -1.2913(0.3439) 
Czech Republic 1.7244(0.3770) 
Finland -2.1168(0.3354) 
Greece 0.9246(0.3375) 
Poland 1.2568(0.3978) 

Finland -1.0312(0.2975) 
Greece 3.3630(0.3162) 
 

 Austria -0.1473(0.0606) 
 France -0.1116(0.0485)  
 Greece 0.75553(0.07857) 
 Hungary -0.1449(0.06145) 
 Netherlands -0.11834(0.05614) 
 UK -0.1006(0.0475) 

γ gini t 1996 -0.00477(0.00244) 
1998 -0.00429(0.00207) 
2009 0.0055(0.0.00242) 

2009 -0.4911(0.0939) 2008 0.3663(0.1407) 
2009 -0.7714(0.1451) 

 1999 0.0128(0.0080)  
 2006 -0.0137(0.0078) 
 2007 -0.0166(0.0087) 
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Figure 1.- Life expectancy at birth (Index, 100 EU- 27 average per period) 
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Figure 2.- Ischemic heart mortality (Index, 100 EU- 27 average per period) 
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Figure 3.- Cancer mortality (Index, 100 EU-27 avera ge per period) 
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Figure 4.- Lung cancer mortality (Index, 100 EU-27 average per period) 
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Figure 5.- GDP per capita (quartiles) 
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Figure 6.- Gini index (quartiles) 
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Figure 7.- Sigma convergence. Coefficient of variat ion in the variable 1 
between regions of EU-27.  
 

 
a.- Life expectancy at birth – EU 27 

 
b.- Lung cancer mortality – EU 27 
1 Variable adjusted in the model 
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Figure 7.- Sigma convergence. Coefficient of variat ion in the variable 1 
between regions of EU-27.  
 

 
c.- Ischemic heart disease – EU 27 

 
d.- Cancer mortality – EU 2 
1 Variable adjusted in the model 
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