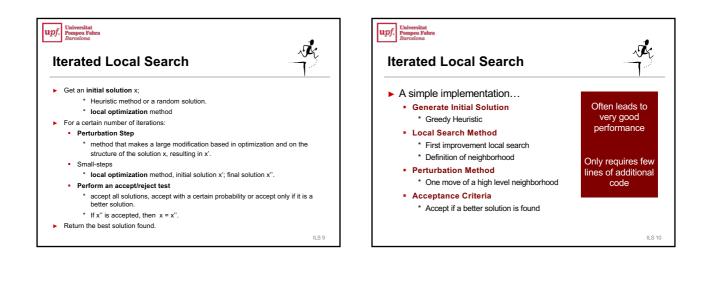
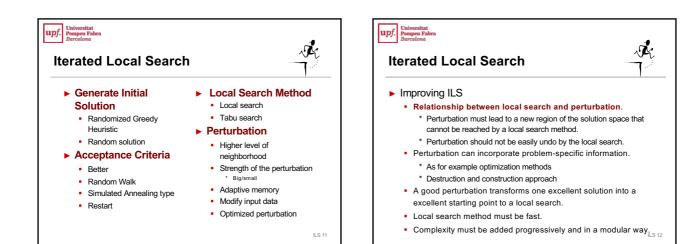
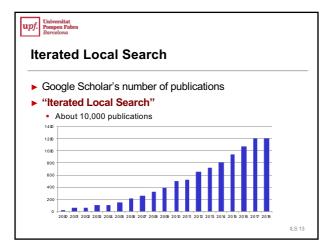
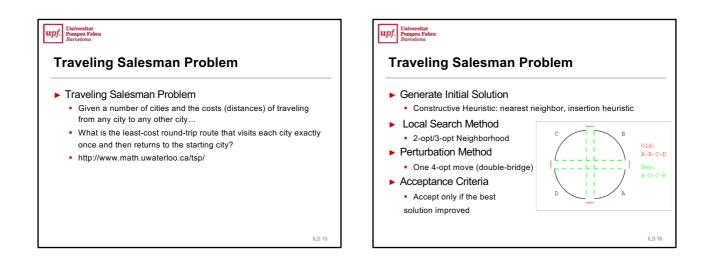
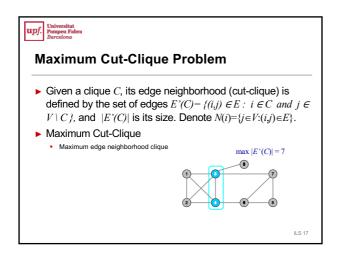

upf. Universitat Pompen Fabra Barcelona	Upf Universitat Rompen Fabra Barcelona				
From ILS to Hybrid ILS and other extensions Helena Ramalhinho Lourenço	 Introduction to ILS Applications of ILS Hybrid ILS and other Extensions Hydrid with other metaheuristics SimILS Two-stage Optimization using ILS 				
Iena.upf.edu Universitat Pompen Fabra Barcelona	MathILS				

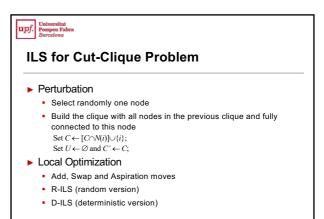












 ed Local Sea	arch x and large-scale real problems	
Accuracy	Complex problems. Large scale problems.	
Speed	Fast answer. Analysis of several scenarios.	
Flexibility	Fast changes. Different constraints in different areas.	
Simplicity	Need of fast implementation	
		ILS 14

Maximum Cut-Clique Problem

- Traditional approach
 - Solve with Integer Linear Programming Software
 - Branch-and-Bound / Branch-and-cut general exact algorithm
 - Obtain the Optimal Solution / Lower Bound
 - CPLEX Optimizer

Intel Core	17_{-2600}		0.0777	1000					
The symbol mea						ang CPI	LEX 11.2	time in s	
		<i>E</i>		MC problem		roblem MCC Probl			
Instance	V		đ	Ø (G)	N(C)	C	N(C)	tim	
d1-RTN	2418	9317	0.0032	10	195	8	1273	605.	
d3-RTN	4755	26943	0.0024	18	1097				
d7-RTN	6511	44615	0.0021	18	1576				
d15-RTN	7965	62136	0.0020	18	1979				
d30-RTN	10101	91803	0.0018	21	13099				
d66-RTN	13308	148035	0.0017						
c-fat200-1	200	1534	0.077	12	72	9	81	0.05	
c-fat200-2	200	3235	0.163	24	264	17	306	0.09	
c-fat200-5	200	8473	0.426	58	1682	44	1892	0.05	
c-fat500-1	500	4459	0.036	14	98	п	110	0.76	
c-fat500-2	500	9139	0.073	26	338	19	380	0.80	
c-fat500-5	500	23191	0.186	64	2048	48	2304	0.83	
c-fat500-10	500	46627	0.374	126	7938	94	8930	0.58	

<i>pf.</i> Pom Bare Con	f. Universitat Pengen Pakra Barcelona Computational results of the ILS: Intel Core i7-2600 with 3.40GHz and 8GB RAM									
100 rui			o o i i c			tim	e in seconds			
							MCC Problem			
	Instance	V	<i>E</i>	đ	C	N(C)	time			
	d1-RTN	2418	9317	0.0032	8	1273	0.1762			
	d3-RTN	4755	26943	0.0024	12	3526	0.4743			
	d7-RTN	6511	44615	0.0021	15	5656	0.6777			
	d15-RTN	7965	62136	0.0020	16	7772	0.8757			
	d30-RTN	10101	91803	0.0018	21	13099	1.1317			
	d66-RTN	13308	148035	0.0017	28	22379	1.4081			
	c-fat200-1	200	1534	0.077	9	81	0.1385			
	c-fat200-2	200	3235	0.163	17	306	0.0866			
	c-fat200-5	200	8473	0.426	44	1892	0.0664			
	c-fat500-1	500	4459	0.036	11	110	0.5451			
	c-fat500-2	500	9139	0.073	19	380	0.3595			
	c-fat500-5	500	23191	0.186	48	2304	0.2381			
	c-fat500-10	500	46627	0.374	94	8930	0.2111	ILS 22		

upf. Universitat Pompeu Fabra Barcelona

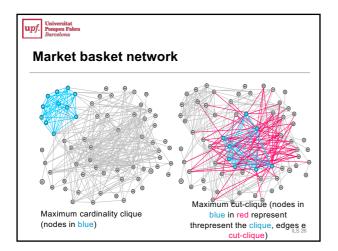
ILS 20

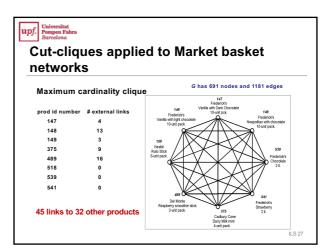
ILS 24

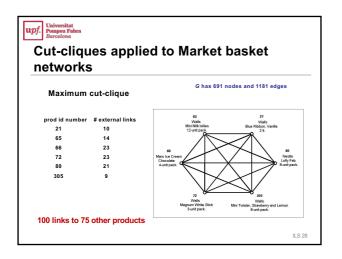
Market Basket Analysis

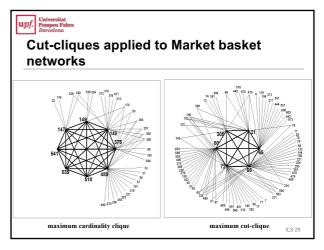
- The main objective is to analyze large dataset of store transactions
- Obtain relevant insights to do a better planning of the Marketing strategies and operations.
 - Product placement
 - Optimal product-line offering
 - Personalized marketing campaigns
 - Product promotions

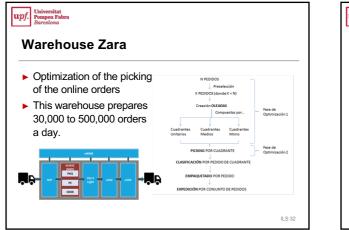
ILS 23

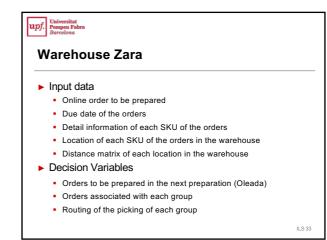

upf. Universitat Pompeu Fabra Barcelona


Market Basket Analysis

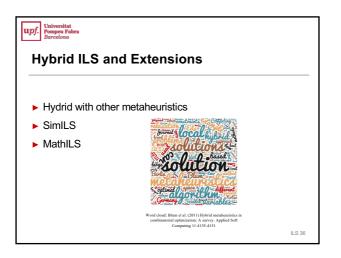

- Raeder and Chawla (2011) say "... no techniques currently available in the literature sufficiently addresses the problem of finding meaningful relationships in a large transaction databases."
- Dataset
 - a household panel database for the British ice cream market.
 - 691 different varieties of products available in the British market.


upf. Universitat Pompeu Fabra Barcelong Market basket network nodes: products in a store edges: represent pairs of products (i,j) Θ bought together by a customer on a given purchase visit to the store ILS 25

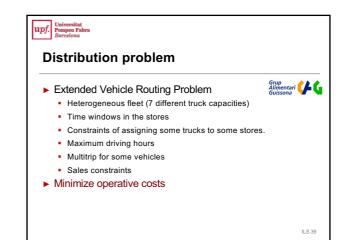


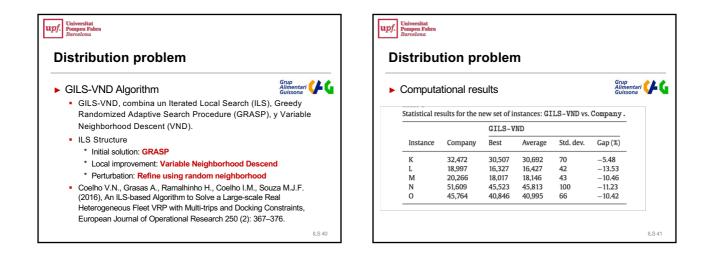

upf. Universitat Pompeu Fabra Barcelona

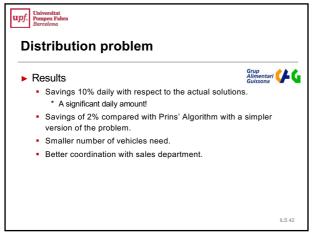
Marketing Implications


- The set of products constituting the maximum clique is not the clique with largest incidence to other products in the network.
- The householders buying the 6 products in the MCC are also strong potential buyers for the remaining products, especially those products involved in the 100 links.
- The MCC reveals interacting patterns from leading-sale products.

upf. Universitat Pompeu Fabra Barcelona

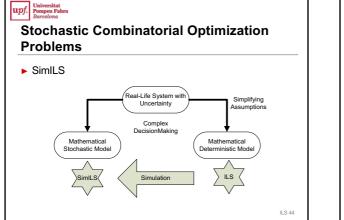

ILS... SimILS... MathILS...

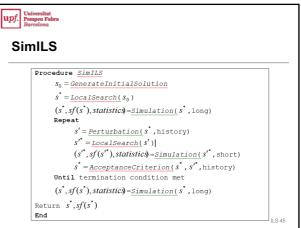

- ILS represents one of the most efficient yet easy-toimplement frameworks for solving combinatorial optimization problems.
- ► Easy to implement and adapt.
- Most real-life problems are complex and filled with uncertainty.
- By integrating simulation inside the local search process, SimILS framework extends the virtues of ILS to stochastic COPs as well.
- ► The same by using exact methods, lower bounds etc...

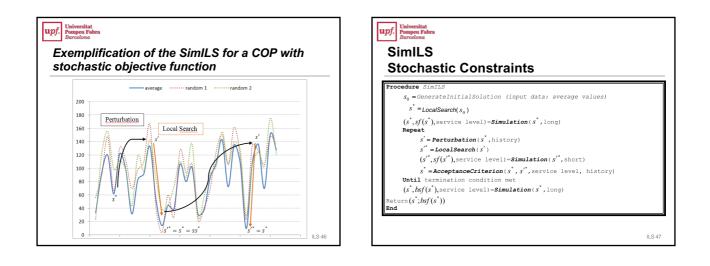


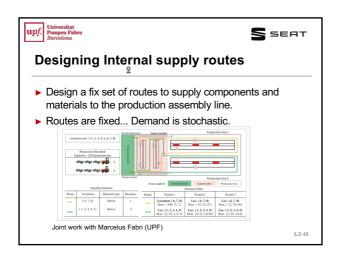
Hybrid ILS with other metaheuristics

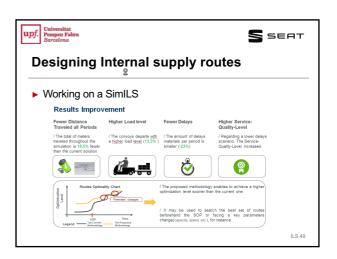
- Use the ILS structure with other metaheuristics
- ► Local Optimization Phase
 - Tabu Search
 - VNS
 - Simulated Annealing
 - Variable Neighborhood Search
 - •
- Perturbation Phase
 - Large neighborhood change



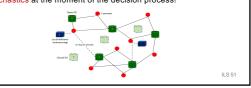




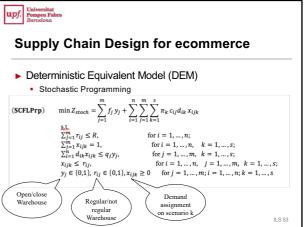


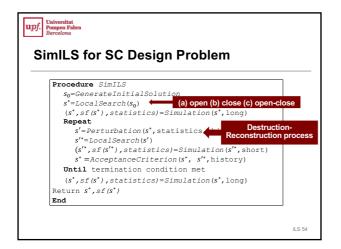


Supply Chain Design for ecommerce

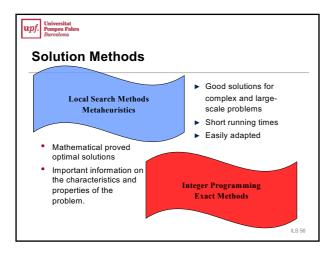

- - Two-Stage Stochastic Programming Problem
- The goal is to find:
 - the subset of warehouses to be opened;
 - and determine the customer's assignment to the open warehouses
 - ... such that all the demand is served at minimum total cost.
 - Demand is stochastic ...
 - Each customer area must have 2 or 3 warehouses assigned as regular warehouses.

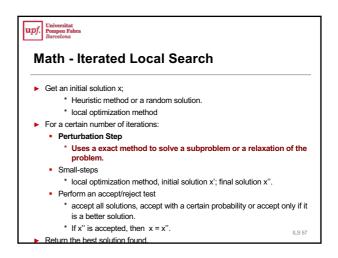
upf. Universitat Pompeu Fabra Barcelona

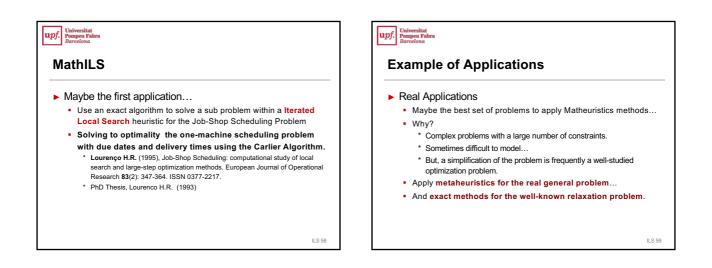

II S 50

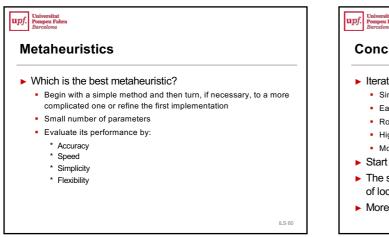

Supply Chain Design for ecommerce

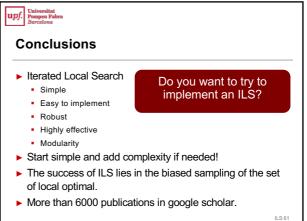
- ► Two-Stage Optimization Problems
- ► The problems has two groups of variables interrelated among them ...
 - Strategical decision variables (long term deterministic decision)
 Operational decision variables (short term decisions), therefore stochastics at the moment of the decision process!











Iterated Local Search

- Main References
 - Lourenço H.R., Martin O. and Stützle T. (2010), Iterated Local Search: Framework and Applications. In Handbook of Metaheuristics, 2nd. Edition. Vol.146. M. Gendreau and J.Y. Potvin (eds.), Kluwer Academic Publishers, International Series in Operations Research & Management Science, pp. 363-397.
 - Lourence, H.R., Martin O. and Stützle T. (2003), Iterated Local Search. In Handbook of Metaheuristics, F. Glover and G. Kochenberger, (eds.), Kluwer Academic Publishers, pp. 321-353.
 - Grasas A., Juan, A.A. and Lourenço H.R. (2014), SimILS: A Simulationbased extension of the Iterated Local Search metaheuristic for Stochastic Combinatorial Optimization, Journal of Simulation doi:10.1057/jos.2014.25