

New opportunities to enhance or extend (mobile) web survey data

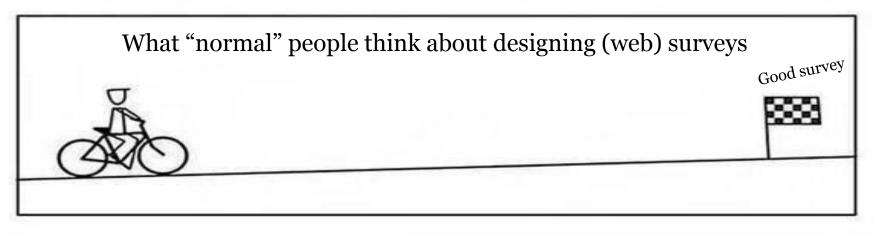
ESRA 2021

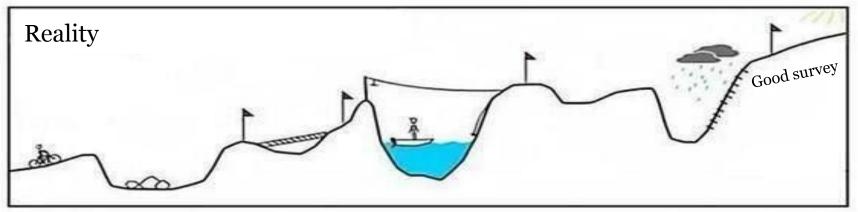
Melanie Revilla | RECSM-UPF

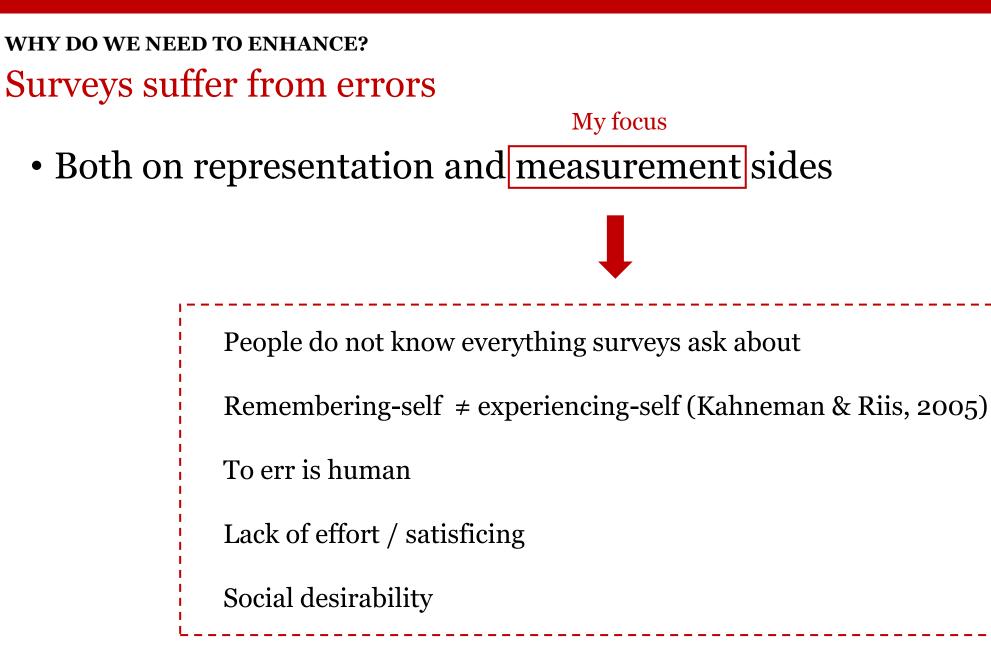
Acknowledgments:

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No849165). I want to thank Oriol Bosch, Mick Couper, Patricia Iglesias, and Carlos Ochoa for their help in preparing this presentation

Why do we need to enhance or extend (mobile) web survey data?


WHY DO WE NEED TO ENHANCE?


Importance of (web) surveys


- Surveys: most frequently used method for collecting data in many disciplines
- Results used by key actors to take decisions
- Web surveys: more and more common nowadays
 - 35% spent on research using (mobile) web, vs 11% for telephone and 8% for face-to-face (ESOMAR, 2019)
 - With pandemic, switch from other modes to web mode even quicker

Problem: Designing good (web) surveys is (very) hard

WHY DO WE NEED TO ENHANCE?

Errors on measurement side

- Measurement errors in surveys are large overall
 - Average **measurement quality** for 67 ESS questions across up to 41 country-language groups = **0.65** (Poses et al. 2021)
- These errors can affect the results substantially

	Without correction On allow immigration	With correction for errors On allow immigration		
Ву				
Better life	265*	609*	Wrong	
Economic threat	133*	.001	decision	ns
Cultural threat	154*	140*	decision	.10
Total explained (R ²)	.254	.547		

Table 6 Estimates of the parameters with and without correction

Source: Saris & Revilla, 2016

Overall, need to improve measurement for many concepts

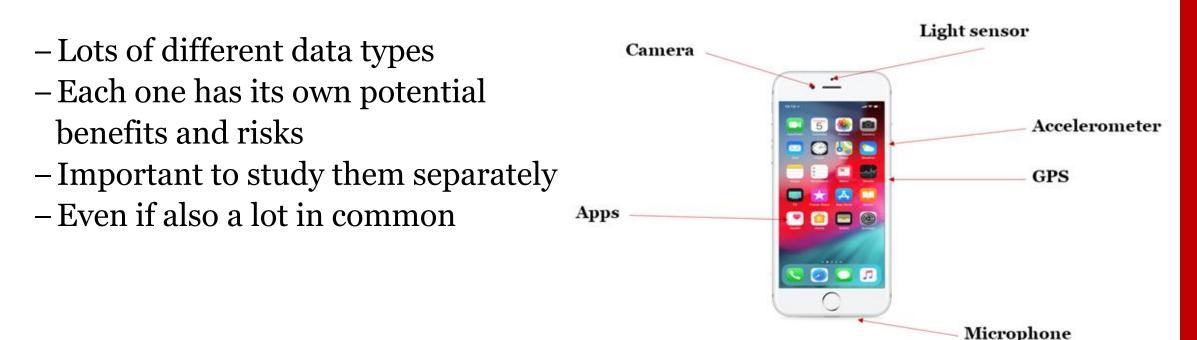
- But... How?
 - Need for improvement has been clear for decades
 - Lot of knowledge already on survey errors
 - How to reduce them
 - How to correct for them
 - But still large measurement errors
 - -What else can we do?

How could we enhance or extend (mobile) web survey data?

Taking advantage of **new measurement opportunities linked mainly to the growing use of smartphones** to reduce measurement errors in (mobile) web surveys

Taking advantage of **new measurement opportunities linked mainly to the growing use of smartphones** to reduce measurement errors in (mobile) web surveys

Smartphones are **everywhere** More people have smartphones than toilets worldwide¹ Including in **web surveys**


On average, Millennials answer **79%** of the surveys using smartphones and Boomers **36%** (US Netquest panel 2017/2018; Bosch et al. 2018a)

My focus

Create both new challenges and new opportunities

¹https://www.globalcitizen.org/en/content/access-denied-toilets-Harpic-Waterorg-RB/

- Opportunities at different levels (e.g., contact respondents)
- Focus on possibility to collect other data types

HOW COULD WE ENHANCE?

New data types considered

web data *opp*

Passive

METER DATA

Obtained through a tracking application ("meter") installed by the participants on their devices to register at least the URLs of the webpages visited

GEOLOCATION DATA

Obtained through a tracking application installed on participants' devices to register at least the GPS coordinates

Active

VISUAL DATA

Screenshots Photos/videos taken in-the-moment Visual files saved on (or accessible from) the device

VOICE DATA

Most of those data can also be collected for PCs

Dictation Voice recording Q

HOW COULD WE ENHANCE?

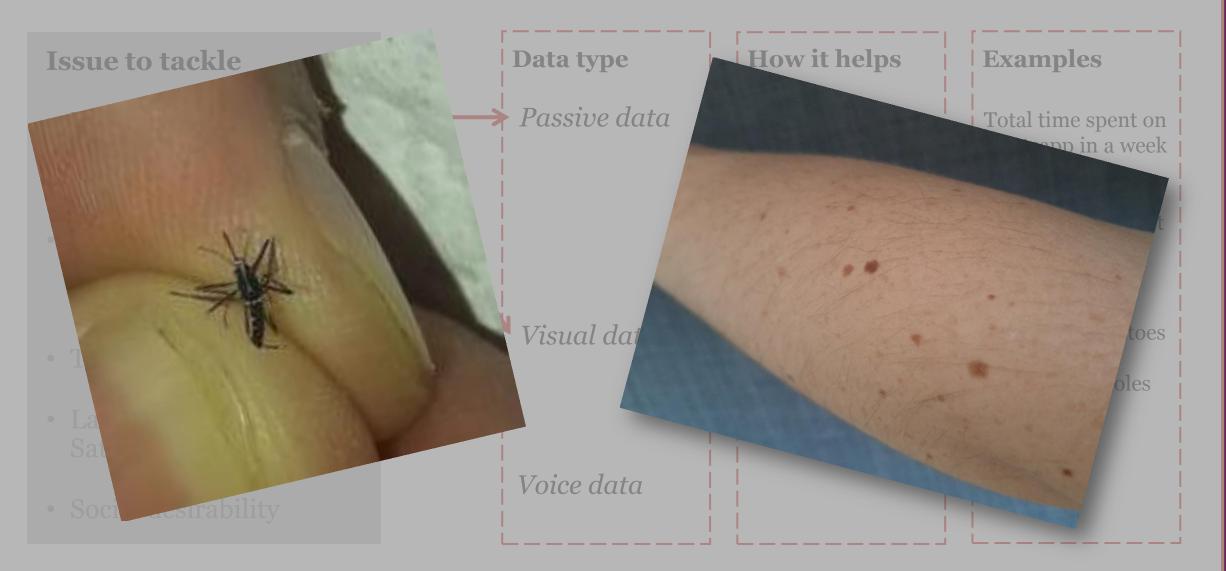
These new data are already used in substantive research

- A few examples
 - Meter data
 - Fake news consumption (e.g., Guess et al. 2020)
 - Time spent online (e.g., Festic et al. 2021)
 - GPS data
 - Spacial context of physical activity (e.g., Krenn et al., 2011)
 - Travelling (e.g., Lin & Hsu 2014)
 - -Visual data
 - Mosquitoes presence (e.g., Mosquito Alert project¹)
 - Plants diseases (e.g., Kaur et al. 2019)
 - -Voice data
 - Level of literacy (ask respondents to read loud some text)
 - Survey children's of panelists

How could they help to enhance or extend (mobile) web survey data?

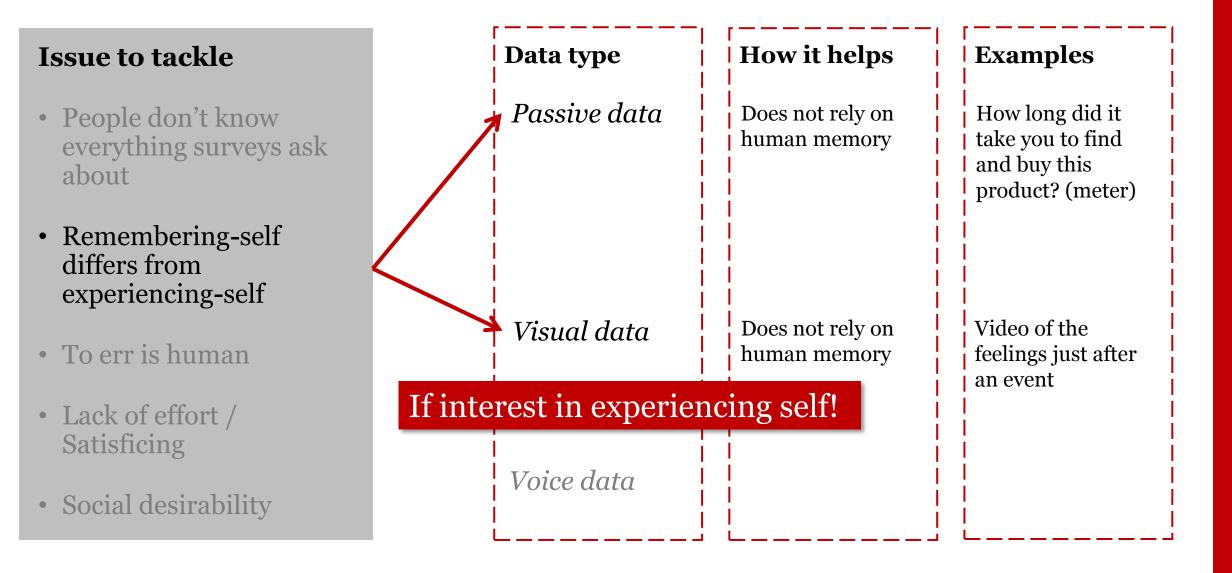
HOW COULD THE NEW DATA TYPES HELP? Expected benefits

Researchers

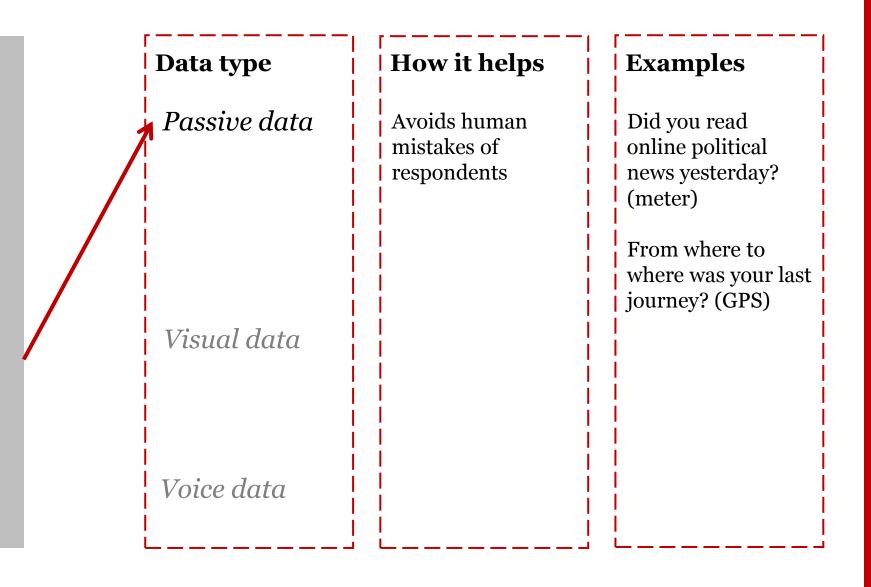

• Reduce some of the issues related to measurement errors

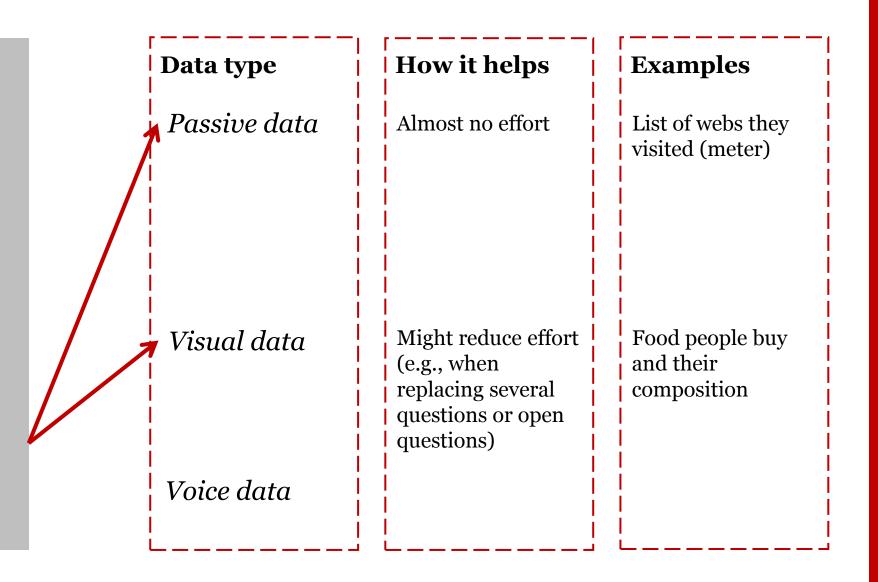
Participants

Issue to tackle	Data type	How it helps	Examples
 People don't know everything surveys ask about 	Passive data	Only accept/set up Data comes without further participant	Total time spent on WhatsApp in a week (meter)
• Remembering-self differs from experiencing-self		intervention → no need to know	Average time spent in travels (GPS)
• To err is human	Visual data	Participants need to share a file but not to be fully	Type of mosquitoes Dangerous moles
 Lack of effort / Satisficing 		aware of its content	
Social desirability	Voice data		



Issue to tackle	Data type	How it helps	Examples
 People don't know everything surveys ask about 	Passive data	Only accept/set up Data comes without further participant	Total time spent on WhatsApp in a week (meter)
• Remembering-self differs from experiencing-self		intervention \rightarrow no need to know	Average time spent in travels (GPS)
• To err is human	Visual data	Participants need to share a file but not to be fully	Type of mosquitoes Dangerous moles
 Lack of effort / Satisficing 		aware of its content	
• Social desirability	Voice data	Information respondents are not aware of	Surroundings noise




Issue to tackle

- People don't know everything surveys ask about
- Remembering-self differs from experiencing-self
- To err is human
- Lack of effort / Satisficing
- Social desirability

- People don't know everything surveys ask about
- Remembering-self differs from experiencing-self
- To err is human
- Lack of effort / Satisficing
- Social desirability

How could the new data types help?

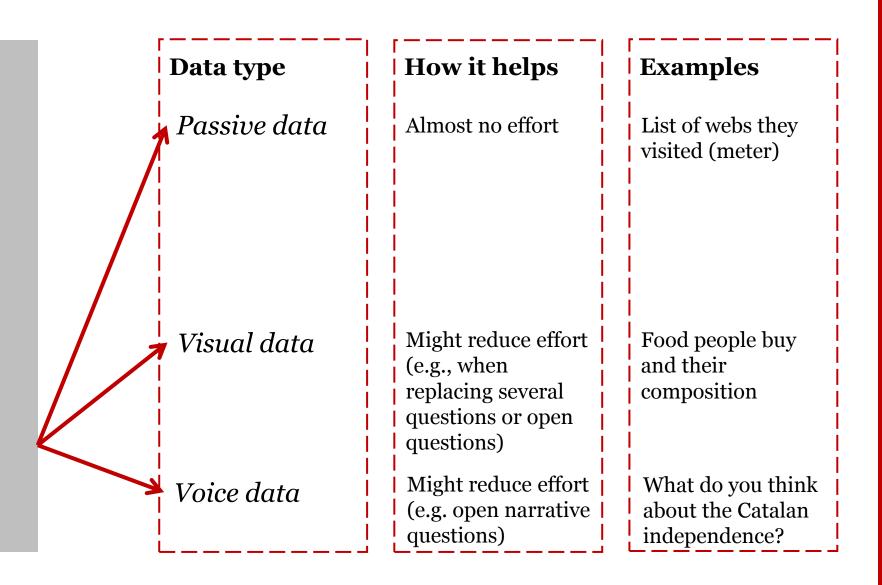
Issue to tackle

Reduce some of the issues related to measurement errors

Physical Contractions Contracti

A picture is worth a thousand

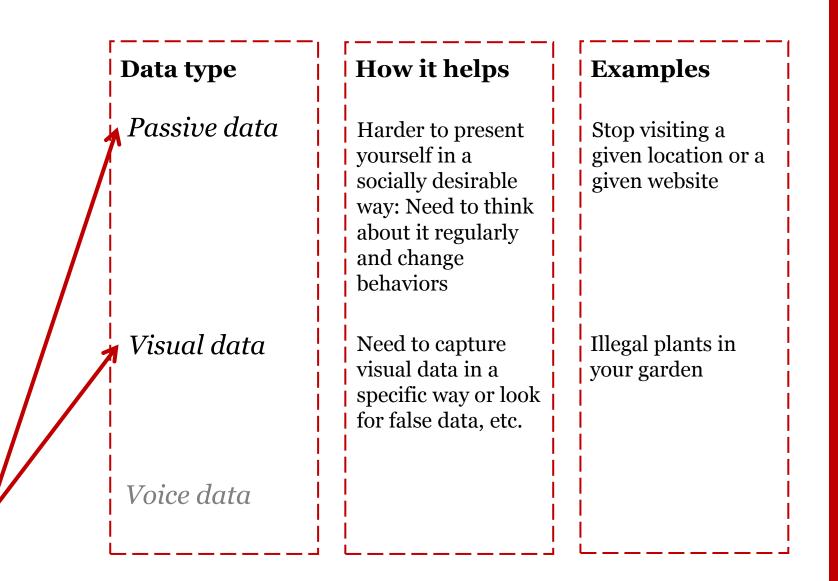
words


Amount Per Serving Calories 398	/
Total F	Calories from Fat 155
Total Fat 17g Saturated F	% Daily Value
Saturated Fat 7.8g Trans Fat 0.4g	any value
r olyunsatur	26% 39%
Polyunsaturated Fat 6g	39%
Cholesterol 15	
odium 730m	
OldSSilling For	51%
Carbohul	30%
Dietary Fiber 0.9g	16%
	3%
otein 50g	4%
amin A	
amin C	
lcium	6.3%
	2.3%
rcent Daily Values are based on a 2000 c	1%

Social desirability

Satisficing

- People don't know everything surveys ask about
- Remembering-self differs from experiencing-self
- To err is human
- Lack of effort / Satisficing
- Social desirability



How it helps **Examples Issue to tackle** Data type t no effort List of webs they visited (meter) duce effort Food people buy and their en VS several composition questions or open • Lack of effort / questions) Satisficing Might reduce effort What do you think Voice data (e.g. open narrative | about the Catalan questions) independence?

Issue to tackle

- People don't know everything surveys ask about
- Remembering-self differs from experiencing-self
- To err is human
- Lack of effort / Satisficing
- Social desirability

How could the new data types help? Expected benefits

Researchers

- Reduce some of the issues related to measurement errors
- Provide data for new concepts (not measured so far)
- Massive amount of data
- Real time / continuous (passive data)

Participants

- Reduce time dedicated to provide information
- Reduce efforts
- More enjoyable

→ Potential to **answer new research questions**

DO THEY REALLY HELP? What can we say at this day

- Clear that there is not a generic answer to this question
 - Depends on the concepts of interest
 - Depends on the data types
 - Depends on the target population
 - Etc.
- Overall, not much is known yet
- However, some studies exist about the different data types

DO THEY REALLY HELP?

Benefits?

Some types of problems might be reduced but other problems observed (e.g., 25% of respondents said they had difficulties to share images; Bosch et al., 2018b)

Researchers

- Reduce some of the issues related Maybe
 to measurement errors
- Provide data for new concepts (not measured so far)
- Massive amount of data
- Real time / continuous (passive data)

Participants

- Reduce time dedicated to provide information
- Reduce efforts
- More enjoyable

Schober et al. (2015): more precise answers for text than voice ≠ Revilla et al. (2020): more elaborated answers for voice

DO THEY REALLY HELP? Benefits?

Researchers

- Reduce some of the issues related Maybe
 to measurement errors
- Provide data for new concepts (not measured so far)
- Massive amount of data
- Real time / continuous (passive data)

People should accept to share such data

Participants

- Reduce time dedicated to provide information
- Reduce efforts
- More enjoyable

DO THEY REALLY HELP?

Do people accept to share such data?

Type of data	Examples previous studies stated willingness	Examples previous studies actual participation
Meter	Keusch et al. 2019; Revilla et al. 2019	de Reuver & Bouwman 2015; Revilla et al. 2021
GPS	Keusch et al. 2019; Struminskaya $\approx 17\%$ 2021	Scherpenzeel 2017; Bricka et al. 2009; McCool et al. 2021
Visual data	Wenz et al. 2019; $\approx 30\%$ kaya et al. 2021	Bosch et al. 2018b; Ilić et al. 2020; Ohme ≈35%* 2020
Voice ≈ 65%	Revilla et al. 2018; Höhne 2021	Lütters et al. 2018; Gavras 2019; Revilla et al. 2020
	≈ 54%	≈ 30%

- Both stated willingness and actual participation not very high
- Variations across data types
- Variations depending on other aspects (e.g., sponsor, interest in topic)

* % who registered a device; some of them did not really share the GPS data

DO THEY REALLY HELP? Benefits?

Researchers

- Reduce some of the issues related Maybe
 to measurement errors
- Provide data for new concepts (not measured so far)
- Massive amount of data
- Real time / continuous (passive data)

Yes but for reduced samples

Participants

- Reduce time dedicated to provide information
- Reduce efforts
- More enjoyable

DO THEY REALLY HELP?

Benefits?

Longer completion time for images (e.g., Bosch et al, under review) but lower ones for voice recording (e.g., Revilla et al. 2020)

Researchers

- Reduce some of the issues related Maybe to measurement errors
- Provide data for new concepts (not measured so far)
- Massive amount of data
- Real time / continuous data

Yes but for reduced samples

Depends on data type but

also to what we compare

(e.g., Iglesias & Revilla 2021)

Participants

 Reduce time dedicated to provide information

Depends

- Reduce efforts Depends
 - More enjoyable **No**

•

No

Lower satisfaction for images (e.g., Bosch et al., under review) and voice (e.g., Revilla et al. 2020)

DO THEY REALLY HELP?

Expected disadvantages as well

Researchers

- Selection bias in who participates
- New types of errors (e.g., technological errors)
- Need to adapt tools for data collection
- New skills needed for analyses
- More expensive
- Dependence on private companies
- Ethical / data protection issues

web data opp

Participants

- Privacy issues
- Loss of control
- New skills needed (e.g. install an app)

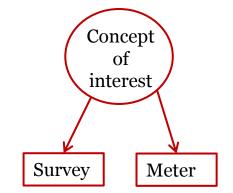
However, it depends on the exact concept being measured, data type, sample...

What next?

Better understand the errors of those data

- Types of errors, their size and how they affect the results
 - E.g., meter data have a lot of limitations ignored in the existing substantive research (Bosch & Revilla 2021)
- Need also to develop ways to reduce/correct for these errors
- Differences across data types
 - -Need research about each type
 - But also need to understand similarities and differences

Better understand **when** to use such data



- When does it make sense to consider these new opportunities? –Clearly not something that can be used to measure any concept
- Need to identify when benefits > disadvantages

 Balancing those for researchers and participants
- Need to understand the mechanisms
 - Example: high nonresponse for visual data
 - Why? Is this due to technological failures? Non-willingness? Nonavailability? A lack of skills? (Iglesias & Revilla 2021)

Better understand **how** to use such data

- To replace conventional survey questions?
- To combine them with conventional survey questions?
 - -How?
 - -Examples for meter data and surveys
 - Use meter data as triggering event to survey respondents at a specific moment ("in-the-moment surveys")
 - Use meter data to check respondents behaviors during the survey (e.g. if they look for information when asked knowledge questions)
 - Compare more subjective and more objective measures
 - Use both measures as indicators for a latent variable

Conclusions

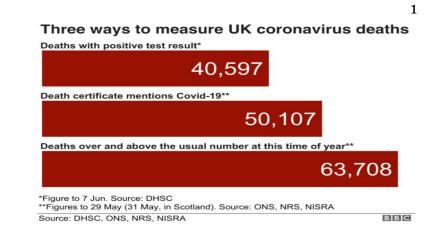
conclusions Need more research

Still a lot to be done

- Create frameworks
- -Apply to key issues
- Provide guidelines to help researchers use these new data types
 Etc.

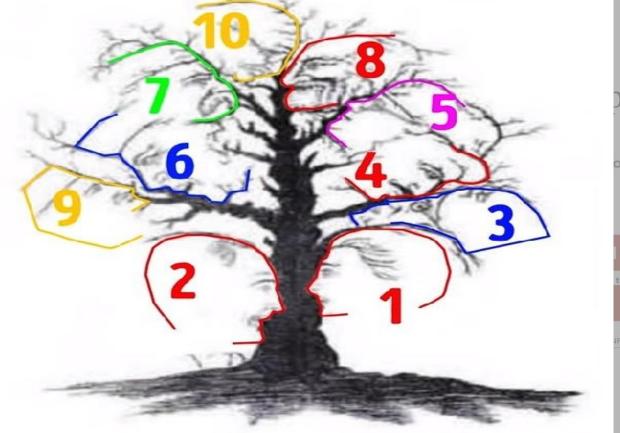
• But potentially **broad applications**

- Health: obesity (visual data); depression (meter)
- -Social sciences: travelling (GPS); feelings about elections results (voice)
- Economics: spending (visual data); online banking (meter)
- Etc.
- And potentially new insights!



CONCLUSIONS And remember...

• Any data collection method suffer from errors – This is not just the case of surveys or of the new data types...



- Not realistic to aim to perfect measures
 - What we need is to **be aware of the errors and their consequences**
 - Try to minimize them / correct for them / look from different perspectives

CONCLUSIONS And remember...

• Any data coll – This is not j

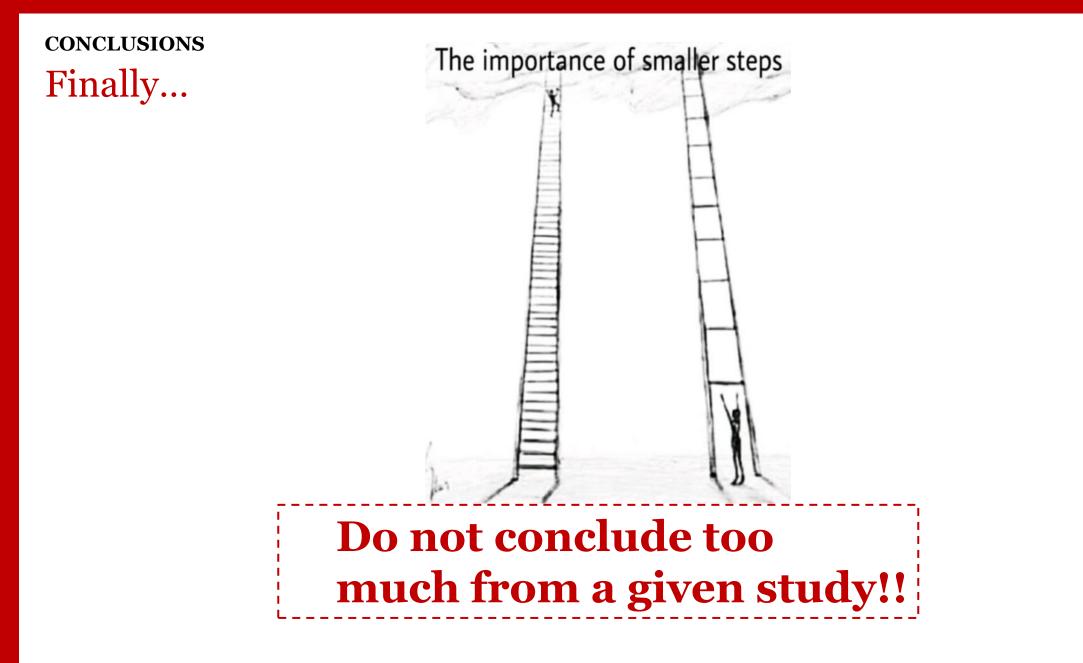
1 onavirus deaths 107 time of year** 63,708

S

• Not realistic

Looking from different perspectives can provide different but complementary information

¹ https://www.bbc.com/news/health-52976580


CONCLUSIONS

Finally...

Do not conclude too much from a given study!!

web data

opp

References

- Bosch, O.J., & M. Revilla (2021). Track me but not really: device undercoverage and its consequences when tracking online behaviours. ESRA 2021.
- Bosch, O., Revilla, M., Qureshi, D., & Höhne, J. K. (under review). A new experiment on the use of images to answer web survey questions.
- Bosch, O.J., Revilla, M., & E. Paura (2018a). Do Millennials differ in terms of survey participation? International Journal of Market Research, 61(4): 359-365.
- Bosch, O.J., Revilla, M., & E. Paura (2018b). Answering mobile surveys with images: an exploration using a computer vision API. *Social Science Computer Review*, 37(5): 669-683
- Bricka, S.G., J. Zmud, J. Wolf, & J. Freedman. 2009. "Household Travel Surveys with GPS: An Experiment". Transportation Research Record: Journal of the Transportation Research Board, 2105(1): 51–56
- De Reuver, M. & H. Bouwman. 2015. "Dealing with self-report bias in mobile Internet acceptance and usage studies". Information & Management, 52(3):287-294
- ESOMAR (2019). Global Market Research Report. Amsterdam: ESOMAR. ISBN: 978-90-903-2259-9 . Retrieved from (June 2021): <u>https://www.esomar.org/knowledge-center/library?publication=2926</u>
- Festic, N., Büchi, M. & M. Latzer (2021). How Long and What For? Tracking a Nationally Representative Sample to Quantify Internet Use. *Journal of Quantitative Description: Digital Media* 1(2021), 1–23.
- Gavras, K.L. (2019). Voice recording in mobile web surveys: evidence from an experiment on open-ended responses to the 'final comment'. Presented at the GOR Conference, Cologne, Germany .
- Guess, A.M., Nyhan, B., & J. Reifler (2020). Exposure to untrustworthy websites in the 2016 US election. *Nature human behavior*, 4(5): 472-480.
- Höhne (2021). Are Respondents Ready for Audio and Voice Communication Channels in Online Surveys? Under review.
- Iglesias, P., & M. Revilla (2021). When Does it Make Sense to Ask Respondents for Images? Insights for (Mobile) Web Surveys. ESRA 2021.
- Ilić, G., Struminskaya, B., & Lugtig, P. (2020). *Giving respondents a choice: Does it increase sharing of sensor data?* BigSurv20 virtual conference, November 2020.
- Kahneman, D., & J. Riis (2005). "Living, and thinking about it: Two perspectives on life". In F. Huppert, B. Keverne, & N. Baylis (Eds.), *The science of well-being*. Oxford, England: Oxford University Press.
- Kaur, S., Pandey, S., & Goel, S. (2019). Plants disease identification and classification through leaf images: A survey. *Archives of Computational Methods in Engineering*, *26*(2), 507–530

References

- Keusch, F., Struminskaya, B., Antoun, C., Couper, M. P., & Kreuter, F. (2019). Willingness to participate in passive mobile data collection. Public Opinion Quarter 93, 210–235
- Krenn, P. J., Titze, S., Oja, P., Jones, A., & Ogilvie, D. (2011). Use of global positioning systems to study physical activity and the environment: a systematic review. American journal of preventive medicine, 41(5), 508–515
- Lin, M., & W.-J. Hsu (2014). Mining GPS data for mobility patterns: A survey. Pervasive and Mobile Computing, 12, 1–16.
- Lütters, H., Friedrich-Freksa, M., & M. Egger (2018). Effects of Speech Assistance in Online Questionnaires. Presented at the GOR Conference, Cologne, Germany.
- McCool, D., Lugtig, P., Mussmann, O., & B. Schouten (2021). An App-Assisted travel Survey in Official Statistics: Possibilities and Challenges. *Journal of Official Statistics*, 37(1): 149-170.
- Ohme, J., Araujo, T., de Vreese, C. H., & Piotrowski, J. T. (2020). Mobile data donations: Assessing self-report accuracy and sample biases with the iOS Screen Time function. *Mobile Media & Communication*, 1–21
- Poses, C., Revilla, M., Asensio, M., Schwarz, H., & W. Weber (2021). An overview of the size of measurement errors of a subset of questions of the European Social Survey. Presented at the ESRA conference .
- Revilla, M., Couper, M.P., Paura, E. & C. Ochoa (2021). Willingness to participate in a metered online panel. Field Methods, 33(2):202-216.
- Revilla, M., Couper, M.P., Bosch, O.J. & M. Asensio (2020). Testing the use of voice input in a mobile web survey. Social Science Computer Review, 38(2):207-224.
- Revilla, M., Couper, M.P., & C. Ochoa (2019). Willingness of online panelists to perform additional tasks. *Methods, data, analyses,* 13(2): 223-252.
- Revilla, M., Couper, M.P., & C. Ochoa (2018). Giving Respondents Voice? The Feasibility of Voice Input for Mobile Web Surveys. Survey Practice 11(2):1-12.
- Saris, W.E., & M. Revilla (2016). Correction for measurement errors in survey research: necessary and possible. Social Indicators Research, 127(3): 1005-1020.
- Scherpenzeel, A. (2017). Mixing online panel data collection with innovative methods. In S. Eifler, F. Faulbaum (Eds.), Methodische Probleme von Mixed-Mode-Ansätzen in der Umfrageforschung (pp. 27-49). Wiesbaden: Springer
- Schober, M.F., Conrad, F.G., Antoun, C., Ehlen, P., Fail, S., Hupp, A.L., Johnston, M., Vickers, L., Yan, H.Y., & Zhang, C. (2015). Precision and disclosure in text and voice interviews on smartphones. *PLoS ONE*, 10(6).
- Struminskaya, B., Toepoel, V., Lugtig, P., Haan, M., Luiten, A., & Schouten, B. (2021). Understanding willingness to share smartphone-sensor data. *Public Opinion Quarterly*, 84(3): 725–759.
- Wenz, A., Jäckle, A., & Couper, M.P. (2019). Willingness to use mobile technologies for data collection in a probability household panel. Survey Research Practice, 13, 1–22

Thanks!

Questions?

Melanie Revilla | RECSM-UPF

melanie.revilla@upf.edu

https://www.upf.edu/web/webdataopp

