

A practical guide to (successfully) collect and process images through online surveys

BigSurv 2023 Conference. Quito.

PATRICIA A. IGLESIAS | Research and Expertise Centre for Survey Methodology, Universitat Pompeu Fabra
 CARLOS OCHOA | Research and Expertise Centre for Survey Methodology, Universitat Pompeu Fabra
 MELANIE REVILLA | Institut Barcelona d'Estudis Internacionals

Introduction

- Images as a new data source collected through surveys have gained relevance during the last years.
- They have the potential to **decrease the respondents' burden, increase the data accuracy and quality, and provide new insights** compared to conventional survey questions (Revilla, 2022).
- However, little has been said on **how to implement the collection of images in the frame of web surveys**, and on the main considerations that researchers should keep in mind when doing so.
- We provide guidelines that practitioners can follow before, during, and after the images' collection, in order to get the best of this type of data.

Our proposal to plan, collect, and analyze images: An eight-step process

The eight-step process to plan, collect, and analyze images in the frame of web surveys

web data

opp

This process is not necessarily linear

Items \rightarrow the information of interest present in the image.

Category: dog, blanket, floor

Attributes: white, fabric, furry

web data *opp*

Items \rightarrow the information of interest present in the image.

Photo by <u>Davey Gravy</u> in <u>Unsplash</u>

Scene: Friends meeting, celebration, dinner.

1

8

Items \rightarrow the information of interest present in the image.

EUR 2 Objects 1,44 A Banana 1,148 kg x 1,25 EUR/kg 1,15 A Freshona/Espinacas 1,60 B Vemondo/Bebida soja 0% 3 2 x 0,80 Vemondo/Tofu ecológico 0,95 B 2,79 A Mandarina Ebre Scenes 0.95 C Dentalux/Crema dental 4 2,19 B Chef Select/Trio de humm 1,15 A Edulis/Ensalada dúo 1,89 B Alesto/Mezcla frutos sec 0,95 C 5 Floralys/Servill 2capas Favorina/Huevos chocolat 1,49 B Text Champiñón 0,65 A 1,79 A Huevos L suelo 6 Floralys/Papel higiénico 2,55 C Total 21,54 7 ==============

Focus: Price per product

Focus: Products

1

8

Items \rightarrow the information of interest present in the image.

		EUR
Obiects	Banana	1,44 A
	1,148 kg x 1,25 EUR/kg	
	Freshona/Espinacas	1,15 A
	Vemondo/Bebida soja 0%	1,60 B
	2 x 0,80	
	Vemondo/Tofu_ecológico	0,95 B
Sconos	Mandarina Ebre	2,79 A
DUCITES	Dentalux/Crema dental	0,95 C
	Chef Select/Trio de humm	2,19 B
	Edulis/Ensalada dúo	1,15 A
	Alesto/Mezcla frutos sec	1,89 B
	Floralys/Servill 2capas	0,95 C
Trant	Favorina/Huevos chocolat	1,49 B
lext	Champiñón	0,65 A
	Huevos L suelo	1,79 A
	Floralys/Papel higiénico	2,55 C
	Total 2	1,54
	=====	=======

Items \rightarrow the information of interest present in the image.

2 Objects Banana 1,148 kg x 1,25 EUR/kg Freshona/Espinacas Vemondo/Bebida soja 0% 3 2 x 0,80 Vemondo/Tofu ecológico Mandarina Ebre Scenes Dentalux/Crema dental 4 Chef Select/Trio de humm Edulis/Ensalada dúo Alesto/Mezcla frutos sec 5 Floralys/Servill 2capas Favorina/Huevos chocolat Text Champiñón Huevos L suelo 6 Floralys/Papel higiénico _____ Total More complex 7 ============== analysis

Type of document: Receipt

web data

opp

EUR

1,44 A

1,15 A

1,60 B

0,95 B

2,79 A

0,95 C

2,19 B

1,15 A

1,89 B

0,95 C

1,49 B

0,65 A

1,79 A

2,55 C

21,54

2

3

4

5

6

7

8

- Definition of the type(s) of item to be classified.
 - Categories and/or attributes
- Delimitation of the item(s) to be classified.
 - Some or all items in the image.

SCHERMTIJD Vandaa	11:36 MEEST GEBRUIKT TOON APPS EN WEBSI	TES MELDINGEN
1 u, 19 m _{per dag}	A Anders 18 u, 31 m	C E 497* Ongeveer 71 per dag
D W D V Z Z	Sociale netwerken	> W D V Z Z M D
	Lezen en naslag	> WhatsApp >
Sociale netwerkenCreativiteitLezen en7 u, 30 m24 m12 m	Games 4 u, 54 m	> Badoo >
Weektotaal 9 u	^{19 m} Productiviteit	Instagram az
MEEST GEBRUIKT TOON CATEGO	RIEËN 2 U	> Klok >
Farm Heroes Super Saga 4 u, 12 m	B Amusement = 1 u, 1 m	> inder >
Safari 3 u, 27 m	> AANTAL KEER OPGEPAKT	Messenger >
Facebook 3 u, 5 m	63 per dag	D Toon security
Candy Crush Soda	> W D V Z Z M	D Grindr
WhatsApp	> Market engenality Total antici lags engenality	Agenda >
De Telegraaf	zaterdag: 97 444	Toon meer

Ohme et al. (2020)

Step 2: Definition of the labels

• Think about the exact labels to be used \rightarrow definition of the response scale.

Factors for choosing the classification model

Features of the tasks	Resources	Overall data quality	Human classification
Total number of images	Human resources	Accuracy	Already existing
Total number of labels	Infrastructure	Consistency	algorithm A U
Kind of labels	Budget	Data protection	New algorithm O developed M A
Recurrence of the study	Time	Transparency	New algorithm
	Availability of images		developed internally

• More than one method can be chosen

• Features of the tasks

1

2

3

4

5

6

7

8

- Total number of images
 - If low (<500)
 - If more

web data opp

- Features of the tasks
- Total number of images
 - If low (<500)
 - If more
- Total number and kind of labels
 - Large number of labels
 - Specific labels

1

2

3

4

5

6

- Features of the tasks
- Total number of images

• Total number and kind of labels

• Features of the tasks

1

2

3

4

5

6

7

8

- Total number of images
 - If low (<500)
 - If more
- Total number and kind of labels
 - Large number of labels
 - Specific labels
- Recurrence of the study
 - Punctual, or beginning of a recurrent collection
 - Recurrent study

New algorithm developed internally

U

0

А

С

web

• Features of the tasks

1

2

3

4

5

6

7

- Total number of images
 - If low (<500)

- Total number and kind of labels
 - Specific labels
- Recurrence of the study
 - Recurrent study

• Resources

- Human resources
 - Manual classification: training of classifiers.
 - External algorithm: one person to check labels and one with technical knowledge.
 - Internal algorithm: highly specialized profile.

3

4

5

6

7

2

3

4

5

6

7

- Human resources
 - Manual classification: training of classifiers.
 - External algorithm: one person to check labels and one with technical knowledge.
 - Internal algorithm: highly specialized profile.
- Infrastructure
 - In absence of proper hardware.

• Resources

- Human resources
 - Manual classification: training of classifiers.
 - External algorithm: one person to check labels and one with technical knowledge.
 - Internal algorithm: highly specialized profile.

• Infrastructure

- In absence of proper hardware.
- Costs in terms of...
 - Budget: if low...
 - Time: if limited...

2

3

4

5

6

- Human resources
 - Manual classification: training of classifiers.
 - External algorithm: one person to check labels and one with technical knowledge.
 - Internal algorithm: highly specialized profile.
- Infrastructure
 - In absence of proper hardware.
- Costs in terms of...
 - Budget: if low...
 - Time: if limited...
- Availability of images
 - If images to train a new model are not available

2

3

4

5

6

- Overall data quality
- Accuracy
- Consistency - When using only one method

- Overall data quality
- Accuracy

- Consistency
- Data protection

1

2

3

4

5

6

7

8

web data opp

Α

U

Т

O M

A

Т

С

Step 4: Collection of the images

Main considerations

- Getting respondents' consent to collect, analyze, archive and potentially share the images (when applicable)
- Presenting images collected to respondents to check if they are good enough for the classification.
- Processing sensitive data and metadata.
- Size of the files during the collection.
- Storage of images (safety criteria and files' size).
- ID to relate to each participant
- Tools to collect the images are necessary

1

2

3

4

5

6

Step 4: Collection of the images

• Already available tools: WebdataVisual (Revilla et al., 2022)

11:55 炎 旦 🛇 🛤 ・ 🛛 💲 📧	11:55 及 旦 ⑤ 阏 •	
Encuesta Por favor, toma una foto del ordenador que	← ● https://ww2.nicequest.com/r < :	Encuesta
Haz click en el icono para hacer una foto con tu movil	Por favor, toma una foto del ordenador que está frente a ti y súbela la Haz click en el icono para hacer una foto con tu movil	Toma una captura de pantalla de la página de inicio de la UPF (<u>www.upf.edu</u>) y súbela Para subir un archivo, puedes: - Arrastrarlo hasta - Pulsar en - Copiar y pegarlo en la zona de arrastre
• • •		♥ Variables

More information available at <u>https://www.upf.edu/web/webdataopp/tools</u>

Step 5: Images enhancement and revision

- **Images enhancement** → improvements in terms of lightning, sharpness, cropping...
 - When enhancement is not enough: discarding or re-collecting images
- Ethical considerations → blinding conflictive elements.
 - Revision by the ethical advisor and/or fieldwork company

1

2

3

4

5

6

7

8

• There are different tasks depending on the method(s) chosen:

Human classification Already existing algorithm New algorithm developed externally New algorithm developed internally

- Classification guidelines
- Training of classifiers

• There are different tasks depending on the method(s) chosen:

Human classification

•

Already existing algorithm

New algorithm developed externally

New algorithm developed internally • Training of classifiers

Classification guidelines

• Check the labels provided, and test the algorithm

web data

opp

- Upload images to the API or run the code
- Agree specificities of the dataset

7

1

2

3

4

5

• There are different tasks depending on the method(s) chosen:

Human classification

> Already existing algorithm

New algorithm developed externally

New algorithm developed internally

- Classification guidelines
- Training of classifiers
- Check the labels provided, and test the algorithm
- Upload images to the API or run the code
- Agree specificities of the dataset
- Definition of the requirements and performance goals
- Development of guidelines for the algorithm's parameters
- Potentially: provide images for training

1

2

3

4

5

6

1

2

3

4

5

6

7

8

• There are different tasks depending on the method(s) chosen:

Human classification

> Already existing

algorithm

New algorithm developed externally

New algorithm developed internally

- Classification guidelines
- Training of classifiers
- Check the labels provided, and test the algorithm
- Upload images to the API or run the code
- Agree specificities of the dataset
- Definition of the requirements and performance goals
- Development of guidelines for the algorithm's parameters
- Potentially: provide images for training
- Have (or train) specialized programmers
- Guarantee physical infrastructure
- Provide images for training

Step 7: Verification of the classification outcomes

Within each method

1

2

3

4

5

6

7

8

- Human classification: swapping images between classifiers.
- Automatic models: manual verification.

Suggestions: swap at least 30 images to check accuracy, an acceptable threshold starts at 80% of accuracy (Zhang et al., 2022)

- If using more than one method
- Contrast results between them.
- Checking with participants
- Participants can access the labels and see if they are correctly classified.
- Example: "cleansing gel" in a receipt.

Step 8: Analyses

- Researchers can perform different kinds of analyses, such as:
 - univariate analyses,
 - looking at the frequencies of each label,
 - the number of labels per image,
 - and other indicators that might help answering their research questions.
- The classified information can be **crossed with information from any other variables included in the survey** or that are provided by the fieldwork company (e.g., participants' profiling information).
 - Overall, the analyses that can be performed with the labels are very similar to those made with the codes of open-ended questions.

1

2

3

4

5

6

Summary and conclusions

- When researchers are to collect images through an online survey, they can follow the eight steps proposed.
- **The process might not be linear**: it might require going back and forth across these steps.
- There is a **non-negligible risk of things going wrong:** respondents unable to send images or misunderstanding the request, losing the images due to storage problems, or obtaining biased results when pre-trained algorithms with inaccurate datasets.
- Thus, researchers should carefully weigh the pros and cons before deciding to collect images.
- Overall, working with images collected through online surveys is a demanding task, but it
 might be worthwhile when images provide new and/or better insights, and
 improve the respondents' experience.

Thanks!

PATRICIA A. IGLESIAS | Research and Expertise Centre for Survey Methodology, Universitat Pompeu Fabra

patricia.iglesias@upf.edu

https://www.upf.edu/web/webdataopp

REFERENCES

Bosch, O., Revilla, M., & Paura, E. (2019). Answering mobile surveys with images: An exploration using a computer vision API. *Social Science Computer Review*, *37*(5), 669-683. <u>https://doi.org/10.1177/0894439318791515</u>

Ohme, J., Araujo, T., de Vreese, C.H., & Piotrowski, J.T. (2020). Mobile data donations: Assessing self-report accuracy and sample biases with the iOS Screen Time function. *Mobile Media & Communication*, *9*(2), 293-313. <u>https://doi.org/10.1177/2050157920959106</u>

Pataki, B.A., Garriga, J., Eritja, R., Palmer, J.R.B., Bartumeus, F., & Csabai, I. (2021). Deep learning identification for citizen science surveillance of tiger mosquitoes. *Scientific Reports*, *11*(1), 4718. <u>https://doi.org/10.1038/s41598-021-83657-4</u>

Revilla, M. (2022). How to enhance web survey data using metered, geolocation, visual and voice data? *Survey Research Methods*, *16*(1), 1-12. <u>https://doi.org/10.18148/srm/2022.v16i1.8013</u>

Revilla, M., Iglesias, P.A., Ochoa, C., & Antón, D. (2022). *WebdataVisual: A tool to collect visual data within the frame of web surveys* [Computer software]. OSF. <u>https://doi.org/10.17605/OSF.IO/R7CAX</u>

Zhang, R., Gong, J., Ma, S., Firdaus, A., & Xu, J. (2022). Automatic Coding Mechanisms for Open-Ended Questions in Journalism Surveys: An Application Guide. *Digital Journalism*, 11(2), 321-342. <u>https://doi.org/10.1080/21670811.2022.2037006</u>