

Willingness to participate in geolocation-based research.

March 2022

CARLOS OCHOA | RECSM - UPF

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No849165), PI: Melanie Revilla.

Introduction: the problem

INTRODUCTION

Memory error

Surveys, a fundamental tool of empirical research in social sciences...

... but suffer **measurement and representation** errors_[1] \rightarrow wrong conclusions + implementation of non-optimal policies.

Memory error \rightarrow major source of error in social science data_[2].

Definition: difficulties to recall data related to events of $interest_{[3]}$ for researchers, also motivations and feelings [4][5].

INTRODUCTION

About how we remember

$\begin{array}{l} \text{Major classes of memory} \\ \text{problems}_{[2]} \end{array}$

1. Non-encoding

We may never form a representation of an event in our memory

2. Post-encoding errors

Errors introduced after the original encoding.

3. Retrieval failures

We cannot remember the information that is there.

4. Reconstruction errors

We fill in missing details based on our general knowledge.

Factors increasing the chances of suffering memory errors:

- + Many events of the same category (e.g., supermarket visits)
- + Low distinctiveness
- + Low emotional impact
- + Short duration
- + Non-rehearsal (time spent thinking or talking about the event).

+TIME!

INTRODUCTION

In-the-moment surveys

Surveying a sample of individuals **right in the moment** – or short time after – an event of interest happens may reduce memory errors.

IN-THE-MOMENT SURVEYS

Existing in-the-moment surveys

In-the-moment surveys are used nowadays (and were used in the past), but only in very specific environments (proprietary databases, no control on the sample., one-shot...)

Satisfaction surveys in public transportation.

Online satisfaction surveys.

Experience Sampling Method

Coincidental surveys: "are you listening to the radio?" instead of "did you listen to radio last week?"

IN-THE-MOMENT SURVEYS

New type of surveys: ppt-in online panel + passive + in-the-moment

To overcome existing limitations of conventional surveys, I propose **a new type of in-themoment surveys**.

Opt-in online panels

Communities of people that voluntarily participate in research activities in exchange of reward.

Passive measurement

- Metered data -> online events
- Geolocation data -> offline events

In-the-moment survey

When an event of interest is detected (e.g., visiting a political party Facebook page) a survey is sent.

IN-THE-MOMENT SURVEYS Potential use cases

Examples of potential uses of these new in-the-moment surveys triggered by metered data:

FAKE NEWS

Nyhan and Reifler (2018)_[6] used **meter data to research consumption of fake news**: do Trump's supporters read more fake news? Surveys used only to profile participants.

In-the-moment surveys answer:

- "Do you give credibility to this news?"
- "Read this fact-checking information, do you still give credibility to...?

TRAVEL RESEARCH

Detecting when someone has travelled using geolocation data + in-the-moment survey to ask:

- The purpose of the travel.
- Satisfaction with the mode of transport.
- Confirm whether a particular location was visited.

This paper Willingness to participate in geolocation-based research

WILLINGNESS TO PARTICIPATE IN GEOLOCATION-BASED RESEARCH Research plan

LITERATURE ABOUT GEOLOCATION

WILLINGNESS TO PARTICIPATE IN GEOLOCATION-BASED RESEARCH

- Willingness to share geolocation data: **20%-40%.**
- Studied factors:
 - Offline samples vs. online panels
 - One-time capture vs. continuous sharing.
 - Willingness to participate vs. actual participation
 - Others: country, specific online panel...

HOWEVER

• Little research about the **effect of the conditions offered to individuals to participate** (incentive, duration of the project).

LITERATURE ABOUT <u>IN-THE-MOMENT</u> SURVEYS

- 1st paper of this PhD: "willingness to participate in in-the-moment surveys triggered by online behaviors of <u>metered</u> panelists".
- Four survey attributes studied:
 - **1.** Survey length
 - 2. Invitation lifetime (maximum time allowed to participate)
 - 3. Incentivization level (compared to a conventional survey)
 - 4. Triggering activity (that causes to be invited to take a survey)

MAIN FINDINGS

- High willingness to participate (**68.5%** to **94.7%**).
- Preference for longer surveys and longer times to participate.
- The tracked activity that triggers the survey plays a minor role.
- Survey length + incentive level = **75.9% of the importance**.
- Few differences among panelists.

RQ1 – What are the levels of **willingness to participate** in geolocation-based research:

- (a) share geolocation data
- (b) in-the-moment surveys triggered by geolocation data.

RQ2 – How the **attributes** of geolocation-based research influence the willingness to participate in such surveys?

RQ3 – Are there **significant differences** among panelists?

RQ4 –Main reasons for deciding whether or not to participate stated by the panelists?

* = maximum time to participate

Research activity: Sharing geolocation vs. In-the-moment

surveys triggered by geolocation

Project duration: 1 week 1 month 3 month 6 month 1 year Indefinite

Invitation lifetime*: 15 min 30 min 1 h 2 h 3 h 6 h 12 h

Geolocation incentive: 1 point/week 2 points/week 3 points/week 4 points/week 6 points/week 8 points/week

Survey incentive level: X 1 (normal) X 1.5 X 2 X 3 X 4

Length of the interview: 1 min 5 min 10 min 15 min 20 min

We study the effect of 6 attributes, 2-6 levels per attribute.

ABOUT THE ATTRIBUTES

WILLINGNESS TO PARTICIPATE IN GEOLOCATION-BASED RESEARCH

web

WILLINGNESS TO PARTICIPATE IN GEOLOCATION-BASED RESEARCH

METHODS

Choice Based Conjoint analysis:

- A method to assess the influence of each attribute by the analysis of choices.
- 10 questions per participant: 2 proposals + "I would not participate".
- Orthogonal design (minimum correlation between attribute-levels)
- Multinomial model + Bayesian analysis using simulation (MCMC*).
- "Utilities" (coefficients) used to estimate **importance** of attributes and **willingness to participate** in each scenario, for each participant.

* =Markov Chain Monte Carlo

WILLINGNESS TO PARTICIPATE IN GEOLOCATION-BASED RESEARCH

DATA

- Data collection: 21st of February 7th of March 2022.
- Netquest opt-in online panel in Spain.
- **1,016 valid surveys** (2,306 invited, 1,847 started the survey, 461 discarded due to quotas and filters)
- Survey length: mean = 8.8 min.
- Quotas on age(3)+gender(2) and education(3), representative of the Spanish online population.
- <u>27% of the participants have installed a meter</u> (already sharing online behaviors).

Preliminary results (work in progress)

INFLUENCE OF EACH ATTRIBUTE-LEVEL

Average utilities of the multinomial model (larger utilities = higher preference)

RESULTS

RESULTS

WILLINGNESS TO PARTICIPATE

Moderate willingness to participate

Scenario	Mean	90% credible interval
Best	79.3%	75.1% ⇔83.0%
<mark>Average</mark>	<mark>45.4%</mark>	44.5%⇔46.3%
Worst	24.8%	$19.7\% \Leftrightarrow 28.9\%$

Best scenario:

Survey / duration: 1 week / invitation lifetime: 12h / survey length: 15 min / 4 points per week / x3 survey incentive

<u>Worst scenario:</u>

Geoloc / duration: 1 year / invitation lifetime: 15min / survey length: 1 min / 2 points per week / x1 survey incentive

RESULTS DIFFERENCES

Few differences among participants... **BUT** being sharing metered data makes a big difference (as expected).

	Avg. WTP
Metered panelists	40.2%
Non-metered panelists	58.9%

PARTICIPANTS NOT SHARING METERED DATA

RESULTS PRELIMINARY CONCLUSIONS

In-the-moment surveys triggered by geolocation data...

- **1.** ... are feasible in terms of willingness to participate.
- **2.** ... are preferable to just sharing geolocation data for an unspecific purpose.

To ensure high levels of participation:

- 3. Short project durations with reasonable invitation lifetimes.
- **4.** Up to 15 min survey duration
- **5**. Incentive is also key

Developing geolocation-based research on "panelists already sharing online behaviors" may be <u>effective</u> and would allow to <u>combine offline and online</u> <u>research</u>.

References

- 1. Groves, R.M., Fowler, F.J., Couper, M.P., Lepkowski, J.M., Singer, E., Tourangeau, R., (2009). Survey Methodology, 2nd Edition, Wiley series in survey methodology. Wiley
- 2. Tourangeau, R. (1999). Remembering What Happened: Memory Errors and Survey Reports. Chapter from the book "The Science of Self-report". Psychology Press.
- 3. Gray, P. G. (1955) The Memory Factor in Social Surveys, Journal of the American Statistical Association, 50:270, 344-363, DOI: 10.1080/01621459.1955.10501269
- 4. Walker, W. Richard; Skowronski, John J. (November 2009). The Fading affect bias: But what the hell is it for? (PDF). Applied Cognitive Psychology. 23 (8): 1122–1136. doi:10.1002/acp.1614.
- 5. Kanheman, D. (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux.
- 6. Guess, A. M., Nyhan, B., & Reifler, J. (2020). Exposure to untrustworthy websites in the 2016 US election. Nature human behaviour, 4(5), 472–480. <u>https://doi.org/10.1038/s41562-020-0833-x</u>
- 9. Sun, B., Morwitz, V.G. (2010). Stated intentions and purchase behavior: A unified model, International Journal of Research in Marketing, Volume 27, Issue 4, Pages 356-366, ISSN 0167-8116, <u>https://doi.org/10.1016/j.ijresmar.2010.06.001</u>
- 10.Klein, S. B., Babey, S. H., & Sherman, J. W. (1997). The functional independence of trait and behavioral self-knowledge: Methodological considerations and new empirical findings. Social Cognition, 15, 183–203.

Thanks!

Questions?

CARLOS OCHOA | RECSM - UPF

Carlos.ochoa@upf.edu

https://www.upf.edu/web/webdataopp

