
 

 
 

[MCSQ]: Multilingual Corpus of Survey 

Questionnaires   1

 Users’ Manual 

1 The [MCSQ]: Multilingual Corpus of Survey Questionnaires is an open-access research resource. 
If you use part of the code, data, manual and/or findings to inspire your own scientific work, please cite the 
article: Zavala-Rojas, D., Sorato, D., Hareide, L., & Hofland, K. (forthcoming 2020). The [MCSQ]: Multilingual 
Corpus of Survey Questionnaires. Meta: Journal Des Traducteurs. 
 

SSHOC, “Social Sciences and Humanities Open Cloud”, has received funding from the EU Horizon 2020 Research and 
Innovation Programme (2014-2020); H2020-INFRAEOSC-04-2018, under the agreement No. 823782  



 

Table of Contents 

Introduction 

MCSQ Structure 

Connecting to the database and running queries 

MCSQ Query Examples 

How to cite 

Contact information 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Introduction 

 

The [MCSQ]: Multilingual Corpus of Survey Questions (MCSQ) is a multilingual corpus of             

survey items from different studies. In its first version (Ada Lovelace), it comprises datasets              

from ESS (rounds 1 to 6) and EVS (rounds 3 and 4) in the English source language and their                  2 3

translations into Catalan, Czech, French (produced for France, Switzerland, Belgium, and           

Luxembourg), German (produced for Austria, Germany, Switzerland, and Luxembourg),         

Norwegian, Portuguese, Spanish and Russian (produced for Israel, Latvia, Lithuania, Russia,           

Ukraine, Estonia). 

 

This document comprises a guide to MCSQ users interested in making searches in the              

database. MCSQ was implemented as a PostgreSQL Entity-Relationship (ER) database,          4

therefore the searches must be made in SQL language. In this document, we provide an               5

overview of the database structure and provide a comprehensive explanation of how to do              

such search queries, in order to facilitate the usage of the database for users unfamiliar with                

SQL. 

 

The structure of this document is organized as follows: firstly we present a brief overview of                

the MCSQ structure. Afterward, we show how to connect to the database where users can               

search for information. Then, we introduce basic concepts about the syntax of the search              

queries and show several examples of searches that can be made in the database. Lastly, we                

provide contact information to solve user inquiries.  

 

 

 

 

 

 

 

 

 

 

 

 

2 https://www.europeansocialsurvey.org/  
3 https://europeanvaluesstudy.eu/ 
4 https://www.postgresql.org/  
5 SQL is a domain-specific language used in programming and designed for managing data held in a 
relational database management system. 

 

https://www.europeansocialsurvey.org/
https://europeanvaluesstudy.eu/
https://www.postgresql.org/


 

MCSQ Structure 

 

The MCSQ is an Entity-Relationship (ER) database, in which the data stored is represented              

regarding entities, also referred to as tables, and the relationship between them. In order to               

make searches in the database, we use Structured Query Language (SQL), which is a              

domain-specific language for ER databases. To make a consult we construct a query that              

represents the information we want to retrieve from the tables contained in the database.              

The tables contain attributes, also referred to as columns. The columns contain the             

necessary information to describe the entity. 

 

The main tables of the MCSQ database are the survey_item table and its substructures              

introduction, instruction, request, response, and alignment. The survey_item table holds the           

structural information about survey item observations (our unit of analysis), such as the             

sequence in which the substructures appear, which item types compose a given survey             

item, the item names, etc. The text for a given survey item can be found in the introduction,                  

instruction, request, and response tables. Also, the alignment table shows the survey item             

texts, but only for correspondence with the source text purposes. Therefore, for a given              

language there may be less segments in the alignment table than in the survey_item table.               

The complete ER diagram of the MCSQ database, describing all of its tables and attributes is                

depicted in Figure 1: 

 

 
Figure 1: MCSQ ER diagram. 

 

 



 

The MCSQ database was implemented in a way that for each language and study, only               

unique segment texts are included in the introduction, instruction, request, and response            

tables. There may be segments with small variations from one to another (differences in              

punctuation, word order, etc). Examples of several types of queries that can be done by the                

user are shown in the next sections. 

Connecting to the database and running queries 

  

To access the MCSQ database, enter in the page https://www.upf.edu/web/mcsq/ and click            

on ‘Access Database’: 

 

Figure 2: Access to the MCSQ database in the MCSQ website. 

 

There, you will find a login page that looks like this: 

 

Figure 3: MCSQ login screen. 

 

https://www.upf.edu/web/mcsq/


 

Credentials for the read only MCSQ user are available on request for the SSHOC team.               

Please send an email to the electronic addresses below to get the access keys. 

 

Danielly.sorato@upf.edu and diana.zavala@upf.edu  

 

 

Click on ‘Servers’ and you should see the structure of the objects contained in MCSQ: 

 

Figure 4: MCSQ database. 

 

Then, click on the ‘Query tool’ button (right upper corner in Figure 3) and you will                

open the query editor, as shown below in Figure 4. Here, you write and execute SQL                

queries to retrieve the desired information from MCSQ. To execute the queries, click             

on the ‘Run’ ( ) button. 

 

mailto:Danielly.sorato@upf.edu
mailto:diana.zavala@upf.edu


 

 

Figure 5: Query editor. 

 

 

If you click on the dropdown ‘Schemas’ and then ‘public’, you will have a complete               

view of the objects that compose the MCSQ database, as depicted in Figure 5: 

 

Figure 6: MCSQ database objects. 

 

 



 

You can further explore the structure of individual objects by clicking in them. For              

instance, if you click on the table alignment, you can see its columns, as shown in                

Figure 6: 

 

Figure 7: Columns of table alignment.  

MCSQ Query Examples 

 

MCSQ is available for community usage only for making search queries, i.e. it is not possible                

to alter the database. In order to retrieve data from the tables, it is necessary to make                 

SELECT statements. The basic query syntax for SELECT statements works as it follows: 

 

SELECT ‘the names of columns you want to retrieve information from’ FROM ‘table name’.  

 

For instance, suppose you want to retrieve the module name and the module description of               

the studies inserted in the database, you’d need to run the following query: 

 

SELECT module_name, module_description FROM module; 

 



 

 
Figure 8: Results for the ‘SELECT module_name, module_description FROM module’ query. 

 

Where module_name and module_description are the names of the columns that represent            

the module name and the module descriptions in the database, and module is the name of                

the table that contains this information.  

 

 

 

 

 

 

 

 

 

 

 

You can also retrieve the information of all columns contained in a single table by using the                 

symbol ‘*’: 

 

SELECT * FROM module; 

 



 

 
Figure 9: Results for the ‘SELECT * FROM module’ query. 

 

You can also include conditions to filter your results by adding the WHERE word in the                

query. We can see all studies that were inserted in the database that happened in the year                 

2006 by running the query: 
SELECT * FROM survey WHERE year = 2006 

 
Figure 10: Results for the ‘SELECT * FROM survey WHERE year = 2006’ query. 

 

 



 

It is also possible to make filters using only parts of strings instead of the whole string by                  6

adding the words LIKE/ILIKE (ILIKE is case insensitive) to the statement. For example, let’s              

say you want to see for which rounds and studies there are survey items regarding the                

RUS_UA (Russian from Ukraine) language. This information is contained in the surveyid            

column, so we can make a query in the survey table, filtering the results in the surveyid                 

column as it follows: 

 

SELECT * FROM survey WHERE surveyid LIKE'%RUS_UA' 

 

 

Figure 11: Results for the ‘SELECT * FROM survey WHERE surveyid LIKE '%RUS_UA'’ query. 

 

Notice that it is necessary to always use a simple quote (‘’) when dealing with string values.                 

Since surveyid is a type string column there are simple quotes around the values you want                

to retrieve for this column, like in '%RUS_UA'. 

The ‘%’ symbols determine to which sides you can have other characters. If you want to                

allow characters only on the left side of the string you can use ‘%word’, to allow characters                 

only on the right side of the string, you can use ‘word%’ and for both sides ‘%word%’. This                  

works for all string values in the database, including text. For example, lets say you want to                 

search for all request segments that have the word democracy contained in them. You could               

run the following query: 

 

SELECT * FROM request WHERE text ILIKE '%democracy%' 

 

6 A string is a sequence of characters. 

 



 

 

 

Figure 12: Results for the ‘SELECT * FROM request WHERE text ILIKE '%democracy%'’             

query. 

 

It is also possible to combine words as it follows: 

 

SELECT * FROM request WHERE text ILIKE '%democracy%political%' 

 

 

Figure 13: Results for the ‘SELECT * FROM request WHERE text ILIKE            

'%democracy%political%'’ query 

 

 

 

 

 

 

 

 



 

 

And to search for only parts of strings, as in: 

SELECT * FROM request WHERE text ILIKE '%hap%' 

 

Figure 14: Results for the ‘SELECT * FROM request WHERE text ILIKE '%hap%'’ query. 

 

It is possible to add multiple conditions to filter your results by using the operator AND. For                 

example, if you want to select survey items from questionnaires written in French that are               

instructions, you can run the following query: 

 

‘SELECT * FROM survey_item WHERE surveyid LIKE '%FRE_%' AND  

item_type = 'INSTRUCTION' 

 

 

Figure 15: Results for the ‘SELECT * FROM survey_item WHERE surveyid LIKE '%FRE_%'             

AND  item_type = 'INSTRUCTION' query. 

 

One very important functionality of the ER database is to combine (join) tables. Let's say you                

want to see the texts of ESS requests, written in Portuguese. The table survey_item holds               

the structural information about items while the texts are in the request table. So in order                

to retrieve these segments, we combine the two tables as it follows: 

 

 



 

‘SELECT r.text, s.item_name, s.survey_itemid, s.survey_item_elementid FROM survey_item       

s, request r WHERE s.surveyid LIKE 'ESS%POR_%' AND r.requestid=s.requestid’ 

 

 

Figure 16: Results for the ‘SELECT r.text, s.item_name, s.survey_itemid,         

s.survey_item_elementid FROM survey_item s, request r WHERE s.surveyid LIKE         

'ESS%POR_%' AND r.requestid=s.requestid’ query. 

 

In another example, suppose you want to select Norwegian instructions from EVS 

questionnaires published from the year 2000 onwards:  

 

‘SELECT i.text, s.item_name, s.survey_itemid, s.survey_item_elementid, u.year FROM       

survey_item s, instruction i, survey u WHERE s.instructionid=i.instructionid AND s.surveyid          

= u.surveyid AND s.surveyid LIKE 'EVS%NOR_%' AND u.year >= 2000’ 

 

Figure 17: Results for the ‘SELECT i.text, s.item_name, s.survey_itemid,         

s.survey_item_elementid, u.year FROM survey_item s, instruction i, survey u WHERE          

s.instructionid=i.instructionid AND s.surveyid = u.surveyid AND s.surveyid LIKE        

'EVS%NOR_%' AND u.year >= 2000’ query. 

 



 

 

In order to combine tables, it is of utter importance to understand the columns of the                

tables, so we know in which piece of information is possible to combine tables in a way that                  

makes sense. If you have doubts of the columns that compose a given table, please check                

the ER diagram in Figure 1, or investigate individual database objects as depicted in Figure 6. 

 

There are many other functions useful for analysis, such as getting maximum/minimum            

values, data aggregation, order, etc. It is unfeasible to cover them all in this document,               

however, the user can find a comprehensive explanation of them in the PostgreSQL manuals             

. In addition, there are many tutorial pages available online dedicated to show how to use                7

these functions. In the next examples we show two of them that we consider very useful for                 

MCSQ users. 

 

It is possible to only count the results instead of listing them by adding the word COUNT to 

the query: 

 

‘SELECT COUNT(*) FROM survey_item WHERE surveyid LIKE '%FRE_%' AND  

item_type = 'INSTRUCTION' 

 

Figure 18: Results for the ‘SELECT COUNT(*) FROM survey_item WHERE surveyid LIKE            

'%FRE_%' AND item_type = 'INSTRUCTION' query. 

 

You can also retrieve only distinct values by using the word DISTINCT. For example, if you                

want to see the all the target language questionnaires that have alignments with the source               

questionnaires in the database for ESS round 6, you can run the following query:  

  

 

‘SELECT DISTINCT s.surveyid FROM alignment a, survey_item s WHERE  

a.target_survey_item_elementid = s.survey_item_elementid AND s.survey_itemid LIKE      

'ESS_R06%' 

 

7 https://www.postgresql.org/docs/manuals/ 

 



 

 
Figure 19: Results for the ‘SELECT DISTINCT s.surveyid FROM alignment a, survey_item s             

WHERE a.target_survey_item_elementid = s.survey_item_elementid AND s.survey_itemid      

LIKE 'ESS_R06%'  query. 

 

Combinations between such functions are also possible: 

‘SELECT COUNT(DISTINCT s.surveyid) FROM alignment a, survey_item s WHERE  

a.target_survey_item_elementid = s.survey_item_elementid AND s.survey_itemid LIKE      

'ESS_R03%' 

 

 
 
Figure 20: Results for the ‘SELECT COUNT(DISTINCT s.surveyid) FROM alignment a,           

survey_item s WHERE a.target_survey_item_elementid = s.survey_item_elementid AND       

s.survey_itemid LIKE 'ESS_R03%'  query. 
 

 



 

You can also order the results by ascending or descending values, by using ORDER BY               

column ASC/DESC. As an example, suppose you want to see the alignments of the ESS round                

4 in French from Belgium in ascending order:  

 

‘SELECT a.alignmentid, a.source_text, a.target_text, s.country_language FROM alignment a,        

survey_item s WHERE a.target_survey_item_elementid = s.survey_item_elementid AND       

s.survey_itemid LIKE  'ESS%R04%FRE_BE%' ORDER BY  a.alignmentid ASC’ 
 

 

Figure 21: Results for the ‘SELECT a.alignmentid, a.source_text, a.target_text,         

s.country_language FROM alignment a, survey_item s WHERE       

a.target_survey_item_elementid = s.survey_item_elementid AND s.survey_itemid LIKE       

'ESS%R04%FRE_BE%' ORDER BY  a.alignmentid ASC’  query. 
 

It is also possible to aggregate numerical data by using GROUP BY. To exemplify an               

application, suppose you want to see the total number of segments per country/language             

from the EVS study: 

 

 



 

‘SELECT country_language, COUNT(survey_itemid) FROM survey_item WHERE      

survey_itemid LIKE 'EVS%' GROUP BY country_language 

 

 

Figure 22: Results for the ‘SELECT country_language, COUNT(survey_itemid) FROM         

survey_item WHERE survey_itemid LIKE 'EVS%' GROUP BY country_language’  query. 

How to cite 

The [MCSQ]: Multilingual Corpus of Survey Questionnaires is an open-access research resource. If 

you use part of the code, data, manual and/or findings to inspire your own scientific work, please 

cite the article:  

 

Zavala-Rojas, D., Sorato, D., Hareide, L., & Hofland, K. (forthcoming 2020). The [MCSQ]: Multilingual 

Corpus of Survey Questionnaires. Meta: Journal Des Traducteurs. 

 
@article{Zavala-Rojas,author = {Zavala-Rojas, Diana and Sorato, 

Danielly and Hareide, Lidun and Hofland, Knut},journal = {Meta: 

Journal des traducteurs},title = {{[MCSQ] Multilingual Corpus of 

Survey Questionnaires}}} 

 

 



 

Contact information 

 

The PI of this project is Diana Zavala-Rojas, and this database was implemented and it is                

maintained by Danielly Sorato. For general enquiries, please send them to the electronic             

address diana.zavala@upf.edu. If you have queries about the (technical) usage/structure of           

MCSQ or the contents of this document, please send them to the electronic address              

danielly.sorato@upf.edu. 
 

 
 

 

 

https://www.upf.edu/web/survey/entry/-/-/67822/adscripcion/diana-zavala-rojas
https://www.upf.edu/web/survey/entry/-/-/danielly_sorato-upf_edu/adscripcion/danielly-sorato
mailto:diana.zavala@upf.edu
mailto:danielly.sorato@upf.edu

