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Wideband Cognitive Radio: Monitoring, Detection and Sparse Noise
Subspace Communication

ABSTRACT

We are surrounded by electronic devices that take advantage of wireless technologies, from
our computer mice, which require little amounts of information, to our cellphones, which
demand increasingly higher data rates. Until today, the coexistence of such a variety of
services has been guaranteed by a fixed assignment of spectrum resources by regulatory
agencies. This has resulted into a blind alley, as current wireless spectrum has become an
expensive and a scarce resource. However, recent measurements in dense areas paint a
very different picture: there is an actual underutilization of the spectrum by legacy sys-
tems.

Cognitive radio exhibits a tremendous promise for increasing the spectral efficiency
for future wireless systems. Ideally, new secondary users would have a perfect panorama
of the spectrum usage, and would opportunistically communicate over the available re-
sources without degrading the primary systems. Yet in practice, monitoring the spectrum
resources, detecting available resources for opportunistic communication, and transmit-
ting over the resources are hard tasks. This thesis addresses the tasks of monitoring, de-
tecting and transmitting, in challenging scenarios including wideband signals, nonuni-
form sampling, inaccurate side information, and frequency-selective fading channels.

In the first task of monitoring the spectrum resources, this thesis derives the peri-
odogram and Capon spectral estimates in nonuniform sampling exploiting a correlation-
matching fitting from linearly projected data. It is shown that nonuniform sampling incurs
the phenomenon of noise enhancement, which is circumvented by the proposed spectral
estimates by implementing a denoising process, and further theoretically characterized
in Bernoulli nonuniform sampling by establishing equivalence between nonuniform sam-
pling and signal-to-noise ratio (SNR).

In the second task of detecting the available resources, this thesis considers the prob-
lems of multi-frequency signal detection, asymptotic performance, and cyclostationary
signal detection. In multi-frequency signal detection, a unified framework based on the
generalized likelihood ratio test (GLRT) is derived by considering different degrees of side
information and performing maximum likelihood (ML) and correlation-matching estima-
tion over the unknown parameters in uniform and nonuniform sampling, respectively.
The asymptotic performance of signal detection is considered from two perspectives: the
Stein’s lemma, which allows discovering the influence of the main parameters on the error
exponents in the error probabilities; and the asymptotic statistical characterization of the
GLRT in Bernoulli nonuniform sampling, which allows the derivation of sampling walls
in noise uncertainty, i.e., sampling densities below which the target detection probabilities
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cannot be guaranteed. Finally, this thesis exploits the cyclostationarity properties of pri-
mary signals by deriving the quadratic sphericity test (QST), which is the ratio between
the squared mean and the arithmetic mean of the eigenvalues of the autocorrelation ma-
trix of the observations; and the optimal GLRT in a parameterized model of the frequency-
selective channel, which exploits the low rank structure of small spectral covariance ma-
trices.

In the last task of transmitting over the available resources, a cyclostationary secondary
waveform scheme is first proposed to mitigate the interference that an active cognitive ra-
dio may cause to an inactive cognitive radio that performs spectrum sensing, by project-
ing the oversampled observations into a reduced subspace. Second, this thesis derives and
statistically characterizes the sphericity minimum description length (MDL) for estimating
the primary signal subspace. And third, this thesis finally considers the minimum norm
waveform optimization problem with imperfect side information, whose benefits are those
of linear predictors: flat frequency response and rotationally invariance.
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Ràdio Cognitiva de Banda Ampla: Monitoratge, Detecció i Comunicació
Dispersa de Subespai de Soroll

RESUM

Estem envoltats de dispositius electrònics que utilitzen tecnologia sense fils, des del ra-
tolı́ de l’ordinador que requereix petites quantitats d’informació, fins als nostres telèfons
mòbil que demanen cada vegada més velocitat de dades. Fins avui, la coexistència de
tants serveis ha estat garantida per una assignació fixa dels recursos freqüencials per part
de les agències de regulació. Això ens ha portat a un atzucac, ja que l’espectre actual ha
esdevingut un recurs car i escàs. Tanmateix, mesures recents dibuixen una situació molt
diferent: de fet hi ha una utilització molt baixa de l’espectre per part dels sistemes amb
llicència.

La tecnologia de ràdio cognitiva promet millorar l’eficiència espectral dels futurs sis-
temes de comunicació sense fils. En teoria, un usuari secundari coneix perfectament la
utilització de l’espectre, i és capaç de transmetre de manera oportuna sense degradar els
sistemes primaris. A la pràctica, però, monitoritzar els recursos freqüencials, detectar-los
i transmetre-hi són tasques difı́cils. Aquesta tesi tracta aquestes tres tasques en escenaris
complicats com senyals de banda ampla, mostreig no uniforme, informació lateral impre-
cisa i canals selectius en freqüència.

En la primera tasca de monitoritzar els recursos freqüencials, aquesta tesi desenvolupa
els estimadors espectrals de periodograma i Capon en mostreig no uniforme a partir d’un
ajust per correlació de les observacions linealment projectades. Es demostra que el mostreig
no uniforme genera el fenomen d’increment de soroll, el qual és solucionat pels estimadors
espectrals proposats, i a més a més és caracteritzat teòricament pel cas de Bernoulli, es-
tablint una equivalència entre el mostreig no uniforme i la relació senyal soroll (SNR).

En la segona tasca de detectar els recursos disponibles, la tesi considera els problemes
de detecció de senyals multifreqüència, avaluació de les prestacions asimptòtiques, i de-
tecció de senyals cicloestacionàries. En detecció multifreqüència, es proposa una formu-
lació unificada basada en el test generalitzat de màxima versemblança (GLRT), considerant
diferents graus d’informació lateral, i efectuant estimació de màxima versemblança (ML)
i d’ajust per correlació dels paràmetres desconeguts en mostreig uniforme i mostreig no
uniforme, respectivament. Les prestacions asimptòtiques dels detectors són avaluades des
de dues perspectives: el lema d’Stein, que permet descobrir la influència dels diferents
paràmetres sobre els exponents de les probabilitats d’error; i la caracterització estadı́stica
asimptòtica del GLRT en mostreig no uniforme de Bernoulli, que permet derivar les parets
de mostreig en incertesa de soroll, és a dir, aquelles densitats de mostreig per sota de les
quals les probabilitats de detecció objectiu no són garantides. Finalment, la tesi explota les
propietats cicloestacionàries dels senyals primaris: es deriva el test d’esfericitat quadràtica
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(QST), que és la divisió entre la mitjana quadràtica i la mitjana aritmètica dels autovalors
de la matriu de correlació de les observacions; i també es deriva el GLRT en un model
parametritzat del canal selectiu en freqüència, que explota l’estructura rang deficient de
petites matrius de covariància espectral.

En l’última tasca de transmetre en els recursos disponibles, es proposa en primer lloc
un esquema de forma d’ona cicloestacionària per reduir la interferència que un usuari
cognitiu pot causar a un altre usuari cognitiu inactiu que fa sensat de l’espectre, projec-
tant les observacions sobremostrejades en un subespai reduı̈t. En segon lloc, aquesta tesi
deriva i caracteritza estadı́sticament la llargària mı́nima de descripció (MDL) d’esfericitat
per estimar el subespai de senyal primària. I en tercer lloc, la tesi considera el problema
d’optimització de forma d’ona de norma mı́nima amb informació lateral imperfecta, els
beneficis del qual són els dels predictors lineals: resposta freqüencial plana i invariància a
la rotació.
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agrair al Xavi i al Francesc les bones estones de discussions tècniques, els bons dinars, i
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Notation

x(t) A random process.

X(ω) The Fourier transform of x(t).

x A column vector.

X A matrix.

φx(ω) The PSD of x(t).

I The identity matrix.

0 All-zeroes matrix or vector with appropriate dimensions.

tr(X) The trace of X.

det(X) The determinant of X.

diag(x) A matrix with the elements of x on the main diagonal.

diag(X) A vector with the elements of the main diagonal of X.

‖X‖F The Frobenius norm of X.

x+ The operator max(0, x).

R+ The set of positive real numbers.

E The expectation operator.

B The set of bandlimited signals.

N (m,R) Gaussian distribution with mean m and covariance matrix R of appropriate
dimensions.

CN (m,R) Complex Gaussian distribution with mean m and covariance matrix R of ap-
propriate dimensions.

X 2
r (λ) Chi-squared distribution of r degrees of freedom and λ as non-centrality pa-

rameter.
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Chapter1
Introduction

1.1 Scope

It is well known that every single device that transmits wirelessly must satisfy tight regula-
tions, not only to confine interference, but also because wireless spectrum is an expensive
scarce resource. This scarcity has become more notorious due to the recent increase of
wireless systems which demand higher data rates. However, recent measurements show
an opposite situation: many licensed services transmit only sporadically, giving an overall
spectrum occupancy of roughly 35%, even in most crowded areas. It is precisely this in-
efficiency in the use of the frequency resources which has motivated the current research
in cognitive radio technology. Ideally, cognitive radios have a perfect picture of the spec-
trum usage in a given place and a given time, being able to smartly adapt the transmission
scheme to perform opportunistic communication.

Despite cognitive radio technology holds a big promise in the proliferation of new
wireless services, there still exist many technical challenges which are addressed in this
thesis. More precisely, this thesis has focussed on a variety of statistical signal processing
problems involved in

1. monitoring the spectral resources,

2. detecting available resources for opportunistic communication, and

3. transmitting over the available resources without or causing little interference to the
licensed services,
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in several challenging scenarios, such as

1. wideband signals,

2. nonuniform sampling,

3. inaccurate side information, and

4. frequency-selective fading channels.

Wideband signals are costly to monitor due to the cumbersome required sampling rates,
but also difficult to detect due to the low transmission power and spectrum shape. Non-
uniform sampling has been proposed to reduce the sampling rate, however monitoring
and detecting nonuniformly sampled wideband signals are not easy tasks, as random sam-
pling affects the statistics of the signal. Also, a good calibration of the receiver noise and
legacy signal parameters has a fundamental role in monitoring and detecting wideband
signals, as uncertainties can lead to detection walls beyond which the detection fails to be
robust. Another issue involved in the detection is the interference caused by an active cog-
nitive radios, which can lead to licensed signal missed detections by other silent cognitive
radios which are far from the licensed system but close to the transmitting cognitive radio.
Furthermore, the frequency-selective fading nature of the channels between the licensed
services and the cognitive radios play an important part, as the statistical properties of
the signals involved in detecting the available resources and transmitting over the avail-
able resources are degraded. A last example of research challenge consists of the design
of cognitive radio waveforms in a decentralized network, where each cognitive radio has
different versions of the spectrum occupancy due to the different propagation channels
between the legacy system and the cognitive radio network.

This thesis has tackled the aforementioned problems whose research has lead to the
publications detailed in Section 1.2, and to the core contributions reported in Section 1.3,
which summarize the core structure of the thesis.

1.2 Publications

The following journal publications have been produced as a result of this thesis research.

[J1] J. Font-Segura, G. Vázquez and J. Riba, “Robust minimum norm waveform opti-
mization for wideband cognitive radio communications”, IEEE Transactions on Com-
munications, 2014, (to submit).

[J2] J. Font-Segura, G. Vázquez and J. Riba, “Sphericity minimum description length”,
IEEE Signal Processing Letters, 2014, (to submit).

[J3] J. Font-Segura, G. Vázquez and J. Riba, “Single and Multi-Frequency Wideband
Spectrum Sensing with Side Information ”, IET Signal Processing, 2014 (in press).

2



[J4] J. Riba, J. Font-Segura, J. Villares and G. Vázquez, “Frequency-domain GLR detec-
tion of a second-order cyclostationary signal over dading channels”, IEEE Transac-
tions on Signal Processing, Vol. 62, No. 8, pp. 1899–1912, April 2014.

[J5] J. Font-Segura, G. Vázquez and J. Riba, “Nonuniform sampling walls in wideband
signal detection”, IEEE Transactions on Signal Processing, Vol. 62, No. 1, pp. 44–55,
January 2014.

[J6] J. Font-Segura and X. Wang, “GLRT-based Spectrum Sensing for Cognitive Radio
with Prior Information”, IEEE Transactions on Communications, Vol. 58, No. 7, pp.
2137–2146, July 2010.

as well as the following publications in conference proceedings

[C1] J. Font-Segura, J. Riba, J. Villares and G. Vázquez, “Frequency-domain GLR detec-
tion of cyclostationary signals in frequency-selective channels”, IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, May
2014.

[C2] J. Font-Segura, G. Vázquez and J. Riba, “Exploiting cognitive cyclostationary noise
subspace for noncognitive spectrum sensing”, IEEE International Workshop on Signal
Processing Advances for Wireless Communications (SPAWC), Darmstadt, Germany, June
2013.

[C3] J. Font-Segura, G. Vázquez and J. Riba, “Sampling walls in signal detection of Ber-
noulli nonuniformly sampled signals”, IEEE International Conference on Communica-
tions (ICC), Budapest, Hungary, June 2013.

[C4] J. Font-Segura, J. Riba, J. Villares and G. Vázquez, “Quadratic sphericity test for blind
detection over time-varying frequency-selective fading channels”, IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada,
May 2013.

[C5] J. Font-Segura, G. Vázquez and J. Riba, “Asymptotic error exponents in energy-
detector and estimator-correlator signal detection”, IEEE International Conference on
Communications (ICC), Ottawa, Canada, June 2012.

[C6] J. Font-Segura, G. Vázquez and J. Riba, “Novel periodogram and Capon spectral
analysis based on nonuniform sampling”, IEEE Global Communications Conference
(GLOBECOM), Houston, TX, December 2011.

[C7] J. Font-Segura, G. Vázquez and J. Riba, “Noise enhancement and SNR equivalence
in Bernoulli nonuniform sampling”, International Conference on Cognitive Radio and
Advanced Spectrum Management (CogART), Barcelona, Spain, October 2011.
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Figure 1.1: Thesis structure.

[C8] J. Font-Segura, G. Vázquez and J. Riba, “Multi-frequency GLRT spectrum sensing
for wideband cognitive radio”, IEEE International Conference on Communications (ICC),
Kyoto, Japan, June 2011.

[C9] J. Font-Segura, G. Vázquez and J. Riba, “Compressed correlation-Matching for spec-
trum sensing in sparse wideband regimes”, IEEE International Conference on Commu-
nications (ICC), Kyoto, Japan, June 2011.

1.3 Contributions and Organization

The contributions of this thesis are structured into six parts, as depicted in Figure 1.1,
which correspond to Chapters 2–7. In the sequel, the contributions and the publications
derived from each chapter are detailed.

Chapter 2 introduces the reader to the cognitive radio technology and the signal pro-
cessing research challenges in two fundamental issues of cognitive radio communication:
spectrum sensing and dynamic access, i.e., how the cognitive radios obtain information
on the spectrum usage and how the cognitive radios actually transmit over the available
resources, respectively. This Chapter further reports the most relevant background bib-
liography on state-of-the-art works related to the specific signal processing problems of
nonuniform sampling, signal detection, and dynamic spectrum access.
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The first problem of monitoring the spectral resources by means of spectral analysis
in nonuniform sampling is addressed in Chapter 3. Nonuniform sampling is motivated
by the fact that the spectrum usage is sparse, which allows the application of the foreseen
theory of compressed sensing to further reduce the sampling rate. However, by simply ex-
ploring classical spectral estimation over nonuniformly sampled data, it is observed that
nonuniform sampling incurs a phenomenon of noise enhancement. In order to circumvent
this phenomenon, the periodogram and Capon spectral estimates based on the correlation-
matching metric are designed to match the spectral contribution of the legacy signal and
remove the spectral contribution due to nonuniform sampling. Chapter 3 further provides
a theoretical framework to quantize and predict the noise enhancement effect in nonuni-
form sampling by resorting to the simple but utile Bernoulli nonuniform sampling. In
particular, a signal-to-noise ratio (SNR) equivalence is derived to predict the conditions in
which any signal processing problem will operate. The SNR equivalence is extended to
matrix formulation, which stands for an important tool in the subsequent chapters. The
contributions of Chapter 3 have derived to the publications [C6] and [C7].

The second problem of detecting a signal immersed in additive noise is addressed in
Chapter 4. Statistical signal detection is one of the most fundamental problems for deci-
sion making in a wide range of applications, from radar to biomedicine. The performance
of signal detectors is clearly improved as more side information on the noise and signal
statistics is exploited. However, inaccurate knowledge on these parameters incurs severe
degradation in the detector’s performance, which can lead to nonrobust behaviors such as
SNR walls due to noise uncertainty. For that reason, Chapter 4 addresses optimal detection
in the Neyman-Pearson sense by means of the generalized likelihood ratio test (GLRT),
which natively incorporates joint parameter estimation for inaccurate model parameters.
Several scenarios of partial side information are addressed, and a low complexity detector
for multi-frequency systems is proposed. Chapter 4 is divided into two parts: the first
part addresses the estimation involved in the GLRT by maximum likelihood (ML) esti-
mation in uniform sampling, whereas the second part addresses the estimation from a
correlation-matching view point from nonuniform sampling in a similar way that it has
been proposed in Chapter 3. The publications [C8], [C9], [J3] and [J6] have been produced
as a consequence of the research presented in this chapter.

It is well known that the statistical characterization of signal detectors is an important
issue to predict and benchmark the detectors’ performance within the detection condi-
tions, i.e., the SNR, the sensing time, the channel diversity, the legacy signal occupancy,
or the nonuniform sampling rate. However, the statistical characterization is, in general,
a cumbersome problem which has no direct solution. In contrary, Chapter 5 adopts the
asymptotic performance of the GLRT detector by means of two tools. On the one hand,
the Stein’s lemma is a fundamental result that relates the rate in which the error probabili-
ties decay within the number of observations, with the Kullback-Leibler divergence (KLD)
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between the probability density functions (PDFs) of the hypotheses. More specifically,
the Stein’s lemma is applied to the energy detector and the estimator-correlator in a wide
variety of scenarios including channel diversity and Bernoulli nonuniform sampling. The
derived expressions show that the error exponents of the false-alarm and missed-detection
probabilities depend on the observation size and the second-order statistics of the problem,
leading to the fact that the observation size scales as the inverse of a monotonically increas-
ing function of the SNR. On the other hand, the asymptotic performance of the signal de-
tector in Bernoulli nonuniform sampling in the presence of noise uncertainty is addressed
in the second part of Chapter 5 by approximating the PDF of the detector by Gaussian
distributions. As a consequence, this thesis shows the existence of sampling walls, i.e.,
the sampling density below which the target error probabilities, i.e., the missed-detection
and false-alarm probabilities, cannot be guaranteed at a given SNR regardless the number
of acquired samples. The contributions of Chapter 5 have produced the publications [J5],
[C3] and [C5].

An alternative approach to fight against noise uncertainty is cyclostationary signal de-
tection, as cyclostationary processes exhibit a form of frequency diversity which can be ex-
ploited by cognitive radios to perform spectrum sensing invariant to noise variance. How-
ever, these detectors are highly sensitive to frequency-selective fading channels. Chapter
6 addresses the design of cyclostationary detectors in the presence of unknown channel
gains. In particular, a first invariant cyclostationarity detector is proposed by deriving a
blind detector based on the squared mean to arithmetic mean of the eigenvalues of the
autocorrelation matrix of the observations, denoted as the quadratic sphericity test (QST).
The main advantage of the QST is that it shows invariance with respect to both the noise
variance and the channel gains. Chapter 6 further exploits cyclostationarity by adopting a
rank-1 frequency-domain representation of digital waveforms. This allows the derivation
of an optimal frequency-domain GLRT which addresses ML estimation of a parametric
channel model based on the coherence bandwidth. The proposed detector outperforms
classical spectral correlation magnitude detectors by exploiting the rank-1 structure of
small spectral covariance matrices. The publications [J4], [C1] and [C4] have been derived
from the research presented in this chapter.

The third problem of cognitive radio waveform optimization is reported in Chapter
7, which is organized into three parts. Firstly, the cognitive radio transmission scheme is
design so that the interference generated to other cognitive radios which are performing
spectrum sensing is minimized. If the cognitive radio network is localized in a small area,
the transmitting users may act as strong interference to the inactive users. By operating
directly on the oversampled cyclostationary signal subspace, the inactive cognitive radios
are able to exploit the cyclostationarity in order to identify a noise subspace where legacy
signal detection can be done free of interference. A further analysis on the deflection as
performance indicator reveals that the performance of the detector is proportional to the

6



roll-off factor of the squared-root raised cosine (SRRC) pulse employed by the cognitive
radio transmitters, and proportional to the squared of the SNR. Chapter 7 also considers
the optimization of waveforms that lie in the noise subspace of the legacy signal second-
order statistics. This requires the previous determination of the legacy signal subspace
dimension from local observations, i.e., solving a model order selection problem. There-
fore, the second part of Chapter 7 exploits the minimum description length (MDL) statis-
tic with unknown noise variance and unknown low-rank signal correlation matrix. This
leads to the formulation of the GLRT, which has been recently reported as the sphericity
test for low-rank Gaussian signals. Because the GLRT asymptotically follows a non-central
Chi-squared distribution, the statistical characterization of the proposed sphericity MDL,
together with the MDL with known noise variance and imperfect known noise variance
is provided. The last research of this thesis seeks cognitive radio waveforms that satisfy
the favorable properties of white frequency response, invariance to rotation, and that lie
on the noise subspace of the second-order statistics of the legacy signal. It is shown that
linear predictors that arise from minimum norm filtering exhibit these properties. There-
fore, the resulting waveforms implement a form of null space communication similar to
that in multiple antennas, but will show enhanced stability and low complexity benefits
of temporal correlation matrices. In front of statistical channel state information (CSI) mis-
matching, a robust waveform optimization problem is addressed, based on the worst-case
performance scenario, which regularizes the objective function by adding a penalty term
equivalent to the squared value of the spectrum. Both the nonrobust and robust wave-
form optimization problems are solved iteratively, and show efficient implementation in
the frequency-domain. Chapter 7 has produced the publications reported in [J1], [J2] and
[C2].

Finally, Chapter 8 summarizes the main conclusions obtained in the thesis, as well as
brief description of future lines of research.
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Chapter2
Signal Processing for Wideband Cognitive

Radio

This Chapter is structured as follows. Section 2.1 motivates the cognitive radio technology
and outlines the main signal processing research challenges. The problems of nonuniform
sampling, spectrum sensing, and dynamic spectrum access (DSA), along with state-of-the-
art literature, are detailed in Sections 2.2, 2.3 and 2.4, respectively.

2.1 Cognitive Radio

2.1.1 Motivation

Today’s wireless communications are characterized by a fixed spectrum resource assign-
ment, i.e., the spectrum is regulated by the governmental agencies and is assigned to the
license holders for a long term in a large geographical region. However, a large portion of
this assigned spectrum is used only sporadically by the primary services, who concentrate
the communication over certain portions of the spectrum while a significant amount of the
spectrum remains underutilized. According to recent studies by the Federal Communica-
tions Commission (FCC), the utilization of the available spectrum can be as low as 15% in
determined geographical areas [FCC03].

Specifically out of this premise was born the new paradigm of cognitive radio. Cogni-
tive radios utilize advanced signal processing along with novel DSA policies to support
new wireless users who opportunistically communicate in the existing congested spec-
trum without degrading established users. For that purpose, a cognitive radio is an adap-
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tive wireless communications system that takes advantage of all type of side information
on the network, e.g., users’ activity, channel conditions, modulations and codes format,
or even the information message sent by other users who share the spectrum [GJMS09].
Depending on the degree of knowledge on this side information, cognitive radio systems
are based on underlying, overlaying or interweaving the new users’ signals with those of
existing users [Kod05]. In detail:

1. The underlay cognitive radios operate only if the interference caused to the non-
cognitive services is below a given threshold. This approach assumes that the sec-
ondary users have perfect knowledge of the interference caused by their transmitters
to the primary services. One possible approach for transmitting signals causing lit-
tle interference is to use a large bandwidth over which the cognitive radio signal is
spread below the noise level. This is the basis idea of spread spectrum and ultra
wideband (UWB) communications. Underlay cognitive radio is the most common
scheme when coexisting with licensed primary services, e.g., UWB underlays many
licensed bands.

2. In overlay cognitive radio, the secondary users can transmit at any power and simul-
taneously with the primary users by using sophisticated techniques like dirty paper
coding (DPC) or relays. For this to be possible, the cognitive transmitters need to
know the primary codebooks and messages, which may be impractical in many sit-
uations.

3. Thirdly, the idea of opportunistic communication is exploited in interweave cognitive
radios, which indeed is the original motivation of cognitive radio [MM99]. The spec-
trum gaps or holes can be used sporadically by secondary users for their communica-
tion in given time and geographical location conditions. The primal requirement of
interweave cognitive radio is that the secondary users must be aware of the spectral
activity of the primary systems.

Even though the concept of cognitive radio, under the umbrella of software-defined-
radio (SDR) and DSA, was proposed in the early 2000s, it is still a state-of-the-art topic
that receives much attention in the research society. For a detailed collection of recent
work on advanced signal processing for cognitive radio networks the reader is referred
to [ZKL+11, LCL+11a, LCL+11b], whereas the practical implementation and application
of the cognitive radio technology, standardization issues and testbeds is reported in, e.g.,
[WGC11, FHMI11, PND+11, NIK12].

This thesis focusses on the interweave concept of cognitive radio and its signal pro-
cessing and communications challenges. Specifically, two of the main functionalities indis-
pensable for the cognitive radio technology to proliferate are investigated: spectrum sens-
ing and dynamic access. On the one hand, spectrum sensing refers to the signal processing
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detection techniques that reliably identify the radio resources unused by the primary sys-
tems in order to cause little interference. On the other hand, dynamic access consists of the
enabling communication strategies that capture the best multiple access technique in order
to meet the user communications requirements. The envisioned open fields on spectrum
sensing and dynamic access are discussed in Section 2.1.2 and Section 2.1.3, respectively.

2.1.2 Challenges in Spectrum Sensing

For the last decades, cognitive radio has been one of the major focus of academic re-
search, e.g., [Hay05, MLJ09, WL11, ALLP12], as well as application initiatives such as the
IEEE 802.22 standard on wireless regional area network (WRAN) [CCBSS05]. Yet, there
are many open research challenges which are identify in the following for both spectrum
sensing and dynamic access. Spectrum awareness is an important prerequisite in the envi-
sioned applications of wireless cognitive radio networks. Creating an interference map of
the operational spatial region plays a fundamental role in enabling spatial frequency reuse
and allowing DSA. Spectrum awareness can be obtained through

1. Databases (e.g., geolocation, modulation and propagation models),

2. Sensing, or

3. Beacons

This thesis focusses on sensing for spectrum awareness, as it constitutes a broader solution
and requires much less infrastructure. Therefore, designing fast and reliable spectrum
sensing techniques based on cognitive radios local observations is a challenging task with
many open research topics.

1. Sensing duration and sensing rate.

The time needed by the spectrum sensing algorithm to detect the presence of pri-
mary user activity is probably the most primordial requirement of cognitive radio
communications, especially when transmitting because the primary users can claim
their spectrum resources at any time. In order to avoid interference from and to the
primary users, the secondary users must identify the presence of primary activity as
fast as possible and immediately vacate the used band. The main factor that deter-
mines a tradeoff between sensing time and detection performance is the selection of
the parameters to be sensed.

On the other hand, the sensing rate, i.e., how often the cognitive radios perform
spectrum sensing, is another important design parameter. The optimum value of the
sensing rate depends on the technical capabilities of the cognitive radio and the sta-
tistical properties of the primary services [JJL+07]. For instance, if the status of the
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primary users is known to change slowly in time, spectrum sensing can be performed
in a more relaxed manner, whereas a more constant spectrum sensing is required in
public safety bands to immediately vacate the band to prevent any interference. Se-
lecting the optimum sensing rate is a novel research problem, and the goal is to maxi-
mize the cognitive radio channel capacity while maintain the interference to primary
users constraint. Many approaches can be proposed to solve these problems. For
instance, one could use the guard interval in orthogonal frequency-division multi-
plexing (OFDM) systems to perform sensing, or focusing only in the changing parts
of the spectrum.

Another problem associated to sensing time is that spectrum sensing cannot be per-
formed on spectrum resources over which the cognitive radio users are communicat-
ing. To mitigate this problem, frequency-hopping has arisen as a practical solution,
as reported in [HWA+07].

2. Detection of spread-spreading primary users.

Typically, primary system either consists of a fixed narrowband or spread spectrum
services. The two major approaches of spread spectrum communications are the
frequency-hopping spread-spectrum (FSSS) and the direct-sequence spread-spectrum
(DSSS). In both situations, detecting such systems is difficult as the power of the
primary users is distributed over a wide frequency range, even though the actual
information bandwidth is much narrower [CMB04]. One possible solution is to un-
cover the hopping pattern or achieve perfect synchronization with the primary users,
however such detection in the code-domain is not straightforward.

3. Wideband sensing.

Very high sampling rates are required by conventional spectral estimation methods
which have to operate at or above the Nyquist rate when the frequency range to be
sensed is very large. Meanwhile, the stringent timing requirements for monitoring
the dynamically changing spectrum only allow for a limited number of measure-
ments to be collected for sensing, which makes it challenging to reliably perform
high-resolution signal reconstruction. Furthermore, the wideband regime is charac-
terized by close to zero spectral efficiency and signal-to-noise ratio (SNR) close the
minimum required for reliable communication [Ver02]. Therefore, spectrum sensing
becomes indeed especially challenging in the wideband regime.

4. Cooperative sensing.

Cooperative sensing becomes a practical methodology for increasing the reliability
of the cognitive radio network spectrum sensing performance and addresses some
problems of individual spectrum sensing such as the hidden primary user problem
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or punctual deep fading. However, sharing the information among cognitive radios
and combining the measurements is a challenging task.

On the one hand, the shared information can be based on soft-decisions or hard-
decisions. Soft-decisions outperform hard-decisions in terms of probability of missed-
detection; however they require a larger overhead for transmitting such information.

On the other hand, there are many approaches for making the final decision. In
a distributed network, each node can base its decision on the local measurements
of the neighborhood and pass the information in an intelligent manner (e.g., belief
propagation). In a centralized network, a decision center collects all the measure-
ments/decisions from the cognitive radios and performs the final decision employ-
ing optimal combination (e.g., the likelihood ratio test (LRT)), or alternatively sim-
pler techniques such as equal gain-combining, selection combining, or switch and
stay combining.

5. Complexity.

Finally, complexity is one of the major factors affecting the implementation of practi-
cal sensing methods. To detect a signal at very low SNR and in a harsh environment
is not a simple task.

The research objectives of this thesis focus on statistical-based detection methods.
The major advantage of such spectrum sensing detectors is their little dependence
on signal and channel knowledge, as well as relatively low complexity. A promising
research line is then the design of statistical-based spectrum sensing algorithms that
exploit the signal features. At last, detecting the presence of a primary user signal
is only the basic task of sensing. For a radio with high level of cognition, further
information such as the modulation format employed by the primary service may be
exploited. Therefore, signal identification turns to be an advanced task of sensing.

6. Training.

Training is the task of guiding a cognitive radio engine through the process of learn-
ing a desired system’s behavior and capabilities. The training speed and expected
performance during this task are of paramount importance to the system’s opera-
tion, especially when the system is facing new conditions [VB12].

2.1.3 Challenges in Dynamic Wideband Access

All the cognitive nodes willing to transmit or receive information perform spectrum sens-
ing to acquire a map on the situation of the available spectrum prior to opportunistic com-
munication. Recent theoretical work (see [JS07] and the references therein for an informa-
tion theory formulation of cognitive radio channels) recognizes that the spectral environ-
ment is distributed and dynamic. The distributed access occurs due to the fact that the
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primary activity detected by a cognitive radio differs from that detected around the other
cognitive radios.

Multiple-access techniques are in charge of regulating the access of different users to
a common access radio resource, which usually consists of a dedicated frequency band-
width, but not limited to other natures such as time, code, or space [Pro00]. The common
resource in which a set of M users wish to communicate is referred as multiple-access
channel (MAC) [Cov72]. By its nature, the MAC is interference limited in dense networks.
This fact, though, becomes a challenge for cognitive radio MATs, when contrasted to the
dedicated multiple-access techniques, i.e., classical techniques where each user or service
has a dedicated (not shared) radio resource. A typical example for such techniques is
the time-division multiple-access (TDMA) employed in the global system for mobile com-
munications (GSM) network. When considering the MAC, many information theoretical
network issues arise. How do the various senders cooperate with each other to send in-
formation to the receivers? What rates of communication are simultaneously achievable?
What limitations does interference among the senders and to the primary services put on
the total rate of communications?

There are still many open lines of investigation in order to answer all these questions.
In the field of DSA [ZS07], the following open challenges are identified.

1. Sharing dimension.

In general, spectrum sharing can be done at any dimension of the spectrum space,
i.e., frequency, code, space, and time. Selecting the sharing dimension in cognitive
radios is a design parameter that depends on the primary user activity.

In frequency-division multiple-access (FDMA) and code division multiple-access (CDMA),
the main challenge is to perform efficient channel allocation. More advanced signal
processing techniques are required in space multiple-access as power control is nec-
essary to avoid interference to the primary systems. Finally, time access is based on
the concept of time leases.

2. Opportunistic Access.

Contrary to open spectrum access, i.e., a cognitive radio accessing unlicensed bands,
opportunistic DSA is regulated by the priority established between primary and sec-
ondary users.

The primary task in opportunistic access is channel selection. The choice of the fre-
quency bands that can be used for opportunistic communication depends on the
amount of primary systems occupancy information available at the cognitive radio
receiver.

(a) Narrowband Spectrum Access. In Narrowband DSA, the cognitive radios can
transmit and receive the information on a predetermined or dynamically chosen
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frequency band, depending on the primary user occupancy. This gives rise to
two techniques: frequency-hopping and frequency-tracking. On the one hand,
in frequency-hopping spectrum access, the cognitive transmitter and receiver
simultaneously hop across multiple frequencies according to a predetermined
sequence. The primal challenge of the frequency-hopping approach is that the
transmitter and the receiver need always to be synchronized. On the other
hand, frequency-tracking consists of choosing one of the free frequency bands
for communication. In this setting, the receiver chooses the expected frequency
band based on local observations so as to maximize the probability of coinci-
dence with the transmitter.

(b) Wideband Spectrum Access. In a wideband cognitive radio system, the transmit-
ter and receiver can scan the spectral activity in all the frequency bands. Then,
the cognitive radios can span the information using a spanning code over mul-
tiple frequency slots that are potentially unused by the primary systems. Unlike
the narrowband spectrum access schemes, the secondary users need to have in-
formation of all the bands prior to every transmission. The basic challenge in
this scheme then goes to the spectrum sensing problem.

3. Centralized or Distributed Spectrum Access.

An important aspect of a dynamic spectrum access is whether decisions on the access
are taken based on complete or partial information about the current utilization of
the spectrum. In centralized cognitive radio networks, a central device is responsible
for gathering the spectrum utilization from all the cognitive radios and performing
spectrum allocation and controlling based on the global information on the network.
Although the performance of centralized spectrum access is optimal due to the ac-
quisition of network information, reporting to a central device may not be practical
in many situations due to communication overhead. Alternatively, in distributed ap-
proaches (e.g., [TPD+10]) the spectrum access is controlled by each individual cog-
nitive radio based on its own or common policies imposed by the MAT, and neigh-
borhood information. Distributed spectrum access reduces the reporting overhead,
but achieves suboptimal performance due to the lack of complete information on the
network.

2.2 Nonuniform Sampling

Conventional approaches to sampling signals follow the well-known Nyquist theorem, in
which the sampling rate must be at least twice the maximum frequency present in the
information signal. However, the new theory of compressed sensing asserts that one can
recover certain signals from few samples than the Nyquist rate. Compressed sensing has
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Figure 2.1: Multi-frequency primary signal allows nonuniform sampling.

arisen from the mathematical society and has been applied to many engineering fields. It
relays on two fundamental characteristics: the sparsity of the signal to be sampled, and
the incoherence between the sampling method and the underlying domain in which the
signal is sparse. The concept of sparsity expresses the idea that the information rate behind
a signal can be much smaller than the one suggested by its bandwidth (less degrees of
freedom compared to its length), when the signal to be sampled has low occupancy in the
sensed bandwidth, e.g., as depicted in Figure 2.1.

In the following, the mathematical fundamentals of the classical compressed sensing
theory are reported, as well as a discussion on the state-of-the-art works which are based
or relate to compressed sensing.

2.2.1 Classical Compressed Sensing Theory

The compressed sensing theory has been motivated by E. J. Candès in the last years [CT05,
CRT06, CW08]. Consider a continuous-time random process s(t), and an arbitrary N -size
sampled vector s

.
= (s(t1), . . . , s(tN ))T , where the sampling intervals tn accomplish the

Nyquist theorem. It is said that x is sparse in the Φ domain, if its representation onto the
basis Φ has only S non-zero coefficients, with S � N . The compressed sensing theory
claims that s can be perfectly recovered from the compressed signal x = Ψ(s + w), where
w is the additive Gaussian noise with double-sided spectral densityN0/2, and Ψ is aK×N
nonuniform sampling matrix with enough incoherence with Φ. The sparsest solution of
the coefficients of s onto Φ is given by the `0-norm constrained minimization problem

α̂ = arg min
α
‖α‖`0 (2.1)

subject to y = ΨΦα, where ‖α‖`0 denotes the `0-norm of α, which is equal to the number
of non-zero elements in α, i.e., ‖α‖`0

.
= limd→0

∑N
n=1 |αn|d. Solving (2.1) is a NP-hard

problem [CT05] and very sensitive to the noise. Hence, several alternatives to (2.1) have
been proposed in the literature. Basis pursuit [CRT06] is one of the most used algorithms
as replaces the `0-norm in (2.1) by the `1-norm, with a relaxed second-order constraint

α̂ = arg min
α
‖α‖`1 , (2.2)
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subject to ‖x − ΨΦα‖2 ≤ ε. The main advantage of basis pursuit is that it leads to lin-
ear programming, so (2.2) can efficiently solved in polynomial time. However, due to the
performance degradation in noisy environments, several improvements on the basis pur-
suit algorithm have been considered, e.g., employing the gradient projection [FNW07], or
the interior-point [KKL+07] techniques. Alternative options encompass greedy versions of
basis pursuit, like the matching pursuit variants [TG07b], which improve the rapidness in
solving (2.2), but may lead to poor estimation performance. Despite the noise sensitivity
of the original `0-norm minimization, it has been shown that it gives the highest possibility
of sparse recovery with very few measurements, which motivates the use of approxima-
tions to the `0-norm function to directly solve (2.1). Among them, the smoothed `0 cost
function [MBZJ09] approximation is a fast algorithm, and gives significantly improved
performance in scenarios with low SNR regimes. The main idea behind this approach is
to approximate the nonlinear function (2.1) by a suitable continuous function, and take
advantage of linearity. The weighted `1-minimization for nonuniform sampling has been
further addressed in [KXAH11]. The construction of deterministic sensing matrices satis-
fying the statistical restricted isometry property (RIP) has been reported in [CHJ10].

The main drawback of the aforementioned works is that they focus on solving the
compressed sensing problem in a very general fashion, without reaching engineering-like
solutions. Furthermore, most of the reported algorithms focus on the reconstruction of the
information at the signal level. However, as shown in this thesis, the reconstruction of the
information at the signal level is not necessary for the purpose of primary signal detection
or design of secondary transmission waveforms.

2.2.2 Rate of Innovation

Parallel to the Candès work, M. Vetterli et al. [VMB02] presented the concept of rate of in-
novation of signals as a generalization to the concept of bandwidth. The rate of innovation,
defined as

ρ
.
= lim

T→∞

1

T
τX(T ), (2.3)

where τX(T ) counts the number of degrees of freedom of X in an interval T , expresses
the level of innovation per unit of time. The idea behind it is that if a signal has a finite
rate of innovation ρ, one hopes to be able to measure and reconstruct the signal by taking
only ρ samples per unit of time. There is a clear analogy to compressed sensing, as ρ may
measure the sparsity level of X . However, this generalization allows to consider signals
which, even though they are not band limited, they can be sampled uniformly at or above
the rate of innovation using appropriate kernels.

From a spectral analysis view point, P. Stoica et al. provide a nonuniform sampling ap-
proach in [SLH09] and show that nonuniform sampling does not suffer from tome draw-
backs present in traditional uniform sampling. The connection to compressed sensing is
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feasible due the nonuniform sampling matrix Ψ. The multichannel sampling problem at
the rate of innovation has been recently addressed by [GTE11].

2.2.3 Multicoset Sampling

A third line of investigation related to compressed sensing has been pursued by G. Eldar
et al. [ME09, EKB10, ME10, GE11, DE11, BHME12]. The work presented in [ME09, ME10]
establishes a framework related to compressed sensing, called multi-coset sampling for
multi-band signals with sparse support over the sensed band, that establishes the general
conditions for perfect reconstruction. This theory is based on universal sampling patters
which are a particularization of the nonuniform sampling matrix Ψ and obey a predeter-
mined structure so that the uniqueness of the solution is preserved. Under some circum-
stances, if the universal multi-coset pattern takes p samples out of L, it is shown that

1

TS
=

p

LT
≥ nNB, (2.4)

where TS is the average sampling rate, 1/T is the Nyquist rate, and NB is the Landau
rate for N bands whose width do not exceed B. If the spectrum support is known, n = 1,
and the sampling rate must be above the Landau rate. On the other hand, if the spectrum
support is known, there is a penalty of n = 2 in the minimum required sampling rate.
Even the authors provide a reconstruction algorithm based on finite-size observations, nu-
merical algorithms are needed as the reconstruction is based on the classical compressed
sensing theory (2.1). The theory presented in [ME09] is applied to wideband analog signals
with unknown spectral support in [ME10]. The idea of multi-coset sampling implementa-
tion with filter banks has been further reported in [MEDS11, MEE11] for the problem of
analog-to-digital conversion (AGC).

Sparsity can be naturally found in many signals, and the reconstruction of a com-
pressed sparse signal relies on the incoherence between the nonuniform sampling and the
domain of sparsity. In [GE11], the authors claim that reconstruction is possible even when
the sparsity base is not known, i.e., blind compressed sensing of sparke signals. Uniqueness
is ensured for a constrained family of sparsity basis, whose restrictions and reconstruction
algorithms are discussed in the work by [GE11].

Another problem of interest is that of detecting the activity of primary systems employ-
ing burst transmissions. Settled in the time-domain, the sparsity does not occur symbol-
by-symbol, rather in a block-sparsity fashion. The work in [EKB10] conditions the com-
pressed sensing problem setting for block-sparse signals, and show that block-sparsity can
yield to better reconstruction results than treating the signal as being sparse in the conven-
tional sense.

An outstanding review on the compressed sensing theory has recently been reported
in [DE11], where the main theme is to exploit signal and measurement structure in com-
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pressed sensing. In other words, the main focus of [DE11] is to establish the link between
theory and practice, i.e., to bring the maths to the hardware. Further in [BHME12], the
performance bounds for estimating the finite rate of innovation of signals are established.
This provides a useful metric for designing sampling criteria.

2.2.4 Advances in Nonuniform Sampling

A connection to random coding has been established in the recent work by [RG10]. Ran-
dom coding [VO79] is an underlying theory developed by R. G. Gallager [Gal68] for the
classical and non-classical (i.e., quantum) channel coding theorem, which presumes of a
known a priori distribution of the input alphabet to provide an upper bound on the error
probability. The authors in [RG10] assume that there is some prior distribution on the loca-
tion of the zero elements of the sparse signal, e.g., which frequency bands are more likely
to be empty, and derive information theoretical bounds on the entropy of the non-zero
elements of the sparse signal to show that the sampling density can be further reduced.

Other connections between nonuniform sampling and other signal processing and
information theory topics include kernel-induced sampling [TIM10], the sparse RLS al-
gorihm [BKT10], regularized sampling for multiband signals [Sel10], co-prime sampling
[VP11], segmented compressed sensing [TV11], ower spectrum blind sampling via peri-
odic sampling and simple least squares reconstruction [LA11], sparse residuals [KG11],
semi-parametric methods such as SPICE [SBL11], grid solution problems, [SB12b], or 1-bit
compressed sensing [LWYB11]. Finally, a reconciliation of compressed sensing systems
with spectrally sparse continuous-time signals is reported in [LDT12], which establishes
a good frequency-domain analysis and retaliations to the known problems of windowing
and aliasing.

2.2.5 Fundamental Limits

Lastly, a large bunch of research has been generated with the aim of theoretically charac-
terize the process of nonuniform sampling, as well as determine the fundamental limits
associated to sampling.

In [MM10a] and [MM10b], the sampling process has been studied from the view point
of systems theory, providing the main concepts and tools, as well as noncasual solutions.
More information theoretical limits related to Shannon are established in the works by
[AT10] and [ASZ10]. For instance, [CEG13] explores two fundamental questions at the
intersection of sampling theory and information theory: how channel capacity is affected
by sampling below the channel’s Nyquist rate, and what sub-Nyquist sampling strategy
should be employed to maximize capacity.

An study of compressed sensing as an estimation procedure has been conducted in
[JBHHE11], whereas an analysis of the support recovery (only the position of the non-zero
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entries) by casting the problem as a MAC has been addressed in [JKR11]. Further Cramér-
Rao bounds in noisy compressed sensing [BKT09]. In [OSW12], the authors establish the
universal sampling sets for the reconstruction of non uniformly sampled signals by means
of interpolation when the signals belong to the set of bandlimited signals B. Also, the
nonuniform sampling problem has been analyzed from a rate-distortion theory, such as
[WV12].

Finally, it is worth mentioning the work [DBWB10] on statistical signal processing (de-
tection and estimation) with compressed measurements. The idea is naturally based on
random projections which behave as near-optimal measurements. However, despite the
intense focus of the community on signal recovery, many signal processing problems (e.g.,
detection, classification, estimation or filtering) do not require full signal recovery.

2.3 Spectrum Sensing

The primary function of a cognitive radio receiver is to reliably identify available spectrum
resources temporally unused by primary users in a geographical area. This awareness can
be obtained through a database, by using beacons, or by local spectrum sensing at the cog-
nitive radios [GS08a]. This thesis focusses on the spectrum sensing problem performed at
the cognitive radio receivers as it constitutes a broader solution and has less infrastructure
requirements. In the sequel, it is assumed that the cognitive radio receiver has a dataset of
N observations of the wideband signal x(t), X

.
= (x1, . . . ,xN ), and has to decide between

hypotheses H0 and H1 whether a primary signal is present in the sensed resource or not,
respectively.

2.3.1 Classical Spectrum Sensing Methods

The energy detector [Poo94] is the most common way of spectrum sensing because of its
low computational and implementation complexities. In addition, it is the most generic
detector as the cognitive radio receivers do not need to know any further properties on
the primary user signals. The primary user signal is detected by comparing the output
of the energy detector, T (X) =

∑
n ‖xn‖2 ≥ τ with a threshold τ that depends on the

noise floor. The main challenges behind the energy detector are the threshold computation
with inaccurate noise variance, and its poor performance in low SNR regimes [Tan05].
However, the simplicity of the detector makes its theoretical analysis very clear, and its
performance can be accurately characterized.

A second method of spectrum sensing for cognitive radio are the waveform-based de-
tectors. Known patterns are commonly employed in wireless systems for synchronization
purposes. In the presence of a known pattern pilot signal in the primary services trans-
mission, the cognitive radio can correlate the detected signal with a known copy of itself
[Tan05], i.e., T (X) =

∑
n xHn rn ≥ τ , where rn is the pilot sequence. It is shown that the
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waveform-based detector outperforms the energy detector in both reliability and conver-
gence time. However, including pattern preambles may not be feasible in some primary
services, or it might derive to storage problems when sensing a very wide band.

Cyclostationarity feature detection has been also applied in cognitive radio spectrum sens-
ing [SND08, HTR09]. This method exploits the cyclostationarity of the primary signals, as
periodicity occurs in the signal or in its statistics like the mean of autocorrelation. Even in
low SNR regimes, the cyclostationarity-based detectors can differentiate the primary signal
from the noise. This is a result of the fact that the thermal noise is a wide-sense stationary
(WSS) with no correlation, while the modulated signals show correlation. The detection is
then performed by detecting periodic peaks on the cyclic spectral density function, defined
as the Fourier transform of the cyclic autocorrelationRx(τ)

.
= E[x(t+τ)x∗(t−τ)eωt]. Cyclic

frequencies can be assumed to be known or they can be extracted from the actual obser-
vations, but inaccurate values on them may cause severe degradation on the performance
of the detector. For instance, second-order cyclostationarity is exploited in [AHDVP12]. A
comparison of feature-based sensing methods is addressed in [CWZ11].

Match-filtering is known as the optimum method for detecting the primary signal when
the transmitted signal is perfectly known [Pro00]. The main advantage of match-filters
is that compared to the aforementioned methods, it achieves high probability of detect-
ing H1 in a very short time. However, matched-filtering requires the cognitive radios to
demodulate the received signals. In other words, it requires perfect knowledge on the pri-
mary signal deterministic characteristics such as the bandwidth, operating frequency, or
modulation type and order. Moreover, its complexity increases as it needs radio-frequency
receivers for each signal types. Alternatively, data-independent filter-banks detectors have
been recently applied to cognitive radio [HRS08] as they provide an integrated tool for
wireless communications with less complexity than match-filtering. However, these de-
tectors are not robust to interference. A generalization of filter-banks design has been de-
ployed in [PNLRS09] in the framework of correlation-matching [Gar86]. The correlation-
matching scheme presented in [PNLRS09] provides power level estimation and frequency
location for a candidate correlation matrix to be suited with the sample covariance ma-
trix. If the proper candidate matrix is selected, the resulting detector becomes robust to
interferences and significantly outperforms other feature-based detectors.

Finally, Bayesian spectrum sensing has also gained recent attention, e.g., [JVLN+11,
LS12, ZKLZ13]. In [JVLN+11], the location of the secondary users is employed as side
information. In [LS12], a Bayesian detector is proposed to minimize the error probability
via the Chernoff bound. In [ZKLZ13], the fact that the primary system is highly likely idle
is further exploited.
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2.3.2 GLRT-based Spectrum Sensing

The detectors discussed in Section 2.3.1 relay on the fact that the cognitive radio receiver
has perfect knowledge on some deterministic parameters of the noise and primary signal,
such as the noise variance or the signal features, e.g., the cyclic frequency.

This thesis investigates the generalized likelihood ratio test (GLRT) based spectrum
sensing detectors for cognitive radio for two reasons. Firstly, the GLRT is the optimal
detector in the Neyman-Pearson sense [Kay98a] because it maximizes the probability of
detection, P(H1|H1), in front of a fixed false alarm probability, P(H1|H0). And secondly,
GLRT detectors become a solution to inaccurate parameter models because they natively
incorporate a joint parameter estimation framework:

L(X,Θ)
.
=
π(Ξ̂1)p(X|Ξ̂1,Θ1,H1)

π(Ξ̂0)p(X|Ξ̂0,Θ0,H0)
≥ γ (2.5)

where Ξ̂1 and Ξ̂0 are the maximum a posteriori (MAP) estimates of the unknown model
parameters, i.e.,

Ξ̂0 = arg max
Ξ

π(Ξ)p(X|Ξ,Θ0,H0), (2.6)

and
Ξ̂1 = arg max

Ξ
π(Ξ)p(X|Ξ,Θ1,H1), (2.7)

respectively. The parameters Θ0 and Θ1 indicate the side information available in the prob-
lem. If the prior distribution of the unknowns, π(Ξ1) and π(Ξ0), is not available, Ξ̂1 and
Ξ̂0 become the maximum likelihood (ML) estimates. The optimality of the GLRT in the
finite size case has been recently proved for the joint detection and estimation problem by
G. Moustakides et. al. in [MJTW12]. Furthermore, S. Kay has shown the optimality of the
Neyman-Pearson test in statistical signal detection and its relation to signal estimation and
the Fisher information matrix [Kay12]. The work done in [FSW10] studies the effect of side
information on the noise, channel and signal statistics over the performance of the GLRT.
The authors also provide extensions to multiple-input multiple-output (MIMO) channels,
fast and slow-fading Rayleigh channels, and orthogonal frequency-division multiple-access
(OFDMA) schemes. The work concludes that under the white-noise assumption, estimat-
ing the noise variance incurs notable performance gain if the true value is inaccurate. This
result suggests that the second-order statistics of the noise and signal are a sufficient statis-
tic for the detection problem. In fact, spectrum sensing detectors exclusively based on
statistical covariances to exploit spectral features have been reported in the literature, e.g.,
[ZL09, QZSS11, YLPC11]. On the other hand, in [GA11] and [GA12] it is shown that imple-
menting the detection procedure in the frequency-domain offers fewer false alarms than
its implementation in the time-domain, while offering the possibility of making use of
well-known signal processing tools such as spectral analysis. Finally, GLRT-based spec-
trum sensing algorithms are also developed in [HLC10, BNS11, PBD11a, AL11] for OFDM
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cognitive radio networks.

2.3.3 Blind Spectrum Sensing

Numerous spectrum sensing algorithms are blind signal detectors, i.e., are designed to
exclusively exploit the characteristics of the primary signal (energy, stationarity, cyclosta-
tionarity, pilots, spatial rank, etc). However, the statistics of the communication channel
between the primary transmitter and the secondary receiver may also be employed to
improve detection. The viability of blind spectrum sensing (i.e., only relying on the eigen-
value decomposition (EVD) distribution of the sample covariance matrix GLRT) is ad-
dressed in [ZQG11] with hardware implementations. The correlation between sub-bands
occupancy is exploited in to fight against the propagation channel [HC11].

2.3.4 Multiantenna Spectrum Sensing

It is clear that another manner of improving the detection performance is to exploit spatial
correlation by the use of multiple antennas at the cognitive radio receivers.

In [LZLZ08], the multiantenna spectrum sensing problem is first formulated for the
wideband low SNR regime and for unknown noise covariance matrix. A rank-1 GLRT by
blindly learning the leading eigenvector of the observations has been reported by [ZQ13].
The multiantenna spectrum sensing problem with unknown primary signal correlation
matrix is addressed in [RVVLV+11]. Spectral a priori information is exploited for the mul-
tiantenna spectrum sensing problem by [VVLVS11]. Totally blind spectrum sensing (i.e.,
unknown primary signaling, uknown noise variance and unknown channel coefficients)
using antenna arrays and path correlation is addressed in [OSNP11]. By exploiting the
empirical characteristic function from the observations, the multiantenna spectrum sens-
ing problem is addressed by [SWZZ12] when no information is required on the primary
signal nor the noise. Space-time domain spectrum sensing is addressed in [SAVVLV12] by
considering known power spectral density (PSD) and unknown noise spatial correlation.
Finally, the locally most powerful invariant test (LMPIT) has been proposed in [RVSS13]
which shows that under close hypotheses (e.g., low SNR), the additional rank structure of
the primary covariance matrix is actually irrelevant for optimal detection.

2.3.5 Sensing Time

Another bunch of spectrum sensing literature has focussed on minimizing the sensing
time, which is a crucial parameter in cognitive radio as outlined above.

In [PLGZ11], a power control of the secondary users is proposed which allows the
maximization of the secondary system throughput and optimize the sensing time at the
same time. The sensing time is also optimized in [MMS12] together with power control in
secondary multiantenna communications. A similar approach has been taken in [LR12],
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where the sensing time is optimized along with the sensing threshold. Sensing time is
also discussed in [LLL12], where the joint sensing block length and detection threshold
optimization to maximize the throughput of a cognitive radio network is investigated.
Furthermore, in [SN11] the sensing time and the power allocation problem are jointly con-
sidered in the case of multiband signals.

Finally, the concept of quickest detection is presented in [ZP13] on opportunistic detec-
tion based on finite-sample-size setting, where the detection rule possible makes an early
decision on the H1 hypothesis, while always deferring to H0 until collecting all the sam-
ples. The asymptotic behavior is analyzed by means of a Chernoff-Stein lemma, which is
the ratio between the Kullback-Leibler divergence (KLD) and the Chernoff information of
the two hypotheses.

2.3.6 Compressed Spectrum Sensing

Tian et. al. [TG07a] study the problem of collaborative distributed spectrum sensing in
wideband communications, and provide an extension to spectrum estimation in [Tia08].
The common factor of these works is that the authors employ compressed sensing and
spectrum sensing independently. On the one hand, each cognitive radio reconstructs the
received wideband signal from the compressed local observations using the basis pur-
suit method, and on the other hand, an energy detector with majority vote decision is
performed in the fusion center of the cooperative cognitive radio network. Similarly, the
authors in [CZL09] address the problem of spectrum sensing in wideband cognitive radio
scenarios in a two-step approach. Firstly, the basis-pusuit on the Fourier transform of the
observations is employed to recover the received spectrum. Secondly, the band location
estimation problem is solved using a wavelet-based edge detector. Recent spectrum sens-
ing techniques for wideband cognitive radio based on the detection of the cyclic feature
from sub-Nyquist samples have been proposed in [TTS12].

Alternatively, the work done by Leus et. al. [WPPL09, PWPL09] on compressed spec-
trum sensing is focused on the reconstruction of the signal PSD of the primary user signals
motivated by the sparsity present on the autocorrelation signal. The authors solve the
distributed collaborative sensing problem by considering a fusion center which, after col-
lecting the autocorrelation signals from the cognitive radios, employs the simultaneous
orthogonal matching pursuit algorithm to recover the observations PSD. Also, the authors
in [BG10] investigate the problem of cooperative spectrum sensing in cognitive radio net-
works that show sparsity in two domains: frequency and space. Based on local energy
detectors, the cooperative scheme aims to determine the locations of the cognitive trans-
mitters as well as the frequency bands unused by the users for opportunistic frequency
reuse. Obtaining an interference map in space and frequency is enforced by statistical
models for the location of the cognitive transmitters [GTS07]. The compressed wideband
power spectral estimation problem has been addressed in by Leus [AL12].
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Finally, in a recent work by [PHB12], the sensing time in which the channel is sensed
has nonuniform duration, which has some benefits in terms of maximizing the secondary
throughput.

2.3.7 Cooperative Spectrum Sensing

Even though this thesis is not focussed on cooperative spectrum sensing, in the follow-
ing works that relate to the topics addressed in this thesis are listed. The combination of
cooperative spectrum sensing and nonuniform sampling has been reported in [MYL+11],
where sparse observations are employed in the detection procedure. A good reference in
cooperative spectrum sensing when reporting imperfect channel state information (CSI) is
the work by [CLKP12] and the references therein, where the comparison between hard and
soft decisions is addressed. In the context of multiantenna, the generalized energy detector
in cooperative sensing is proposed in [SBM12]. Finally, it is worth noting that in coopera-
tive spectrum sensing a secondary user may misbehave in order to artificially increase or
reduce the throughput of the cognitive network by sending wrong sensing information. In
[PSDC12], a statistical attack model is adopted by characterizing the malicious nodes with
a probability of attack.

2.3.8 Adaptive Sensing

Lastly, adaptive sensing has also been proposed by the literature in order to exploit the
structure of the primary signal by adapting the sensing procedure to those directions to
maximize the detection. In [LSI12], the combined problem of adaptive sensing and re-
source allocation with imperfect spectrum sensing is addressed. Similarly, adaptive sens-
ing in congested bands is reported in [TCW12]. Moreover, the problem of compressed
spectrum sensing from an `2-norm perspective and adaptive fashion is reported in [SCN12].

Finally, in [ACCD13], the authors show that, despite the folk belief that adaptive tech-
niques always improve the estimation error compared to nonadaptive counterparts, the
advantages offered by clever adaptive strategies and sophisticated estimation procedures
over classical compressed `1-norm schemes are minimal.

2.4 Dynamic Spectrum Access

The second primary issue in cognitive radio networks after spectrum sensing is the access
strategy that integrates the opportunity exploitation. The main challenge behind DSA for
cognitive radio is the established hierarchical structure in which the secondary system is
designed such that no or only insignificant interference is generated toward the primary
system.

25



2.4.1 Multiple-Access Techniques

As a wideband wireless system, the cognitive radio multiple-access technique must op-
timize the utilization of the available spectrum, and guarantee the maximum number
of reliable links. Conversely, wideband communications are characterized by arbitrarily
large delays, low SNR and close to zero spectral efficiency [Ver02]. The spectrum effi-
ciency in classical point-to-point communication channels, defined as the information rate
that can be transmitted over a given bandwidth [BB99], is a suitable metric for bench-
marking among different multiple-access techniques. The spectrum efficiency in wireless
networks has recently been casted as the transmission capacity [WAJ10]. The transmis-
sion capacity is defined as the number of successful transmissions taking place in the
network per geographical unit area, subject to a constraint on outage probability. The
outage capacity was first presented for both the broadcast channel and the MAC [LG01,
LG05]. The importance of this novel concept lies largely in that it can be exactly derived
in some important cases, or tightly bounded in many others, hence providing a useful
tool of comparison. In general, one distinguishes between the following fundamental
multiple-access schemes: TDMA, FDMA, CDMA, space division multiple-access (SDMA),
and random access. Spread-spectrum techniques [Pur87] have been adopted in many
interference-challenged wireless communication systems because of its efficiency in which
several terminals transmit over the same frequency bandwidth, without requiring planned
infrastructure (ad hoc). Consequently, frequency-hopping CDMA (FH-CDMA) and direct-
sequence CDMA (DS-CDMA) are potential dynamic access strategies for cognitive radios.

2.4.2 Transmission Capacity and Outage Capacity

With no delay constraint, the classical information theoretical MAC capacity is the relevant
performance indicator. This applies, for example, to variable-rate systems. On the other
hand, most of today’s communication systems carry services for which constant-rate and
delay-limited transmission should be considered. In this case, the outage probability is
the appropriate capacity metric as it is able to provide the probability that any quality of
service (QoS) performance metric such as mutual information, SNR, transmitted power, or
bit error rate (BER) are bellow or above the resource limit, that is, target transmission rate,
target SNR, maximum power or target BER [BPS98, CTB99, OSW94, KS95, CA07].

The transmission capacity framework focuses on the statistics of the received signal-to-
interference-plus-noise ratio (SINR) in the MAC. They key underlying this mathematical
concept is the use of spatial models for the location of the M terminals on a plane, whose
channel response is a function of their relative distances. Spatial models have been used in
wireless communications since the late 1970’s [KS78, MW78], in which the received SINR
determines the conditions of transmission success. Moreover, mathematical formulation
for spatial models consisting of stochastic geometry has been shown to be well suited for
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a wide range of problems within wireless communications [BB09].
The transmission capacity metric was first introduced by the authors in [WYAdV05]. It

is defined as the spatial intensity of attempted transmissions associated to an outage prob-
ability of the SINR. The transmission capacity metric has been employed in a wide variety
of wireless network design and performance analysis problems, including spread spec-
trum [WYdVA04], interference-cancellation [WAYdV07], cognitive radio [JAW08, CA09],
scheduling and power control [WAJ07, JWA00], and the use of multiple antennas for beam-
forming or orthogonal space-time block coding (OSTBC) [HAW08]. For a general sur-
vey and unification of a number of recent contributions that have collectively developed
the transmission capacity metric, see [WAJ10]. One of the most relevant conclusions of
the transmission capacity work is that for CDMA multiple-access techniques, the ratio
between the transmission capacity of FH-CDMA and DS-CDMA only depends on the
spreading factor K and the path-loss parameter n by [AWH07]

cFH
cDS

= K1−2/n. (2.8)

In other words, if n > 2, FH-CMDA outperforms DS-CDMA for fixed system conditions
by a factor of, e.g.,

√
K in indoor environment with n = 4. Recently, the concept of trans-

mission capacity has been extended to spectrum sharing scenarios with the combination
of interference alignment [LAH13]. The potentials of interference alignment in cognitive
radio networks are reported in Section 8.2.4 of Chapter 8.

Lastly, the work by Menon et al. [MBR05], also based on the outage probability and
exponential models [GTS07], addresses an assessment on the performance on interference
avoidance and interference averaging multiple-access techniques. The authors show that
the interference-avoidance techniques dramatically reduce the interference seen at the pri-
mary services. Therefore, underlay schemes such as FH-CDMA should also incorporate
interference-avoidance. Moreover, interference-avoidance underlay cognitive radios re-
sult in lower outage probabilities as compared to interference-avoidance overlay cognitive
radios, with pronounced benefits as the transmission bandwidth is increased.

2.4.3 Linear Prediction

Not surprisingly, FH-CDMA has already been adopted in many research lines in the field
of cognitive radio DSA by L. Tong et al. in [GSTS09]. In this work, the authors investi-
gate spectrum access policies of cognitive radios in a wireless local area network (WLAN)
scenario. The main idea is to sense and predict interference patterns so as to adapt the
spectrum access accordingly.

In the line of primary user activity prediction, the works [ZTSC07, GTS08, ZGTS08]
discuss the cognitive medium access problem via stochastic modeling of the primary ser-
vice. Recognizing the apparent spectrum sensing constraints, it is feasible to assume that
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a secondary user may not be able to perform full spectrum sensing or may not be willing
to monitor the spectrum when it has no data to transmit. Contrarily, a secondary user can
choose to sense a subset of the possible channels. The work in [ZTSC07] integrates spec-
trum sensing and spectrum access by adopting a decision-theoretic approach that casts the
design of the spectrum access in the framework of partially observable Markov decision
process [Alt99]. This formulation leads to optimal policies for spectrum sensing and ac-
cess, and a systematic tradeoff between performance and complexity. Specifically, the traf-
fic statistics of the primary system follow a discrete-time Markov process with 2K states,
being K the number of channels, each state of the type (S1(t), . . . , SK(t)) ∈ BK . The hard-
ware and energy limitation on the spectrum sensing capabilities of the secondary users is
translated to a maximum number of K1 sensing and access K2 channels. The protocol is
designed under this constraints, and the spectrum and access decisions are made to max-
imize the throughput of the secondary user while limiting the interference to the primary
system. The authors in [GTS08] further discuss the spectrum access problem in cognitive
radio networks with partial and fully-observable radio resources (K1 = K2 = K). The
opportunistic spectrum access via periodic channel sensing is discussed in [ZGTS08].

2.4.4 Resource Allocation

The secondary transmitter addresses the communication problem of resource allocation
based on the sensing information on the primary users. A resource is understood as any
dimension in which a secondary signal can be confined for communication. The problem
of power allocation in cognitive radio networks has been addressed in the literature in
the derivation of the capacity of spectrum sharing channels, including the additive white
Gaussian noise channel [Gas07] and fading channels [KLN+09, MA09]. A major amount
of work on power allocation for OFDM spectrum sharing channels has been reported in
the last years [BHB08, BBKB11, SB12a, CWC11, BHB11, HBHB09, KGLZ10, CT12, EAQS12,
KBB12, WGZ13].

The capacity of the secondary user is maximized in [BHB08] when the average power
interference introduced to the primary user remains within a tolerable range. The ca-
pacity of the secondary user is also maximized in the context of relay networks with
joint relay and power allocation [BBKB11, SB12a], joint subcarrier and power allocation
[CWC11]. Perfect CSI of the secondary-to-primary channel and perfect knowledge on
the spectral occupancy of the primary signal is a general assumption in [BHB08, BBKB11,
SB12a, CWC11]. This knowledge, which requires feedback from and to the primary users,
is not a practical assumption and, as a consequence, the power interference constraint
needs to be redefined. The authors in [BHB08] extend their work to an statistical formu-
lation of the interference constraint in the sense that the secondary user guarantees that
the probability of the interference remaining within a tolerable range is lower-bounded
[BHB11].
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In parallel, a rate loss formulation of the interference has been proposed on the capacity
of the secondary user due to the presence of the primary user in probability [HBHB09].
In parallel, a rate loss formulation of the interference has been also proposed but as a
constraint on the primary user capacity due to the secondary transmissions [KGLZ10].

Finally, it is worth mentioning a few works that have addressed the difficult prob-
lem of establishing the fundamental capacity limits of cognitive radio networks. Among
them, [TFL11] derives the network capacity regions by finding the optimal spectrum man-
agement policy, in [RTD12] the inner and outer bounds for the Gaussian cognitive inter-
ference channel are invetigared, the capacity of overlay cognitive radio with partial cog-
nitition is derived in [CSVH12], the capacity of the interference channel with causal and
noncausal feedback at the cognitive transmitted is addressed in [MAA12], the capacity lim-
its of multiuser multiantenna cognitive networks has been established by [LN12], whereas
the capacity of the Z interference channel in the overlay cognitive radio paradigm has been
addressed in [LMGSS13], where the cognitive transmitter has information on both the sec-
ondary and primary messages, and the interference is caused by the primary transmitted
to the secondary transmitter.

2.4.5 Imperfect Sensing and Channel State Information

All the aforementioned works establish the fundamental limits of cognitive radio net-
works, and show that both spectrum sensing and CSI are crucial factors in the prolifer-
ation of this technology. For instance, the works [BHB08, BBKB11, SB12a, CWC11, BHB11,
HBHB09, KGLZ10] assume perfect spectrum sensing, i.e., perfect knowledge on the pres-
ence of the primary users. However, imperfect spectrum sensing has severe consequences
on the performance of the secondary link, as reported in [CT12] and [KBB12]. In this sense,
joint spectrum sensing and power control for secondary communication has been investi-
gated in the literature, as e.g., in [AS12], [Wan11] and [WT11].

On the other hand, a control feedback channel is also proposed for DSA in cognitive
radio networks, e.g., as reported in the works by [EGR11] and [HLD11].

Finally, in order to diminish the dependence on instantaneous CSI of the primary sys-
tem, several works in the literature propose dynamic access strategies that exhibit robust-
ness in front of CSI. As an example, the work in [LZY11] proposes a dynamic access
scheme based on only quality information of the primary signal. Similarly, several degrees
of CSI of the secondary-to-primary channel are considered in the problem of multiantenna
transceiver optimization [LCHK11] and multiantenna selection [HSTM11]. In the same
way, the works [AKSL11] and [BFT11] assume imperfect CSI in the problems of spectrum
management and power control, respectively.
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2.4.6 Spectral Precoding and Beamforming

A last approach to the DSA in cognitive radio networks involves the concepts of spectral
precoding and beamforming applied to the secondary signal.

In the context of OFDM, the interference caused to the primary system by the out-of-
band interference is a bottleneck issue. With frequency notching, the approach presented
in [ZLS13] improves the bandwidth efficiency and suprresses the overall radiation with-
out sacrificing BER performance of the secondary users. Similarly, the adaptation of the
precoded cycling prefix in OFDM-based communications is investigated in [WLL11].

The extension to MIMO-OFDM is considered in [PBD11b] and [SSR13], where orthog-
onal space-time coding (OSTC) in the linear precoding and beamforming versions is con-
sidered, respectively.

Finally, in the more challenging context of single antenna cognitive radio networks
where space coding is not applicable (although easily extendable), time-domain waveform
adaptation and more sophisticated frequency-domain adaptation are required. On the one
hand, in [TLL11], opportunistic waveform adaptation is proposed by taking advantage
of the sparse properties of wideband signals. On the other hand, [CKCD13] exploits the
Vandermonde subspace for frequency multiplexing by making use of a precoder based
on the Vandermonde structure. By doing so, the proposed technique is able to provide
secondary communication while keeping the primary system free of interference.
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Chapter3
Spectral Analysis in Nonuniform Sampling

3.1 Introduction

Given the importance of second-order statistics in signal processing, this Chapter focusses
on the analysis and estimation of the second-order parameters, namely the correlation, the
spectrum and the signal-to-noise ratio (SNR) of the primary signal in Gaussian noise from
nonuniform sampling.

3.1.1 Spectral Analysis based on Correlation-Matching

Illustrated in Figure 3.1, spectral analysis is the signal processing problem that consists of
recovering the frequency content in a sampled signal, and is a relevant problem that occurs
in many applications ranging from detecting economic cycles to radar imaging. The classi-
cal approaches to spectral analysis are based on uniformly sampled observations, e.g., the
periodogram [Kay98b], not assuming any spectral structure of the signal. Another class
of spectral estimators which are based on adaptive filter-bank methods, e.g., the Capon
[Cap69], show outstanding properties and are able to provide better spectral resolution
that the periodogram in small number of uniformly sampled observations.

Scanning the whole spectrum is a challenging task due to the power consumption in-
volved in the analog-to-digital conversion (AGC). Adopted alternatives include sequen-

S +W −→ Nonuniform Sampling −→ X −→ Spectral Analysis −→ φ̂s(ω)

Figure 3.1: Spectrum analysis in nonuniform sampling problem.
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tial sensing and filter bank techniques. However, the former incurs significant delay in the
sensing process, whereas the latter burdens implementation efficiency. To overcome the
aforementioned limitations, nonuniform sampling has gained recent attention as a ma-
chinery to exploit the sparsity in the spectrum of the primary signal [Lan67]. In the recent
years, this concept has derived to parallel works such as compressed sensing [CW08], non-
uniform sampling [SLH09], multicoset sampling [ME09, ME10], kernel-induced sampling
[TIM10], and co-prime sampling [VP11], among others.

In this thesis, the problem of spectral analysis based on the periodogram and Capon
methods from nonuniformly sampled noisy observations of signals with sparse spectrum
is addressed. The nonuniform sampling is formulated as a linear projection matrix which
may adopt any structure and, hence, covers many of the aforementioned sampling strate-
gies. Preliminary results of spectral analysis over nonuniform samples show that sampling
below the Nyquist rate exhibits the phenomenon of noise enhancement/folding. To over-
come this problem, a rank-1 matrix-level correlation-matching based on nonuniform sam-
pling is presented. The potentials of correlation-matching applied to spectral analysis have
been recently addressed by [PNLRS09]. Furthermore, correlation-matching behaves as an
approximation to maximum likelihood at the low SNR regime with asymptotically large
observations [Por08]. The derived correlation-matching estimate permits to formulate the
nonuniform periodogram and nonuniform Capon estimates as a particular case when the
correlation model is the outer product of the linear filter applied for spectral analysis. It is
shown that the nonuniform correlation-matching implements a denoising process to fight
against the noise enhancement phenomenon inherent in nonuniform sampling.

3.1.2 Noise Enhancement in Bernoulli Nonuniform Sampling

In order to further comprehend the noise enhancement phenomenon observed in the non-
uniform correlation-matching problem, a theoretical sound analysis is established by me-
ans of a simple Bernoulli sampling. The Bernoulli distribution, initially advocated to solve
reconstruction problems in the 1980s [KM82], has been investigated in the literature for se-
quential sampling [MSW10] and sparse signal reconstructions [DT10]. The advantages of
Bernoulli nonuniform sampling are that it satisfies the restricted isometry property (RIP)
with overwhelming probability [CT06] on the one hand, and that is exhibits good tradeoff
properties between complexity and performance on the other hand.

More specifically, the statistical treatment of sampling shows that nonuniformly sam-
pling below the Nyquist rate produces in average the effects of noise enhancement and
power loss on the second-order statistics of the signal (both correlation and spectrum),
even in noise free scenarios. The main focus is to obtain an equivalence in terms of SNR to
model the noise enhancement and power loss effects. The Bernoulli nonuniform sampling
is further extended to matrix formulation. This allows the derivation of the noise enhance-
ment and SNR equivalences in matrix forms, which are important parameters involved in
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the signal detection problems addressed in the following Chapters.
As related work, in [DLTB12], the authors show that in compressed sensing systems

that aim to reduce the number of measurements are sensitive to signal noise, exhibiting
a 3 dB SNR loss per octave of subsampling, which parallels the classic noise folding phe-
nomenon.

3.1.3 Chapter Organization

This Chapter is structured as follows. The nonuniform correlation-matching problem and
the derivation of the nonuniform periodogram and Capon estimates is addressed in Sec-
tion 3.2. The noise enhancement and SNR equivalence in Bernoulli nonuniform sampling
are established in Section 3.3. Numerical results are provided in Section 3.4 in order to
assess the behavior of the noise enhancement effect from both the nonuniform correlation-
matching and the Bernoulli nonuniform sampling views, as well as to illustrate the perfor-
mance of the proposed nonuniform Capon and periodogram spectrum estimates. Finally,
Section 3.5 outlines the main conclusions obtained.

3.2 Nonuniform Correlation-Matching

3.2.1 Problem Statement

The nonuniform correlation-matching problem is considered over the second-order statis-
tics of a signal s(t) with sparse spectrum, which may represent, but not limited to, a multi-
band signal consisting of the superposition of the primary services in a cognitive radio
network. The sensed signal is of the form

x(t) = s(t) + w(t), (3.1)

where w(t) is the double-sided complex zero-mean additive white Gaussian noise with
spectral density N0/2. The N -size uniformly sampled signal and noise processes are de-
fined as sm

.
= [s(tm1 ), . . . , s(tmN )]T and wm

.
= [w(tm1 ), . . . , w(tmN )]T , respectively, where the

intervals satisfy piecewise stacking, i.e., tmn = (mN + n)/fs, and fs is the Nyquist rate. Let
φs(ω) be the spectrum of s(t). In this setting, the sensing is performed over the frequency
range ω ∈ [0, B). As a result, the samples consists of a data record of size N ×M given
by S

.
= (s1, . . . , sM ), with W similarly defined. As the spectral analysis bandwidth in-

creases B →∞, an impractical large number of samples would be required. Nonetheless,
the motivation of nonuniform sampling arises when the frequency contribution of φs(ω)

is sparse. In such a case, the average sampling density may be decreased much bellow
the Nyquist rate. In the sequel, it is stated that s(t) has a sparse spectrum if the support of
φs(ω) is small compared to the sensed bandwidth, i.e., ifBs � B, whereBs is the Lebesgue
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measure of the frequency set {ω ∈ [0, B) : φs(ω) > 0}. In other words, the spectral anal-
ysis problem of the signal s(t) from the a lower dimensional discrete-time sampled signal
is investigated. The nonuniformly sampled signal is defined as xm

.
= [x(tm1 ), . . . , x(tmK)]T ,

with K < N and the sampling intervals satisfying nonuniform sampling and piece-wise
stacking. The nonuniform sampling process may be cast as a linear projection of xm onto
a lower dimensional space through K ×N projection matrices Ψm, i.e.,

xm = Ψm(sm + wm), (3.2)

for 1 ≤ m ≤M . In what follows, Ψm is a pinning matrix that randomly selects K samples
of sm + wm, and it is given by randomly selecting K rows of the identity matrix IN . In
average, the sampling rates of xm and sm + wm are related through the sampling density
defined as

κ
.
=
K

N
. (3.3)

The occupancy, an important parameter used throughout this thesis, is defined as

κ0
.
=
Bs
B
. (3.4)

As the spectrum information of s(t) is contained in the second-order statistics, a rank-1
correlation-matching approach based on nonuniform sampling below the Nyquist rate is
proposed, and shown that it allows to formulate the nonuniform periodogram and Capon
estimates as particular cases.

3.2.2 Correlation-Matching Approach

The reconstruction of the second-order statistics of s(t)+w(t) from the nonuniformly sam-
pled observations X

.
= (x1, . . . ,xM ) is discussed. Let Θ denote the set of parameters that

uniquely parametrize the spectrum of the received signal. The correlation-matching ap-
proach is based on a second-order fitting between the observations and the correlation
model R(Θ). In many practical situations, the prior knowledge on the noise and signal
statistics enables signal processing algorithms for the estimation problem. Moreover, be-
cause nonuniform sampling projects the received observations onto a lower dimensional
space, a phenomenon of noise enhancement is observed at the output of the reconstructed
signal. With the purpose of diminishing this effect, the correlation modelR(Θ) is

R[P (ω), σ2] = P (ω)R0(ω) + σ2IN , (3.5)

where
R0(ω) = v(ω)vH(ω) (3.6)
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denotes the rank-1 correlation matrix of the spectral template v(ω), normalized with the
condition tr(R0) = 1, and P (ω) and σ2 are the signal and noise levels at the sensed fre-
quency, respectively. The spectral template has the role of bandpass filter in spectral analy-
sis. The notation is simplified to P and R0 as the frequency argument is clear from context.
The nominal frequency-continuous SNR is further defined as

SNR(ω)
.
=
P (ω)

σ2
. (3.7)

As for spectral analysis it is clear that rank(R0) = 1, in what follows a second-order fit-
ting of the nonuniformly sampled observations to the correlation model (3.5) is proposed.
That is, consider the correlation modelR(P, σ2)

.
= PR0+σ2IN . The signal and noise power

levels that minimize the nonuniform correlation-matching (3.10) with nonuniformly sam-
pled observations X are given by the solution to the optimization problem

(P̂ , σ̂2) = arg min
P,σ2
M
[
X,R(P, σ2)

]
, (3.8)

where
M
[
X,R(P, σ2)

]
=

1

M

∑
m

‖xmxHm −ΨmR(P, σ2)ΨH
m‖2. (3.9)

The solution to the former optimization problem is derived in Appendix A.1, where it is
shown that the correlation-matching estimates of the signal power and noise variance are
given by

P̂ =
tr
[
B
(
R0 − 1

K tr(R0)IN
)]+

tr(R2
0)− 1

K tr2(R0)
, (3.10)

and

σ̂2 =
tr
[
B
(

1
K tr(R2

0)IN − 1
K tr(R0)R0

)]+

tr(R2
0)− 1

K tr2(R0)
, (3.11)

respectively, where the matrices involved read

B
.
=

1

M

M∑
m=1

ΨH
mxmxHmΨm, (3.12)

R0
.
=

1

M

M∑
m=1

ΨmR0Ψ
H
m, (3.13)

and

R2
0
.
=

1

M

M∑
m=1

(
ΨmR0Ψ

H
m

)2
, (3.14)

It is worth noting that B can be interpreted as the reconstructed sample covariance matrix,
whereas R0 is the average nonuniformly sampled version of the normalized signal corre-
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lation matrix, and R2
0 is the average second-order nonuniformly sampled version of the

normalized signal correlation matrix.
The spectral analysis is focused on the signal of interest, i.e., on s(t). Hence, the expres-

sion of the noise level estimate is ignored in the sequel, because it is implicit as a denoising
process in (3.10). From (3.10), it is interpreted that the spectrum estimation is the result of
the projection of the reconstructed second-order statistics of the observations, i.e., B, onto
the diagonal off-loaded correlation matrix of the spectral template, which is given by

RD = R0 −
1

K
tr(R0)IN . (3.15)

On the one hand, the first part of RD is the classical spectrum estimation filtering, because
tr(BR0) = v(ω)BvH(ω). On the other hand, the second part of RD is in charge of sub-
tracting the part of the reconstructed second-order statistics of the observations that are
considered as white noise according to the signal model (3.2). Hence, the estimate (3.10)
performs denoising. The denominator of (3.10) is a normalizing term that depends on the
nonuniformly sampled squared norm of the spectral template, i.e., it can be shown that
tr(R2

0) = ‖v2(ω)‖2κ, and tr(R0) = ‖ v(ω)‖2κ, with

‖x‖2κ
.
=

1

M

M∑
m=1

‖Ψmx‖2. (3.16)

For M sufficiently large, it follows ‖v2(ω)‖2κ → κ2‖v(ω)‖4 and ‖v(ω)‖2κ → κ‖v(ω)‖2.
Therefore, tr(R2

0) − 1
K tr2(R0) is asymptotically equivalent to

(
1− 1

K

)
κ2‖v(ω)‖2, from

which it is deduced that the positivity of the denominator of (3.10) is guaranteed forK > 1.
Next, the particularization of (3.10) to the problem of spectral analysis of signals with

sparse spectrum based on the periodogram and Capon techniques is discussed. In the
sequel, the N -points normalized frequency vector is defined as

e(ω)
.
=

1√
N

[1, ejω, . . . , ej(N−1)ω]H . (3.17)

3.2.3 Nonuniform Periodogram

The nonuniform periodogram has been addressed in [SLH09], and the following can be
regarded as an extension for general projection matrices and noisy observations. The peri-
odogram of φs(ω) based on the nonuniformly sampled observations X is given by letting
R0

.
= e(ω)eH(ω) in (3.10), i.e., the nonuniform periodogram is given by

φ̂P
s (ω) =

N2

K(K − 1)

[
eH(ω)Be(ω)− 1

N
tr(B)

]+

, (3.18)
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where B is the reconstructed sample covariance matrix given in (3.12) It is noticed that
P in R(P, σ2) reflects the periodogram of s(t) as a result of the denoising process, i.e.,
P̂ = φ̂P

s (ω). Noting that in this particular case tr(R0) = K/N and tr(R2
0) = K2/N2,

the numerator and denominator of (3.10) particularize to tr
[
Be(ω)eH(ω)− 1

N IN
]
, and

K2/N2 −K/N2, respectively.
As it can be appreciated, B acts as the reconstructed correlation matrix of the obser-

vations. Hence, (3.18) is a modified periodogram which subtracts the white part of the
observations (denoising) and has an scaling factor that depends on the sampling density.

For sake of comparison, the periodogram when omitting the denoising term in (3.5),
i.e., with R(P ) = PR0, is also included. Following the same procedure, the derivative
with respect to the signal level P gives the equation tr(BR0) − P tr(R2

0) = 0, which leads
to the noisy correlation-matching estimate

P̃ =
tr(BR0)

tr(R2
0)

, (3.19)

For κ = 1, (3.19) reduces to the correlation-matching estimate of uniformly sampled data.
The noisy periodogram is obtained as a particularization of (3.19) when R0 = e(ω)eH(ω).
Noting that tr(R2

0) = K2/N2 = κ2, it rapidly follows that the nonuniform noisy periodogram
reads

φ̂NP
s (ω) =

1

κ2
eH(ω)Be(ω). (3.20)

For uniform sampling, i.e., κ = 1, the classical uniform periodogram is obtained [Kay98b].

3.2.4 Nonuniform Capon

The Capon estimate generalizes the periodogram concept by designing the frequency tem-
plate v(ω) under the minimum variance or minimum leakage criterion [Cap69]. Consider
(3.10) with R0

.
= v(ω)vH(ω), with the additional constraint vH(ω)e(ω) = 1. Given that the

denominator of (3.10) depends on the template v(ω), the asymptotic behavior of the Capon
template is considered. As N → ∞, the Capon template has infinite degrees of freedom,
and ‖v(ω)‖2 is a constant value for all X. Therefore, the Capon template is designed to
minimize the first part of the numerator of (3.10), i.e.,

v̂(ω) = arg min
v(ω)

tr
[
Bv(ω)vH(ω)

]
subject to vH(ω)e(ω) = 1. (3.21)

The solution of the former constrained optimization problem is obtained by taking the
derivative of the Lagrangian tr

[
Bv(ω)vH(ω)

]
+ ε

[
1− vH(ω)e(ω)

]
and setting it to zero.

This leads to

v̂(ω) =
B†e(ω)

eH(ω)B†e(ω)
, (3.22)
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where B† denotes the Moore-Penrose pseudo-inverse of B. It is further noted that, because
‖v(ω)‖2 = 1 asymptotically as N → ∞, (3.23) is a normalized Capon estimate. Therefore,
when M is sufficiently large, if follows that tr(R0) = K

N ‖v(ω)‖2 and tr(R2
0) = K2

N2 ‖v(ω)‖4,
or, equivalently, tr(R0) = K/N and tr(R2

0) = K2/N2. Finally, plugging v̂(ω) into (3.10)
and after some mathematical manipulations, the nonuniform Capon is given by

φ̂C
s (ω) =

N2

K(K − 1)

[
1

eH(ω)B†e(ω)
− 1

N
tr(B)

]+

, (3.23)

where B is the reconstructed sample covariance matrix (3.12), and † denotes the Moore-
Penrose pseudoinverse.

Comparing (3.23) to (3.18), it is observed that the same scaling and denoising process
are applied to the spectral estimates. It is worth highlighting that the higher the sampling
rate reduction, the sparser is the reconstructed correlation matrix B and therefore a larger
scaling is required to preserve the power level. Similarly to the periodogram, the noisy
Capon estimate is derived for comparison reasons from the noisy correlation-matching es-
timate (3.19). Letting R0 = v(ω)vH(ω), the Capon template is designed to minimize the
numerator of (3.19) with the additional constraint vH(ω)e(ω) = 1. This leads to the Capon
filter (3.22). Noting, again, the asymptotic property tr(R2

0) = κ2, from (3.19) and (3.22) it
follows that the nonuniform noisy Capon is given by

φ̂NC
s (ω) =

1

κ2

1

eH(ω)B†e(ω)
, (3.24)

which for κ = 1 reduces to the classical uniform Capon [Cap69].

3.3 Bernoulli Nonuniform Sampling

3.3.1 Noise Enhancement in Noiseless Observations

In order to derive a theoretical basis for the noise enhancement phenomenon, an analogy
between the Gaussian-Bernoulli distribution and nonuniform sampling is established as
follows. Let s be a zero-mean Gaussian process that represents the uniform Nyquist sam-
pled signal. Instead of acquiring all the samples of s the problem of sensing is proposed
from a smaller number of samples represented by the Gaussian-Bernoulli process, i.e.,

x = ψ · s, (3.25)

where ψ has a Bernoulli distribution independent from s with parameter κ, leading to
P(ψ = 1) = κ and P(ψ = 0) = 1 − κ. Therefore, κ is defined as the sampling density and
denotes the amount of samples of s that will be represented in x. Because E(ψ) = κ, it
rapidly follows that in average, the equivalent sampling rate of x is κ times the Nyquist
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Figure 3.2: Example of Bernoulli nonuniform sampling.

rate. An illustrative example of (3.25) is given in Figure 3.2.
The spectrum recovery problem from nonuniform sampling consists of estimating the

autocorrelation or the spectrum of s from the observation process x with complete or par-
tial information on the Bernoulli sampling pattern ψ. In this Section, the problem is ad-
dressed in average with statistical knowledge on s and ψ. Given the statistical indepen-
dence between the signal s and the sampling pattern ψ, it follows that the autocorrelation
of x is given by the product of autocorrelations, i.e., rx[m]

.
= E

[
xnx

∗
n−m

]
= rs[m] · rψ[m],

where rs[m]
.
= E

(
sns
∗
n−m

)
and rψ[m]

.
= E (ψnψn−m). As ψ has Bernoulli distribution, its

autocorrelation function is given by the expression rψ[m] = κδ[m] + κ2
∑

l 6=m δ[m − l]. A
more convenient way to write rψ[m] is

rψ[m] = κ(1− κ)δ[m] + κ2
∞∑

l=−∞
δ[m− l]. (3.26)

The advantage of (3.26) is the consistency with Nyquist rate uniform sampling when set-
ting the Bernoulli parameter to κ = 1. In such a case, rψ[m] =

∑+∞
l=−∞ δ[m − l] becomes

a uniformly-spaced impulse train and, hence, rx[m] = rs[m]. In the frequency-domain,
the spectrum of x is related to that of ψ and s by the continuous-frequency convolution
φx(ω) = 1

2πφs(ω) ∗ φψ(ω). After some mathematical operations, it follows that the spec-
trum of the Gaussian-Bernoulli process x, φx(ω), is given by

φx(ω) = κ(1− κ)P + κ2
∞∑

k=−∞
φs (ω − 2πk) , (3.27)
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where P is the power of s. From the former equation it is deduced that nonuniform sam-
pling suffers from self-interference (first summand) and attenuated periodic replicas (sec-
ond summand), even for noiseless observations. Further, noting the periodicity of the Fourier
transform, without loss of generality, the spectrum of x reads

φx(ω) = κ(1− κ)P︸ ︷︷ ︸
self-interference

+κ2φs(ω).︸ ︷︷ ︸
signal

(3.28)

A metric that evaluates the conditions under which the spectrum recovery problem is
conceived is the signal-to-interference-plus-noise ratio (SINR). From (3.28), it is deduced
that in the noise free scenario,

SINR(κ) =
κ

1− κ =
∞∑
n=1

κn. (3.29)

Since the sampling density is bounded by 0 ≤ κ ≤ 1, the SINR (3.29) is bounded by
0 ≤ SINR(κ) < ∞ accordingly. As expected, the maximum SINR is obtained when κ = 1,
whereas the worst scenario follows for κ = 0, i.e., no samples are taken. It is worth noting
that the SINR is not linearly related to κ in general, but only when the sampling density is
small the SINR (3.29) approximates to SINR(k) ≈ κ as κ → 0., i.e., the conditions vary in
proportion to the sampling density.

3.3.2 SNR Equivalence in Noisy Observations

In a realistic scenario, the sampled signal is contaminated by additive Gaussian noise.
Because the nonuniform sampling of the noise is also modeled as a Gaussian-Bernoulli
process, it follows that the noisy observations are drawn from a Gaussian-Bernoulli process
given by

x = ψ · (s+ w), (3.30)

where the noise process is distributed as w ∼ N (0, σ2), being σ2 its variance. As a con-
sequence, the autocorrelation function of the observations is given by the sum of terms
rx[m] = rs[m] · rψ[m] + rw[m] · rψ[m]. Analogous to the developments in Section 3.3.1, from
(3.28) it follows that

φx(ω) = κ(1− κ)P︸ ︷︷ ︸
self-interference

+ κσ2︸︷︷︸
noise

+κ2φs(ω)︸ ︷︷ ︸
signal

. (3.31)

It is appreciated that the noise contribution is a white spectrum of variance σ2 scaled by
the sampling density κ. This is a consequence of φw(ω) being white. The SNR conditions
before nonuniform sampling are defined by the metric SNR .

= P/σ2. As for the noiseless
scenario, in this setting the SINR is a convenient metric to evaluate the conditions of the
recovery problem. According to (3.31), the SINR after nonuniform sampling is given, after
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some mathematical operations, by

SINR(κ) =
κ

1− κ+ 1/SNR
. (3.32)

Similarly, the fact that the sampling density satisfies 0 ≤ κ ≤ 1 allows to establish that the
SINR (3.32) for a fixed SNR is bounded above by the SNR itself, i.e., it satisfies 0 ≤ SINR ≤
SNR. The expression (3.32) allows the following interpretations in the asymptotic cases of
low SNR regime (SNR → 0) and high SNR regime (SNR → ∞). On the one hand, in the
low SNR regime, the SINR behaves linearly with κ and SNR, as (3.32) may be re-written
as

SINR(κ) ≈ κ · SNR as SNR→ 0. (3.33)

On the other hand, the SINR (3.32) must show consistency with its noiseless counterpart
(3.29) in the high SNR regime. Therefore, the SINR for a fixed κ is also bounded above by

SINR(κ) ≤ κ

1− κ as SNR→∞, (3.34)

which states that even in the high SNR regime, the effect of noise enhancement introduced
by nonuniform sampling yields the SINR (3.29).

In general, as nonuniform sampling incurs self-interference, relating any variation of
κ to an equivalent variation on the SNR becomes a useful metric. More precisely, let
SINR(κ1, SNR) and SINR(κ2, SNR) be two SINR conditions with sampling densities κ1

and κ2, respectively, and κ1 ≥ κ2, at fixed SNR conditions. By a simple inspection of the
definition of (3.32), it follows that the equality SINR(κ1, SNRe) = SINR(κ2, SNR) occurs
when

SNRe =
κ2SNR

κ1 + (κ1 − κ2)SNR
. (3.35)

From (3.35), it is observed that decreasing the sampling density from κ1 to κ2 is equivalent
to the original sampling density κ1 with a lower SNR given by (3.35), as SNRe ≤ SNR.
In the low SNR regime, this equivalence is linearly proportional to the ratio of densities
κ2/κ1, because

SNRe ≈
κ2

κ1
SNR as SNR→ 0. (3.36)

For instance, reducing the sampling density by a factor of 2 (i.e., κ1 = 2κ2) incurs an
equivalent penalty of 3 dB in SNR. On the other hand, in the high SNR regime,

SNRe ≈
κ2

κ1 − κ2
as SNR→∞, (3.37)

which behaves independent on the original SNR as expected.
By setting κ1 = 1 and κ2 = κ, the SNR penalty incurred by any sampling density when

compared to uniform Nyquist sampling is reduced to SNRe = SINR(κ, SNR), i.e., the SNR
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equivalence is given by

SNRe =
κ

1− κ+ 1/SNR
. (3.38)

In other words, the SINR (3.32) is the equivalent SNR decrease incurred by Bernoulli non-
uniform sampling with respect to uniform sampling. Finally, as the performance of signal
processing algorithms is mostly evaluated across SNR, due to the SNR equivalence (3.35),
the effect of nonuniform sampling is translated to an SNR-dependent shift of the perfor-
mance curves. For that purpose, the SNR gap metric is introduced as the ratio between
uniform sampling SNR and nonuniform sampling SNR as

Γ(κ)
.
=

SNR
SINR(κ)

=
(1− κ)SNR + 1

κ
. (3.39)

From (3.39), the following SNR asymptotic interpretations apply. In the low SNR regime,
the SNR gap becomes independent on the SNR and saturates at

Γ(κ) ≈ 1

κ
as SNR→ 0. (3.40)

In the high SNR regime, the SNR gap introduced by nonuniform sampling is directly pro-
portional to SNR because

Γ(κ) ≈ 1− κ
κ

SNR as SNR→∞. (3.41)

This means that in logarithmic scale, all the SNR gaps behave with slope equal to 1 and
with a shift with respect to the uniform sampling of

SNRshift = 10 log10[(1− κ)/κ] dB. (3.42)

3.3.3 Finite-Size Vector Signal Processing

In a practical signal processing problem, such as estimation or detection, a finite-size
treatment of the observations is required. For that purpose, in the sequel, the Gaussian-
Bernoulli process formulation is presented in matrix notation. Let xn be the n-th ob-
servation of the Gaussian-Bernoulli process. The following discrete-time vectors, s

.
=

(s0, . . . , sN−1)T and ψ .
= (ψ0, . . . , ψN−1)T , are defined. As a consequence, the Gaussian-

Bernoulli process x
.
= (x0, . . . , xN−1)T is related to s through

x = Ψs, (3.43)

where Ψ
.
= diag(ψ). Clearly, (3.43) is of the from of a nonuniform sampling problem,

where the sampling matrix Ψ is diagonal. The matrix notation is useful because temporal
correlation rises in the form of cross-correlation between samples, as the Gaussian part of
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the Gaussian-Bernoulli process, i.e., s, is distributed according to N (0,Rs), where Rs is
the correlation matrix of s. It is a well-known statistical signal processing result that any
correlation matrix has, asymptotically asN →∞, the following eigenvalue decomposition
(EVD) [Kay98a]

Rs ' FΛsF
H , (3.44)

where the equivalence is understood in the weak norm sense. In (3.44), the diagonal matrix
Λs

.
= diag[φs(ω0), . . . , φs(ωN−1)] contains the power spectral density (PSD) of s at the ωn =

2πn/N frequencies, and F = (f0, . . . , fN−1) is the unitary Fourier matrix that contains as
columns (fn)m = 1√

2
emωn with 0 ≤ m,n ≤ N − 1. From (3.43), the correlation matrix of

the Gaussian-Bernoulli observations x depends on the realizations of the sampling patters
Ψ. As in Section 3.3.1, the problem is addressed in average with statistical knowledge on s

and Ψ. Therefore, the correlation matrix of the Gaussian-Bernoulli process must obey the
following decomposition according to (3.44)

Rx ' EΨ

(
ΨFΛsF

HΨ
)
' FΛxF

H . (3.45)

The expectation on Ψ over ΨFΛsF
HΨ requires an element-wise evaluation. Noting that

the columns of the Fourier matrix F are mutually orthonormal, i.e., fHi fj = δij , it is con-
venient to express the EVD of Rs as Rs '

∑N−1
n=0 λsnfnf

H
n , where λsn

.
= [Λs]nn. Similarly,

Rx '
∑N−1

n=0 λxnfnf
H
n , where the eigenvalues λxn are defined analogously to λsn. From

(3.45), the (i, j)-th element of Rx is therefore given by (Rx)ij = EΨ

(∑N−1
n=0 λsnfinf

∗
jnΨiΨj

)
.

Similarly, (Rs)ij =
∑N−1

n=0 λsnfinf
∗
jn. From this point, as the elements of the sampling pat-

tern are drawn from a Bernoulli distribution with parameter κ, it follows that the elements
of the correlation matrix of the Gaussian-Bernoulli process x and the elements of the cor-
relation matrix of the signal are related through

(Rx)ij = (Rs)ij ·
{

κ i = j

κ2 i 6= j
. (3.46)

As a stationary process, the diagonal elements are all equal to the arithmetic mean of the
eigenvalues, or, equivalently, it is true that (Rs)ii = 1

N tr(Λs) = P . As a consequence, ma-
trices Rx and Rs can be related through the following equation

Rx ' κ2Rs + κ(1− κ)P I, (3.47)

where I is the identity matrix. Finally, noting that Rs ' FΛsF
H , tr(Rs) = tr(Λs) and

I = FFH , the Fourier matrices F and FH are taken as common left and right factors,
respectively, in (3.47). Equating to FΛxF

H , it follows that, necessarily, the eigenvalues of
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Rx and Rs are related, asymptotically as N →∞, by

Λx = κ2Λs + κ(1− κ)P I. (3.48)

Equations (3.47) and (3.48) are nothing but the extension of (3.28) to matrix formulation.
Both (3.47) and (3.48) share the property that the part of the useful signal has been attenu-
ated by a factor of the squared value of the sampling density, and a noise contribution has
been introduced in proportion to the variance of the sampled signal. This noise enhance-
ment has the following interpretations. From (3.47), it is seen that the off-diagonal entries
of original correlation matrix Rs have been diminished by a factor of κ2, whereas the ele-
ments in the diagonal only suffer from a factor of κ, as [Rx]nn = κ2[Rs]nn+κ(1−κ)P = κP .
Therefore, the effect of nonuniform sampling is translated to an attenuation of the non-
zero lags correlation coefficients. The interpretations on (3.48) are analogous to (3.28) as
the eigenvalues of the correlation matrices contain the PSD of the processes.

The matrix notation introduced in this Section and the noise enhancement effect on the
correlation matrix (3.47) are used in the sequel with the aim of establishing an SNR equiv-
alence formulation in signal detection. In particular, throughout the following Chapters, it
is shown that the SNR matrix SNR .

= R−1
w Rs is the main statistical information involved

in second-order signal detection. Therefore, the characterization of the SNR equivalence in
matrix form is of interest. By considering the estimator-correlator [Kay98a] as reference, it
follows that the detection of s in (3.43) with additive white noise with variance σ2 involves
the test

Tκ(x) = xHSNRκ(I + SNRκ)−1x ≥ τ, (3.49)

where τ is the detection threshold, and SNRκ is the SNR matrix, which, under the AWGN
model is given as

SNRκ
.
=

Rx

σ2
=
κRs + (1− κ)P I

σ2
, (3.50)

where the equivalence (3.47) has been employed. A simple comparison to the estimator-
correlator in uniform sampling (i.e., T1(x) = xHSNR(I + SNR)−1x) where SNR = 1

σ2 Rs

derives to the following SNR matrix equivalence:

SNRκ = κSNR + (1− κ)SNRI. (3.51)

Interestingly, the SNR equivalence in signal detection for white noise is analogous to the
noise enhancement produced in (3.47). In other words, it is seen that the SNR matrix
employed in the estimator-correlator in nonuniform sampling is equal to the SNR matrix
in the estimator-correlator in uniform sampling with an equivalent SNR matrix given by
(3.51), i.e., a linear combination of the true second-order conditions SNR and a contribu-
tion proportional to the average SNR with white statistics. When the sampling density
is arbitrarily small, SNRκ ≈ SNRI and the estimator-correlator reduces (neglecting data
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Figure 3.3: Spectrum of a primary signal with occupancy of 1/8 at average SNR of 15 dB and
sampling density of 1/4.

independent terms) to Tκ(x) ≈ xHx, i.e., the energy detector as the time correlation in Rs

is not further exploited. Finally, it is noted that tr(SNRκ) = tr(SNR) for all κ. This me-
ans that the comparison developed in this Section is fair in terms of energy (e.g., the total
amount of samples is fixed to N ) so that the penalties incurred by nonuniform sampling
arise from the nature of the sampling and not by the fact of having a smaller density of
samples.

3.4 Numerical Results

In this Section, numerical results are provided to show the existence of the noise enhance-
ment phenomenon in nonuniform sampling, to illustrate the performance of the proposed
nonuniform periodogram and Capon spectrum estimates, as well as to assess the SNR
equivalences established in the Bernoulli nonuniform sampling framework. In the sequel,
s(t) is modeled as the equivalent baseband primary signal based on the terrestrial digital
video broadcasting (DVB-T) standard [ETS04], and w(t) is modeled as a zero-mean Gaus-
sian noise.

3.4.1 Nonuniform Periodogram and Nonuniform Capon

The performance of the spectral analysis methods presented in Section 3.2, i.e., (3.18),
(3.20), (3.23) and (3.24), is presented by means of simulation results. The size of the uni-
formly sampled observations is N = 64. In order to strictly focus on the performance
behavior due to sampling rate reduction and remove the effect of insufficient data records,
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Figure 3.4: Normalized estimation error of the periodogram and Capon estimates versus the
sampling density of a primary signal with occupancy of 1/8 at average SNR of 15 dB.

the size of the observations X is fixed to 2N by setting M(κ) = 2Nκ−1. The normalized
estimation error is defined as

ε2[φs(ω), φ̂(ω)]
.
=

∫
B
E

[
|φs(ω)− φ̂(ω)|2
|φs(ω)|2

]
dω, (3.52)

where φ̂(ω) is the spectrum estimate, and φs(ω) is the spectrum of the uniformly sampled
s(t) at Nyquist rate.

An example of spectral analysis with occupancy κ0 = 1/8 (e.g., two active channels out
of eight in this example), an SNR of 15 dB, and sampling density κ = 1/4 is depicted in
Figure 3.3. The resulting spectrum estimates are averaged according to 1,000 Monte Carlo
runs. Firstly, it is observed that the noisy periodogram and noisy Capon, even in the high
SNR regime, introduce noise enhancement because of the projection implicit in nonuni-
form sampling. The denoising process in (3.18) reduces the noise level by approximately
60 dB, whereas the Capon estimate is able to completely subtract the noise floor.

The behavior of the normalized estimation error (3.52) versus the sampling density is
illustrated in Figure 3.4, when the occupancy is κ0 = 1/8. As it can be appreciated, both
Capon and noisy Capon estimates provide better performance when compared to the peri-
odogram counterparts for a wide range of κ. The gain introduced by the denoising process
is outlined when comparing the nonuniform spectral estimates to their noisy counterparts.
In the case of the Capon estimate, a change of performance behavior is observed around a
sampling density of κ = 1/4.

Figure 3.5 plots the normalized estimation error versus average SNR. In the low SNR
regimes, the noisy periodogram and noisy Capon are not able to provide good spectral res-
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Figure 3.5: Normalized estimation error of the periodogram and Capon estimates versus average
SNR of a primary signal with occupancy of 1/8 and sampling density of 1/4.

olution because of the noise floor; whereas the nonuniform periodogram and Capon are
capable of distinguishing the primary signal. In the high SNR regimes, the two versions
of the periodogram saturate because the spectral pattern is not adaptive. Hence, it is iden-
tified that the nonuniform Capon estimate (3.23) might provide outstanding performance
for detection purposes for a wide range of SNRs.

Finally, Figure 3.6 illustrates the performance of the spectrum estimates when, for a
fixed sampling density κ = 1/4, the occupancy of the primary signal κ0 increases from
κ0 = 0 (no occupancy) to κ0 = 1 (100% occupied). It is observed that the normalized es-
timation error increases with the occupancy, as the dimensionality of the lower space, i.e.,
K, is not sufficient for high resolution spectral analysis when the sparsity of the spectrum
is low. However, it is concluded that the Capon estimate (3.23) behaves as a high resolution
spectral method, e.g., ε2 ≤ 0.01, as far as κ < κ0.

3.4.2 SNR Equivalence

The periodogram of two DVB-T signals immersed in Gaussian noise is depicted in Figure
3.7, for N = 512. The solid black curve depicts φx(ω) for an SNR of 10 dB. After Bernoulli
nonuniform sampling with a sampling density of κ = 1/4, the resulting spectrum φx(ω),
which is represented by the dashed red line, suffers from noise enhancement and signal
attenuation, according to the expression obtained in (3.31). By employing the SNR equiva-
lence established in (3.32), it is confirmed that φx(ω) with an SNR of 10 dB and φx(ω) with
an equivalent SNR of

SNRe = SINR(1/4) = −1 dB (3.53)
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Figure 3.6: Normalized estimation error of the periodogram and Capon estimates versus primary
signal occupancy level at average SNR of 15 dB and sampling density of 1/4.
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show the same spectral SNR. Therefore, the penalty of nonuniform sampling with κ = 1/4

equals to an SNR penalty of 11 dB.
Finally, the receiver operating characteristics (ROC) of the estimator-correlator (3.49)

shown in Figure 3.8 is evaluated. The performance curves are obtained in several sam-
pling conditions for an average SNR of −12.5 dB when detecting a DVB signal immersed
in Gaussian noise with N = 32 samples and an occupancy of κ0 = 1/8. The degrada-
tion incurred by nonuniform sampling is observed (dashed lines). The dotted lines depict
the performance of the equivalent uniform estimator-detector associated to the given sam-
pling densities, i.e., T1(x) is evaluated under the SNR matrix conditions (3.51). From Figure
3.8 it follows that the equivalence between SNR and noise enhancement introduced in this
thesis accurately models the effect of nonuniform sampling. As a result, the performance
of any spectrum sensing detector based on nonuniformly sampled data can be forecasted
beforehand by applying an SNR shift according to (3.51).

3.5 Conclusions

In this Chapter, the existence of the noise enhancement phenomenon has been shown
by addressing the spectral analysis problem under both empirical and theoretical frame-
works.

On the one hand, the problem of spectral analysis employing the periodogram and
Capon estimates from nonuniformly sampled data has been addressed. The nonuniform
sampling has been modeled as a linear projection onto a lower dimensional space. The
correlation-matching metric has been proposed in this setting as a rank-1 fitting. This for-
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mulation has allowed the derivation of the nonuniform periodogram and Capon estimates
as particular cases. It is concluded that the nonuniform Capon, which performs denoising
and adaptive pattern, provides good resolution for spectral analysis.

On the other hand, an equivalence between the noise enhancement produced by Ber-
noulli nonuniform sampling and SNR has been introduced. The equivalence is firstly es-
tablished in terms of signal correlation and signal spectral density, and is further extended
to matrix formulation and spectrum sensing detection. Numerical results on spectral anal-
ysis and spectrum sensing show that the degradation incurred by nonuniform sampling
can be easily translated to a penalty in SNR.
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Chapter4
Multi-Frequency Primary Signal Detection

4.1 Introduction

Statistical signal detection is one of the most fundamental signal processing problems for
decision making in radar, communications, biomedicine, and so on [Kay98a]. In this Chap-
ter, the problem of detecting the presence of a primary signal over a set of frequency re-
sources is addressed. As illustrated in Figure 4.1, the objective is the design of test statistics
Tq(X) that, based on the nonuniformly sampled observations X , provide optimal detec-
tion probability at each of the q-th frequency resource.

4.1.1 Generalized Likelihood Ratio Test

This thesis addresses the optimal spectrum sensing detection based on the complete or par-
tial side information on the signal and noise statistics. The primary function of interweave
cognitive radios [GJMS09] is to reliably identify the available spectrum resources tempo-
rally unused by primary users. This awareness can be obtained through a database, using
beacons, or by local spectrum sensing [ALLP12]. This thesis focuses on spectrum sensing
performed at the cognitive radio receivers as it constitutes a broader solution and has less
infrastructure requirements. The energy detector, cyclostationarity feature detection, and
match-filtering are the most commonly employed techniques for spectrum sensing. How-

∑Q
q=1 Sq +W −→ Nonuniform Sampling −→ X −→ Signal Detection −→ Tq(X)

Figure 4.1: Multi-Frequency primary signal detection problem.
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ever, the performance of such detectors is severely degraded when the side information on
the signal and noise features is incomplete, e.g., the cyclic frequencies. Spectrum sensing
detectors based on the generalized likelihood ratio test (GLRT) have received recent atten-
tion as the GLRT statistic is optimal in the Neyman-Pearson sense [Kay12] and natively
incorporates joint parameter maximum likelihood (ML) estimation for inaccurate model
parameters [MJTW12]. The effect of side information on the signal and noise statistics has
been reported in [FSW10] in realistic scenarios.

Wideband spectrum sensing has gained recent attention [SNWC13]. It is recognized
that ML estimation in wideband cognitive radios is especially challenging because wide-
band regimes are characterized by close to zero spectral efficiency and low signal-to-noise
ratio (low SNR) [Ver02]. Furthermore, the method of ML, despite its theoretical appeal,
is often difficult to implement, and analytical solutions are not available in many circum-
stances [Por08]. However, the tractability of the ML formulation is shown in asymptoti-
cally low SNR regimes, and it is identified that the second-order statistics of the observa-
tions are sufficient statistics for the spectrum detection problem when the noise variance
is high. In this thesis, the optimal ML estimates for GLRT spectrum sensing detection are
derived in the single-frequency scenario, and show through low SNR approximations that
any GLRT spectrum sensing detector exclusively depends on a kernel operator and the
sample covariance matrix of the observations, asymptotically as the SNR tends to zero.
Further, it is extended to cognitive radio networks operating over primary systems that
employ multi-frequency communications, such as the terrestrial digital video broadcast-
ing (DVB-T). Simulation results assess the performance comparison of the derived algo-
rithms.

A numerous amount of spectrum sensing detectors based on the GLRT have been re-
ported in the last years. It is a well-known signal processing result that in the low SNR
regime, the second-order statistics of the signal and noise involved in the detection are
sufficient statistics for detection [Kay98a]. More precisely, the cross-correlation between
signal and noise can be exploited in the frequency, spatial, or temporal domains. Firstly,
frequency correlation detectors are intended to uncover the spectral coherence of cyclo-
stationary processes (see [GNP06] and the references thereby). However, these detectors
are very sensitive to the signal and noise features, and require in general high computa-
tional complexity. A spectral feature based detector has been reported in [QZSS11]. Sec-
ondly, a bunch of signal detectors that exploit spatial correlation have been proposed in
the recent literature [ZLLZ10, WFHL10, TNKG10, RVS10, VVLVS11, RVVLV+11, SWZZ12,
SAVVLV12, STM13, RVSS13, ZQ13, ZKLZ13]. Addressing the GLRT problem in the mul-
tiple antenna framework has allowed the formulation of well-known Gaussian detectors
such as the arithmetic-to-geometric mean (AGM) detector [ZLLZ10], rank-1 detectors [RVS10,
SAVVLV12, ZQ13], the rank-P detector [RVVLV+11], and the locally most powerful in-
variant test (LMPIT)[RVSS13]. In the case of fading, the algorithms reported in [WFHL10,
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TNKG10, SWZZ12] address blind detection with unknown channel parameters, whereas
the works by [VVLVS11, STM13, ZKLZ13] investigate the use of prior information in the
detection process. The common frawmework of [ZLLZ10, WFHL10, TNKG10, RVS10,
VVLVS11, RVVLV+11, SWZZ12, SAVVLV12, STM13, RVSS13, ZQ13, ZKLZ13] is that the
detectors are based on the eigenvalue decomposition (EVD) of the spatial correlation ma-
trix. Therefore, these algorithms are only valid when the secondary users are equipped
with multiple antennas. Thirdly, the exploitation of temporal correlation has gained lit-
tle attention, even though temporal correlation matrices exhibit good properties of sta-
bility and computational complexity. Related work involving GLRT detection include
[NPI10, YLPC11, BFPRI12]. In [NPI10], the sensitivity of oversampled temporal corre-
lation based detection to frequency offsets is investigated. In order to further improve the
efficiency, [YLPC11] reports a detector based on the Cholesky factorization of the sam-
ple correlation matrix, whereas the work by [BFPRI12] is concerned in performing signal
detection while communicating at the same time. These works does not consider side
information on the primary signal correlation.

In this thesis, the temporal correlation of the primary users is exploited given the
Toeplitz structure of the correlation matrices when one single antenna is employed at the
cognitive receiver. An N × N Hermitian Toeplitz matrix has only N degrees of freedom.
Therefore, the algorithms derived in this Chapter will have good properties of stability
and computational complexity. It is noted that the detection of a stationary process with
a single antenna constitutes a well-defined fundamental problem by itself, which takes
advantage of the second-order statistics distinctness between hypotheses. Theoretical in-
terpretations and numerical results show the tradeoff between detection performance and
the degree of side information on the most informative statistics for detection, i.e., the
modulation format and spectrum distribution of the primary users.

4.1.2 Nonuniform Correlation Matching

Due to the low occupancy of many communication systems, it is recognized that primary
signals are sparse in the spectrum domain, which allows the application of the foreseen
theory of compressed sensing [CW08] to further reduce the sampling rate required for
spectrum sensing detection. A comparison addressed by [SLH09] shows that nonuniform
sampling does not suffer from some drawbacks present in traditional uniform Nyquist
rate sampling.

As stated above, ML estimation is an important method used in a wide range of sta-
tistical signal processing problems [Kay98b], which is often difficult to implement, even
more in the nonuniform sampling scenario. As an alternative, this thesis proposes the ap-
plication of the correlation-matching technique to spectrum sensing of wideband signals.
Correlation-matching is a least-squares fitting of second-order statistics, and behaves as an
approximation to ML at the low SNR regime with asymptotic large data records [Por08].
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More specifically, the nonuniform sampling version of the correlation-matching approach
for spectrum reconstruction of sparse wideband signals is discussed. The potentials of
correlation-matching as a matrix-level fitting has been recently addressed by [PNLRS09],
and a reformulation is carried out under the nonuniform sampling scenario for asymptot-
ically sparse wideband regimes. A general closed-form estimate of the signal power level
based on nonuniformly sampled observations. This unified formulation allows physical
interpretation of the problem, and straightforward application to the problem of GLRT
spectrum sensing in multi-frequency cognitive radios.

4.1.3 Chapter Organization

This Chapter is organized as follows. The single and multi-frequency GLRT detection
based on ML estimation with side information is addressed in Section 4.2. The extension
to nonuniform sampling with nonuniform correlation-matching estimation is provided
in Section 4.3. Numerical performance evaluation of the detection performance of the
GLRT detectors derived in this Chapter is reported in Section 4.4. Section 4.5 concludes
the Chapter.

4.2 Maximum Likelihood Estimates in Uniform Sampling

4.2.1 Problem Statement

The spectrum sensing problem for wideband cognitive radio networks is considered, con-
sisting of a set of secondary users, each equipped with one receiving antenna with the
purpose of individually monitoring the activity of the primary system, denoted by the
wide-sense stationary (WSS) signal s(t), which accounts for the superposition of the pri-
mary services over the sensed spectrum of bandwidth B. The sensed signal at the local
cognitive radio is

x(t) = s(t) + w(t) (4.1)

where w(t) is the double-sided complex zero-mean additive white Gaussian noise with
spectral density N0/2. In this Section, a block processing of the signal is considered. On
the one hand, the N -dimensional discrete-time received signal is defined as

x[m]
.
= [x(tm1 ), . . . , x(tmN )]T , (4.2)

where the sampling instants satisfy the Nyquist condition, i.e, tmn+1 − tmn ≤ 1
fs

for 1 ≤
m ≤ M , where fs is the Nyquist rate. Here, Nyquist rate uniform sampling and piece-
wise stacking are assumed, for which tmn = t0 + (mN + n)/fs. On the other hand, each
cognitive radio acquires M blocks given by X

.
= (x[1], . . . ,x[M ]). Therefore, the block

size N is a side information parameter large enough to cope with the temporal correlation
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of the primary signal, and M is a factor to improve the performance of the detectors by
averaging independent blocks. Similarly, S and W are defined as the uniformed-sampled
piece-wise stacked versions of x(t) and w(t), respectively.

Let H0 be the hypothesis representing the event such that the primary users are not
transmitting over the sensed band. In such a case, the local observations during the sensing
interval will consist of only noise, i.e., X = W. On the other hand, let H1 denote the
event in which there is activity of the primary systems during the sensing interval, i.e.,
X = S+W. The spectrum sensing problem may be therefore cast as the binary hypothesis
testing problem

H0 : X = W

H1 : X = S + W.
(4.3)

In (4.3), the column-entries of the signal and noise observations are complex multivariate
zero-mean Gaussian distributed with correlation matrices Rs = PR0, and Rw = σ2I,
respectively, with R0 the normalized signal correlation matrix such that tr(R0) = N . The
detection SNR is further defined as

SNR .
=
P

σ2
. (4.4)

In the problem at hand, it is a valid assumption that both noise and signal are normally dis-
tributed. While facilitating the analysis, this is reasonable because usually there is no line
of sight (LoS) path between the cognitive radio and the primary user. Hence, the result-
ing signal is the superposition of no-LoS signals and approximates Gaussian distribution
as the number of observations is sufficiently large, according to the central limit theorem.
Moreover, it has recently proved that Gaussian ML estimation provides, asymptotically as
SNR → 0, the optimum second-order estimator [VV07]. As the size of the spectrum por-
tion taken into consideration increases, the relative overall occupancy of primary systems
becomes low, which motivates the derivation of robust spectrum sensing detectors focused
on low SNR regimes. Therefore, it is assumed that asymptotically SNR→ 0, where SNR is
the nominal SNR at detection.

This work is interested in detecting the presence of the signal S based on the local ob-
servations X in (4.3). It is known that the GLRT is asymptotically optimal in the Neyman-
Pearson sense, i.e., to maximize the detection probability, P(H1|H1), for a given false-
alarm probability level, P(H1|H0) ≤ ε0, when the number of observations tends to infinity
[Kay98a]. Recently, the finite-sample optimality of GLRT has been established in [Mou09].
Let Ξ0 and Ξ1 denote the unknown model parameters underH0 andH1, respectively. The
optimal test in the Neyman-Pearson sense for deciding between hypotheses H0 and H1 is
given by

L(X,Θ)
.
=
p(X|Ξ̂1,Θ1,H1)

p(X|Ξ̂0,Θ0,H0)
≥ γ, (4.5)
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where the ML estimates of the unknown parameters are given by

Ξ̂0 = arg max
Ξ

p(X|Ξ,Θ0,H0), (4.6)

and
Ξ̂1 = arg max

Ξ
p(X|Ξ,Θ1,H1), (4.7)

respectively. In (4.5), Θ denotes the set of side information parameters, and Θ1,Θ0 ⊆ Θ.
The threshold γ sets the decision level for which the test L(X,Θ) ≥ γ decides for H1, and
for H0 otherwise, and is selected to satisfy the false-alarm level P(H1|H0) = P(L(X,Θ) ≥
γ|H0) = ε0. Despite its theoretical appeal, the ML estimation and GLRT detection in (4.5)
are often difficult to implement, and analytical solutions are not available in many circum-
stances [Por08]. However, it is shown that GLRT spectrum sensing detection for wideband
cognitive radio is encompassed in a low-complex unified framework, stated in the follow-
ing Theorem.

Theorem 4.1 Consider the wideband cognitive radio spectrum sensing problem (4.3). Under the
Gaussian assumption, any GLRT spectrum sensing detector (4.5) is, asymptotically as SNR → 0

and N →∞, given by

T (X,Θ)
.
=

∫
B
K(ω,Θ)P (ω)dω ≥ τ, (4.8)

where X is the asymptotic data record, Θ is the set of side information parameters, K(ω,Θ) is a
kernel associated to each detector, P (ω) is the continuous-frequency periodogram of X, and τ is the
detection threshold. Furthermore, any GLRT spectrum sensing detector only depends, asymptoti-
cally as SNR→ 0, on the second-order statistics of the observations.

Proof 4.1 See Appendix B.2.

From (4.8), it is deduced that GLRT spectrum sensing detection for wideband cognitive
radio is strictly based on the second-order statistics of the observations shaped by a kernel
that highlights the signal and noise features which are relevant for detection. Moreover, it
is shown that frequency-domain asymptotic kernels derived from GLRT spectrum sensing
detectors as SNR → 0 have a common inner structure that depends on the signal and
interference plus noise statistics. Let φs(ω) and φν(ω) denote the power spectral density
(PSD) of the signal to be detected and the interference plus noise, respectively. It is shown
in Appendix B.2 that the detection kernel in (4.8) has an internal structure given by

K0 [φs(ω), φν(ω)]
.
=

1

φν(ω)

φs(ω)

φs(ω) + φν(ω)
, (4.9)

which will be used in subsequent sections to provide a unified perspective of different ap-
proaches to the spectrum sensing problem. In the high SNR regime, the K0 [φs(ω), φν(ω)]

56



approaches to 1
φν(ω) and the detector asymptotically behaves as the energy detector with

noise PSD given by φν(ω). In such a case, the detector focuses on the parts of the spectrum
that are less affected by the noise. On the other hand, it is shown that the kernel becomes
proportional to φs(ω)

φ2ν(ω)
as the interference plus noise increases, and the detector performs

the spectral correlation between the periodogram of the observations and the signal PSD
weighted by the inverse of the squared spectrum of the interference plus noise. This result
corresponds to the locally optimum detector for the cognitive radio problem (4.3), obtained
through expanding the optimum quadratic statistic in the low SNR limit [Poo94]. When
the signal and interference plus noise statistics are not perfectly characterized, the expres-
sion of K0 [φs(ω), φν(ω)] depends on the ML estimates of the unknown parameters. There-
fore, the performance of the GLRT spectrum sensing detectors is related to the derivation
of the ML estimates in (4.5). Even though parameter estimation is especially challenging
in wideband regimes, in what follows, it is shown that analytical solutions are obtained
for asymptotic SNR→ 0 for many cases of interest.

4.2.2 Single-Frequency Detection with Known Noise Variance

In the following, the optimal single-frequency GLRT detectors are derived based on the
assumption that noise variance present at the cognitive radio receiver is known. This is a
valid assumption in most cognitive radio networks, as the control layers set predetermined
silent periods devoted to threshold computation.

Estimator-Correlator

The optimal test with known statistical parameters is the estimator-correlator, given by
[Kay98a, Eq. (5.16)]

T1(X|Rs, σ
2) =

1

σ2
tr
(
Rs(Rs + σ2I)−1R̂

)
≥ τ1, (4.10)

where R̂ stands for the sample covariance matrix, i.e.,

R̂
.
=

1

M

∑
m

xmxHm. (4.11)

The detector (4.10) is a classical detection result, which correlates the observations with the
output of the Wiener filter or minimum mean square error (MMSE) estimate of the signal,
i.e., with the term Rs(Rs + σ2I)−1xm. The frequency-domain asymptotic interpretation of
the estimator-correlator has recently been studied in [ZPQ10], from which it is identified
that the kernel associated to the estimator-correlator is given by

K1(ω, φs, σ
2) = K0

[
φs(ω), σ2

]
. (4.12)
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It is noted that (4.10) and its associated kernel symbolize an upper-bound on the sensing
performance of GLRT spectrum sensing detectors, and therefore provide a fundamental
limit useful for performance assessments.

Signal Level Detector

Now, the known primary signal level assumption is relaxed. This assumption represents
a more realistic scenario, as the power at which the primary signal reaches the cognitive
radio receiver is an unknown parameter. Yet, the modulation format employed by the pri-
mary services is a side information that can easily be incorporated in the cognitive radio
detectors. Under the white noise assumption, the presence of correlation in the observa-
tions can be further exploited by the spectrum sensing algorithm to detect the presence of
this signal.

As proven in Appendix B.3, for a given normalized signal correlation matrix R0, the
optimal GLRT spectrum sensing detector in the wideband regime with known noise vari-
ance, denoted as the signal level detector, is given by

T2(X|R0, σ
2) =

1

σ2
tr
(
P̂R0(P̂R0 + σ2I)−1R̂

)
≥ τ2, (4.13)

where the ML estimate of the signal level is given by

P̂ =

(
tr(R0R̂)− σ2N

tr(R2
0)

)+

. (4.14)

The evaluation and comparison of (4.13) in front of (4.10) uncovers the incurred degra-
dation of the spectrum sensing detector when the signal level is unknown by the cog-
nitive radio receiver, as the frequency-domain asymptotic kernel associated to (4.13) is
K2(ω, φ0, σ

2) = K0

[
P̂ φ0(ω), σ2

]
. It is seen that the asymptotic kernel is based on the ML

estimate of the signal level P . From the frequency-domain asymptotic interpretation of
(4.14), it is deduced that kernel exploits the correlated structure of R0 and the side infor-
mation on the noise variance to recover P . It is emphasized that the correlated structure of
R0 is only required for unknown noise variance (c.f. Section 4.2.3), whereas the estimate
(4.14) is still valid even for white signal, i.e., R0 a diagonal matrix, when the noise variance
is known.

Toeplitz Detector

Next, the spectrum sensing detection problem is discussed when the primary signal cor-
relation matrix is unknown. According to the GLRT formulation, under H1 an estimate
of Rs based on the local observations is required to perform the detection. Because Rs

represents the correlation of a stationary signal, it is the solution to ML estimate problem
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with the additional constraints Rs � 0 and complex Hermitian Toeplitz structure. Any
complex Hermitian Toeplitz matrix of order N is represented by a unique vector of length
N containing, e.g., the element of the first row of the matrix. A direct consequence of this
property is that Rs has only N degrees of freedom and, then, it can uniquely be repre-
sented by the N first correlation lags, (rs[0], . . . , rs[N − 1]). However, for the problem at
hand, the following decomposition for complex Hermitian Toeplitz matrices is proposed

R[β] = β0T0 +

N−1∑
n=1

(
βnT

T
n + β∗nTn

)
, (4.15)

where β .
= (β0, . . . , βN−1) are the N coefficients that uniquely represent the matrix R onto

the orthogonal basis T .
= {Tn} of the space of complex Hermitian Toeplitz matrices. It is

noted that tr(TiT
T
j ) ∝ δij , where δij is the Kronecker delta.

For a given Toeplitz orthogonal basis T = {Tn}, the optimal GLRT spectrum sensing
detector in the wideband regime with known noise variance, denoted as Toeplitz detector,
is derived in Appendix B.4 and is given by

T3(X|T , σ2) =
1

σ2
tr
(
Rs[β̂](Rs[β̂] + σ2I)−1R̂

)
≥ τ3, (4.16)

where the coefficients of R̂s onto T are given by

β̂0 =

(
1

N
tr(R̂)− σ2

)+

(4.17a)

β̂n =
tr(TnR̂)

tr(TnTT
n )
, 1 ≤ n ≤ N − 1. (4.17b)

It is noticed that when employing diagonal matrices, i.e., T0 = I, and Tn all-zeros
matrix with an all-ones semi-diagonal n-positions above the main diagonal, the coefficients
βn have the physical meaning of the correlation lags, i.e., β̂n = R̂s[n], for 0 ≤ n ≤ N − 1.
Therefore, the computation of the zero-lag β0 in (4.17a) is based on the detected energy
and the side information on the noise variance. Conversely, because tr(Tn) = 0 for n > 0,
each coefficient βn in (4.17b) uncovers the stationary part of the received observations, i.e.,
takes into account the off-diagonal information contained in R̂. The kernel associated to
(4.16) is given by

K3(ω, T , σ2) = K0

(β̂0 +
N−1∑
n=1

Re(β̂n)φn(ω)

)+

, σ2

 , (4.18)

where φn(ω) is spectral density associated to the correlation matrices (Tn+TT
n ), and Re(z)

takes the real part of z ∈ C . The GLRT spectrum sensing detector (4.16) exploits the side
information on the noise variance to perform optimal matching between the observations
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and the frequency patterns φn. When noting that σ2 + β̂0 is the energy detector, it is appre-
ciated that the detection takes advantage of the frequency variations of the periodogram.
Hence, it is expected to achieve performance gain with respect to the energy detector.

4.2.3 Single-Frequency Detection with Unknown Noise Variance

Many detectors, including the energy detector, assume exact side information on the noise
variance to properly perform the detection. Yet in practice, a mismatch on the noise vari-
ance may significantly degrade the sensing performance of the detectors, as reported in
[TS05, TS08]. For this purpose, the single-frequency GLRT spectrum sensing detectors de-
rived in Section 4.2.2 are extended for unknown noise variance. UnderH0, the ML estimate
of σ2 is given by [Kay98a, Eq. (9.10)]

σ̂2
0 =

1

N
tr(R̂). (4.19)

Noise Level Detector

It is first assumed perfect side information on the signal correlation matrix Rs. Even
though this scenario is not realistic, it provides a relaxed upper-bound on the sensing per-
formance with unknown noise variance. The ML estimate of σ2 under H1 is derived in
[Kay98a] for the low SNR regime, and is given by

σ̂2
1 =

1

N

[
tr
(
R̂−Rs

)]+
. (4.20)

For a given signal correlation matrix Rs, Particularizing (B.5) by (4.20) and R̂s = Rs,
it follows that the optimal GLRT spectrum sensing detector in the wideband regime with
unknown noise variance, denoted as noise level detector, is given by

T4(X|Rs) =
1

σ̂2
1

tr
(
Rs(σ̂

2
1I + Rs)

−1R̂
)
≥ τ4, (4.21)

where the ML estimate of the noise variance under H1 is given by (4.20). The side infor-
mation on Rs is twofold. On the one hand, recalling that the kernel associated to (4.21) is

K4(ω, φs) = K0

[
φs(ω), σ̂2

1

]
, (4.22)

it is noted that the side information pattern for detecting primary systems is supplied by
φs(ω). On the other hand, the side information on the energy of φs(ω) diminishes the
problem of noise mismatching, as the estimate of the noise variance is based on both the
received observations and φs(ω).
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Signal and Noise Levels Detector

Next, the spectrum sensing problem is considered when the cognitive radio receivers have
perfect side information on the normalized signal correlation matrix, R0. Hence, based on
the structure of R0, the optimal GLRT spectrum sensing detector aims at recover both the
signal level and noise variance. For a given normalized signal correlation matrix R0, in
Appendix B.5 it is proved that the optimal GLRT spectrum sensing detector in the wide-
band regime with unknown noise variance, denoted as the signal and noise levels detector, is
given by

T5(X|R0) =
1

σ̂2
1

tr
(
P̂R0(σ̂2

1I + P̂R0)−1R̂
)
≥ τ5, (4.23)

where the ML estimates of the signal level and noise variance are given by

P̂ =

tr
(
R̂(R0 − I)

)
tr(R2

0)−N

+

(4.24a)

σ̂2
1 =

(
1

N
tr(R̂)− P̂

)+

. (4.24b)

The ML estimates of P and σ2 under H1 provide further insight on the sensing perfor-
mance of the test statistic (4.23). It is first observed that (4.24a) is proportional to tr(R̂RD),
where RD is the diagonal off-loaded correlation matrix of the primary signal, defined as
RD

.
= R0 − I. Under the stationarity assumption, it is outlined that (4.24a) is an energy

detector that takes into account solely the statistics of the received observations that are
not affected by the noise, i.e., the presence of non-zero correlation lags. This is because the
diagonal entries of RD are all null. Conversely, if the primary signal is cyclostationary, the
main diagonal of R0 is not uniform, and (4.24a) evaluates the variability around the mean
of the main diagonal. In conclusion, the ML estimate of the signal level is a linear combi-
nation of a measure of the instantaneous energetic variability and a measure of the degree
of autocorrelation present in the non-zero lags. Similar interpretations can be obtained in
view of the asymptotic associated kernel

K5(ω, φ0) = K0

[
P̂ φ0(ω), σ̂2

1

]
(4.25)

in the frequency-domain, because the ML estimate (4.24a) is strictly based on the variations
of the normalized pattern φ0(ω) around its spectral mean.

Toeplitz and Noise Level Detector

Finally, the optimal spectrum sensing detector is discussed when the signal correlation
matrix is fully unknown to the cognitive radio receivers with the additional constraint of
complex Hermitian Toeplitz structure. For a given Toeplitz orthogonal basis T , the optimal

61



GLRT spectrum sensing detector in the wideband regime with unknown noise variance,
i.e., the Toeplitz and noise level detector, is given by

T6(X|T ) =
1

σ̂2
1 + β̂0

tr
(
Rs[β̂1](σ̂2

1I + Rs[β̂1])−1R̂
)
≥ τ6, (4.26)

where β1
.
= (0, β1, . . . , βN−1), and the ML estimates of the noise variance and the coeffi-

cients of R̂s onto T are given by

β̂0 + σ̂2
1 =

1

N
tr(R̂) (4.27a)

β̂n =
tr(TnR̂)

tr(TnTn)
, 1 ≤ n ≤ N − 1. (4.27b)

The details are reported in Appendix B.6. The frequency-domain asymptotic interpretation
of (4.26) can be outlined from its associated kernel, which is given by

K6(ω, T ) = K0

(N−1∑
n=1

Re(β̂n)φn(ω)

)+

, β̂0 + σ̂2
1

 . (4.28)

When releasing the structure of R0, it is observed that the test statistic (4.26) cannot sep-
arate the signal and noise energy contributions, because (4.27a) is treated as interference
plus noise. As a consequence, the sensing performance depends on the variability of the
periodogram, i.e., the contributions of the patterns φn(ω), for n ≥ 1, with respect to the
total received energy. It is further noted that indoor environments are characterized by a
high degree of diversity, due to multi-path propagation. Therefore, detection is expected
due to temporal correlation, although the white part of the signal is not recovered.

4.2.4 Multi-Frequency Spectrum Sensing

Next, the spectrum sensing problem for cognitive radio systems is considered where the
primary system employ frequency-division multiplexing (FDM) with predetermined chan-
nelization. The sensed multi-frequency system is characterized by Q adjacent channels,
and hence the sampled baseband observations admit the multi-frequency structure

x[m] =

Q∑
q=1

sq[m] + w[m], (4.29)

for 1 ≤ m ≤ M , where sq denotes the received signal located at the q-th channel, and w

is the complex zero-mean additive white Gaussian noise with variance σ2. The statistics
of sq are modeled as complex zero-mean Gaussian with correlation matrix PqRq, where Pq
stands for the received power level on the q-th channel, and Rq is the normalized Toeplitz
correlation matrix of the primary signal on the q-th channel, with tr(Rq) = N . If the sensed
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multi-frequency system employs homogeneous services, the signal statistics across chan-
nels further accomplish Rq = R0 � (e(ωq)e

H(ωq)), where R0 is the baseband basic modu-
lation format, and e(ω) is the frequency vector at ω, i.e., eH(ω)

.
=
[
1 eω . . . eω(N−1)

]
. Let

Rs[P]
.
=
∑Q

q=1 PqRq. For notation purposes,M = {Rq} is defined as the set of normalized
multi-frequency correlation matrices, and P

.
= (P1, . . . , PQ)T .

The spectrum sensing problem for cognitive radio systems employing multi-frequency
signals consists in detecting the presence of primary user activity at each channel, 1 ≤
q ≤ Q. The corresponding joint multiple-hypotheses test [Kay98a] evaluates the 2Q − 1

possible combinatorial occupancies. Hence, the complexity of multiple-hypotheses testing
grows exponentially with the number of channels and becomes an impractical approach
due to the limited processing capabilities of the wideband cognitive radios. It is noticed
that spectrum sensing on the q-th channel is governed by the signal level Pq. Therefore,
(4.29) can be treated as a nuisance-hypotheses testing problem. Let H1,q and H0,q denote
the hypotheses representing the primary system transmitting or not transmitting over the
q-th channel, respectively. Let Pq̄

.
= (P1, . . . , Pq−1, 0, Pq+1, . . . , PQ)T , for 1 ≤ q ≤ Q. The

nuisance-hypotheses testing problem at the q-th channel is then given by

Lq(X,Θ) =
p(X|P̂,Θ1,H1,q)

p(X|P̂q̄,Θ0,H0,q)
≥ γq, (4.30)

for 1 ≤ q ≤ Q. The complexity has been reduced to a set of Q binary tests.
The optimal GLRT spectrum sensing detectors for the multi-frequency model (4.29)

with known and unknown noise variance are discussed in the sequel. It is assumed that
the frequencies ωq and the baseband modulation format R0 are perfectly known.

Multi-Frequency Detector

Assume that each cognitive radio device has perfect side information on the noise variance
σ2, as well as the primary system multi-frequency structureM. It is shown in Appendix
B.7 that for a given multi-frequency system M, the optimal GLRT spectrum sensing de-
tector at the q-th frequency in the wideband regime with known noise variance, i.e., the
multi-frequency detector, is given by

T7,q(X|M, σ2) = tr
(
P̂qΞ

−1
q Rq(P̂qRq + Ξq)

−1R̂
)
≥ τ7,q, (4.31)

where Ξq
.
=
∑

l 6=q P̂lRl + σ2I, and the ML estimates of the signal levels are given by
tr(R2

1) . . . tr(R1RQ)
...

...
tr(RQR1) . . . tr(R2

Q)

×


P1

...
PQ

 =


tr(R1R̂)

...
tr(RQR̂)

− σ2N1, (4.32)
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where 1 is the all-ones column vector. It is noted that when the number of available sam-
ples is small, the orthogonality between channels is not preserved and, in general, the
system of equations (4.32) is coupled because tr(RqRl) 6= 0, for l 6= q. However, for large
data records, the system matrix in (4.32) becomes nearly diagonal, and the ML estimates
at each channel are independent on the other channels, giving tr(R2

q)P̂q = tr(RqR̂)−σ2N .
In both cases, the coefficients tr(RqRl) in (4.32) can be computed off-line. The frequency-
domain asymptotic kernel for the spectrum sensing detection at the q-th channel is given
by

K7,q(ω,M, σ2) = K0

P̂qφq(ω),
∑
l 6=q

P̂lφl(ω) + σ2

 . (4.33)

It is seen that the detector employs the relative occupancy on the remaining frequencies as
interference for sensing the q-th channel. As expected, the performance of (4.31) is affected
by the signal-to-interference-plus-noise ratio (SINR) based on the cross-correlation that
arises from the adjacent channels. Finally, it is worth highlighting that (4.31) and (4.32) are
a generalization of the wideband signal level detector (4.13) and the estimate (4.14).

Multi-Frequency and Noise Level Detector

Finally, the detection of multi-frequency systems with unknown noise variance is consid-
ered. For a given multi-frequency systemM, the optimal GLRT spectrum sensing detector
at the q-th channel in the wideband regime with unknown noise variance is derived in Ap-
pendix B.8 and denoted as the multi-frequency and noise level detector, and is given by

T8,q(X|M) = tr
(
Ξ−1
q P̂qRq(P̂qRq + Ξq)

−1R̂
)
≥ τ8,q, (4.34)

where Ξq
.
=
∑

l 6=q P̂lRl + σ̂2
1I, and the ML estimates of the signal levels and noise variance

are given by
tr(R2

1) . . . tr(R1RQ) N
...

...
...

tr(RQR1) . . . tr(R2
Q) N

N
... N N

×


P1

...
PQ

σ2
1

 =


tr(R1R̂)

...
tr(RQR̂)

tr(R̂)

 . (4.35)

The main advantage of the test statistic (4.30) is that all the information on the sensed
bandwidth is exploited for joint detection and estimation at a given band. Whereas filter-
bank based detectors may suffer from adjacent channel leakage, the nuisance parameter
formulation allows the detector to take advantage of the multi-frequency structureM for
estimating both signal levels and noise variance. The frequency-domain asymptotic inter-
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pretation of the associated kernel

K8,q(ω,M) = K0

P̂qφq(ω),
∑
l 6=q

P̂lφl(ω) + σ̂2
1

 (4.36)

shows that the ML estimate of the noise variance flourishes together with the remaining
bands as interference. It is also noted that for Q = 1, (4.34) and (4.35) reduce to (4.23) and
(4.24), respectively.

4.3 Correlation-Matching Estimates in Nonuniform Sampling

4.3.1 Problem Formulation

Due to the difficulty of ML estimation in nonuniform sampling, the primary signal detec-
tion problem is addressed by correlation-matching estimation. Analogously to the signal
model described in Section 3.2, the observation set satisfies the following nonuniform sam-
pling model

xm = Ψm(sm + wm). (4.37)

where Ψm is a pinning matrix that randomly selects K samples of xm, and it is given by
randomly selecting K rows of IN , with K < N . For signal detection, the correlation model
R(Θ) is now given by

R(P, σ2) = PR0 + σ2IN , (4.38)

where R0 denotes the normalized signal correlation matrix, e.g., with tr(R0) = N , and P

and σ2 denote the signal and noise power levels over B, respectively. Notice that now R0

has the meaning of the primary signal correlation matrix, not the rank-1 matrix result of
the outer product of a frequency template. For that reason, in this Section the correlation-
matching metric is reformulated as

M
[
X,R(P, σ2)

] .
= ‖XXH −

∑
m

ΨmR(P, σ2)ΨH
m‖2, (4.39)

i.e., the matching is extended to full-rank matrices. While having all the advantages than
that of (3.8) in Chapter 3, the solution to the problem

P̂ , σ̂2 = arg min
P,σ2
M
[
X,R(P, σ2)

]
(4.40)

has a different structure. More concretely, as derived in Appendix B.9, it is given by

P̂ =
tr
[
R̂
(
R0 − 1

K tr(R0)IK
)]+

tr(R
2
0)− 1

K tr2(R0),
(4.41)
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where
R̂

.
=

1

M
XXH (4.42)

is the sample covariance matrix of the nonuniformly sampled observations,

R0
.
=

1

M

M∑
m=1

ΨmR0Ψ
H
m (4.43)

is the nonuniformly sampled version of the normalized signal correlation matrix, and x+ .
=

max(0, x).
The physical interpretation of (4.41) can be discussed from the nonuniformly sampled

statistics R̂, and R0. It can be appreciated that the expression of the numerator of P̂ can
be rewritten as the scalar product tr(R̂RD), the K ×K diagonal off-loaded signal correlation
matrix has been defined as

RD
.
= R0 −

1

K
tr(R0)IK . (4.44)

The first term of RD performs the projection of the sample covariance matrix R̂ onto
the nonuniform sampling normalized signal space defined by R0. The second term is
in charge of subtracting the part of the reconstructed observations that are considered as
noise according to the signal model (4.37). Because the spectrum of s(t) is strongly sparse,
the average energy is measured in the nonuniform sampling domain, i.e., over R0, rather
than directly on R0. If s(t) is a stationary process, it is noticed that RD = R0− IK , because
R0 has an all-ones main diagonal. The projection of B is then performed onto the compo-
nents of R0 that are not affected by the noise, i.e., the non-zero correlation lags contained
out of the main diagonal. Conversely, if s(t) is cyclostationary, the main diagonal of R0

is not uniform, and RD evaluates the energetic variability around the average energy, in
addition to the correlation of the non-zero lags.

Moreover, the denominator of (4.41) reflects the distinctness between R0 and IN , as
it becomes subjected to the Cauchy-Schwarz inequality. Let 〈A,B〉 be the inner product
between A and B, defined as 〈A,B〉 .= tr

[(
1
M

∑
m ΨmAΨH

m

) (
1
M

∑
l ΨlBΨH

l

)]
. Further

consider the squared norm of A as ‖A‖2 .
= 〈A,A〉. By writingK times the denominator of

(4.41), each term can be written in function of inner products and norms, i.e., Ktr(R
2
0) =

‖R2
0‖2‖I

2
N‖2, and tr2(R0) = 〈R2

0, I
2
N 〉2. After taking the squared root of both terms, it is

shown the non-negativity of the denominator, because it holds that

‖R2
0‖‖I

2
N‖ ≥ 〈R

2
0, I

2
N 〉. (4.45)

It is noticed that the more distinct are the second-order statistics of the signal and the noise,
the more robust is the estimate (4.41). The equality in (4.45) only holds when the signal and
noise statistics are linearly dependent, i.e., both white, or when K = 1, for which in the
sequel it is assumed K > 1.
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4.3.2 Application to Multi-Frequency Spectrum Sensing

It is recognized that wideband cognitive radio networks are characterized by a sparse pri-
mary systems’ spectrum, which motivates the application of the nonuniform correlation-
matching scheme to spectrum sensing. Now, s(t) is proposed in (4.37) as a multi-frequency
system given by

s(t)
.
=

Q∑
q=1

sq(t), (4.46)

i.e., the addition of primary signals all with the same spectral pattern and occupying Q

adjacent bands. This model actually corresponds to many real primary systems such as
the DVB-T standard. The correlation model R(Θ) for multi-frequency systems is hereby
given by

R(P1, . . . , PQ, σ
2)

.
=

Q∑
q=1

PqRq + σ2IN , (4.47)

where W .
= {Rq} is the set of normalized correlation matrices of uniform Nyquist rate

sampled versions of sq(t), with tr(Rq) = N , and Pq denote the power levels. ML estima-
tion, which constitutes a natural subprocess within the spectrum sensing under the GLRT
perspective, offers robustness in front of inaccurate model parameters. In the sequel, the
nonuniform correlation-matching approach as an alternative to ML in the low SNR regime
is discussed, as well as its application to spectrum sensing.

For given W , the nonuniform sampling GLRT spectrum sensing of multi-frequency
systems involves the estimation of the signal and noise power levels from the nonuni-
formly sampled observations X [Kay98a]. The following result generalizes (4.41) to multi-
frequency signals. By considering the the multi-frequency model (4.47), in Appendix B.10
it is shown that the solution of the signal and noise contributions under the the metric
(4.39) is given by the solution of the system of equations

tr(R
2
1) . . . tr(R1RQ) tr(R1)

...
. . .

...
...

tr(RQR1) . . . tr(R
2
Q) tr(RQ)

tr(R1) . . . tr(RQ) K

×


P̂1

...
P̂Q

σ̂2




tr(R̂R1)
...

tr(R̂RQ)

tr(R̂)

 , (4.48)

where

Rq
.
=

1

M

M∑
m=1

ΨmRqΨ
H
m (4.49)

is the nonuniform sampling version of the normalized signal correlation matrix at the q-th
band. The detection of the signal levels (P1, . . . , PQ) is based on the nonuniformly sampled
observations X, which contain spectral information of the sensed bandwidth. Contrarily
to conventional filter-bank techniques, the nonuniform correlation-matching approach is
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based on the system matrix (4.48) which reflects the cross-correlation between different
bands given that orthogonality is not preserved after compressed sensing.

4.3.3 Nonuniform Sampling Multi-Frequency Spectrum Sensing

By taking the optimal multi-frequency GLRT (MF-GLRT) for asymptotic wideband regime,
i.e.,

TqX|W) = tr

[
Ξ−1
q P̂qRq

(
Ξq + P̂qRq

)−1
R̂

]
≥ τq, (4.50)

where Ξq
.
=
∑

l 6=q P̂lRl + σ̂2IK represents the equivalent noise-plus-interferences covari-
ance when sensing the q-th band, (P̂1, . . . , P̂Q, σ̂

2) are the estimates of the multi-frequency
signal and noise levels, given by (4.48), and R̂

.
= 1

MXXH is the sample covariance matrix
of the nonuniformly sampled observations. In (4.50), the threshold τq is set to satisfy the
false-alarm constraint

P [Tq(X|W) ≥ τq|H0] = εq1 (4.51)

which, without loss of generality, it is set to εq1 = ε1 for q = 1, . . . , Q. While according
to the GLRT theory (P̂1, . . . , P̂Q, σ̂

2) are the ML estimates of the signal and noise power
levels, (4.48) are alternatively considered as a valid approximation to ML in the low SNR
regime [Por08]. It is seen that the MF-GLRT (4.50) takes advantage of the occupancy on
the remaining frequencies as equivalent noise when sensing the q-th band. Therefore, the
performance of (4.50) is affected by the SINR based on the cross-correlation that arises from
the adjacent bands, and the signal and noise power level reconstruction in (4.48).

4.4 Numerical Results

4.4.1 Maximum Likelihood Estimates

The sensing performance is assessed by means of experimental simulations modeling prac-
tical wideband cognitive radio scenarios. The GLRT spectrum sensing detectors derived in
this work, which are summarized in Table 4.1, are evaluated along with the energy detector
[Poo94], and the AGM detector [ZLLZ10]. The AGM detector is based on the white noise
assumption with unknown noise variance and signal correlation matrix. Even though it
was originally motivated by the use of multiple antennas, the AGM statistic is applied on
R̂ because it is a good measure of the spread of the set of eigenvalues that arise temporal
correlation.

First, the cognitive radio model (4.3) consisting of a secondary user equipped with a
single sensing antenna is simulated, which takes N = 32 samples of the wideband signal
x(t) with a sampling depth of M = 2N . In this scenario, the relative occupancy of the pri-
mary signal s(t) is 25% of the sensing band, i.e., the spectral support of φs(ω) is 1

4B. Figure
4.2 depicts the receiver operating characteristics (ROC) of the wideband GLRT spectrum
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Table 4.1: Summary of GLRT Spectrum Sensing Detectors’ Kernels and ML Estimates

Detector Test Statistic Equation No. ML Estimates
Estimator-Correlator T1(X|Rs, σ

2) (4.10) -
Signal Level T2(X|R0, σ

2) (4.13) (4.14)
Toeplitz T3(X|T , σ2) (4.16) (4.17)

Noise Level T4(X|Rs) (4.21) (4.20)
Signal and Noise Levels T5(X|R0) (4.23) (4.24)
Toeplitz and Noise Level T6(X|T ) (4.26) (4.27)

Multi-Frequency T7,q(X|M, σ2) (4.31) (4.32)
Multi-Frequency Noise T8,q(X|M) (4.34) (4.35)
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Figure 4.2: ROC of the wideband spectrum sensing detectors at SNR of −15 dB.
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Figure 4.3: Detection probability of the wideband spectrum sensing detectors versus average
SNR with false-alarm level of 0.1.

sensing detectors derived in Sections 4.2.2 and 4.2.3, along with the energy detector and
the AGM detector when the noise variance is perfectly calibrated by the secondary de-
vice, at a nominal SNR = −15 dB. It is noticed that the detectors with side information on
the second-order statistics of the primary systems signal, i.e., Rs or R0, provide sensing
performance close the estimator-correlator upper-bound. Whereas estimating the signal
level incurs no performance loss, the accuracy in estimating the noise variance is reflected
in maximum loss of 0.1 points in detection probability along a wide range of false-alarm
probability constraints. It is further observed that the Toeplitz detector shows a slight gain
with respect to the energy detector, because it exploits the correlation lags present in the
off-diagonal of the sample correlation matrix, in addition to the energy computation of the
main diagonal. Finally, as expected, the AGM detector’s ROC curve is below that of the
Toeplitz and noise variance detector, since the test statistic is less informative, e.g., does
not exploit the Toeplitz structure of Rs. Figure 4.3 plots the detection probability of the
wideband GLRT spectrum sensing detectors versus average nominal SNR, at a fixed false-
alarm level of 0.1. For a detection probability requirement of 0.9, it seen that the sensitivity
of the detectors with known signal statistics is approximately 3 dB above the Toeplitz and
energy detectors, and up to 10 dB with respect to the AGM detector.

In this work, the noise uncertainty is modeled as the uniform distribution σ2/δ ≤ σ̂2 ≤
δσ2, where σ̂2 is the prior information on the noise variance and u = 10 log10 δ is the un-
certainty level in dB. In the sequel, u = 0.1 dB. The ROC at SNR = −15 dB, and the de-
tection probability with false-alarm level ε0 = 0.1 of the GLRT spectrum sensing detectors
are drawn in Figure 4.4 and Figure 4.5, respectively. A simple comparison between Fig-
ure 4.2 and Figure 4.4, and Figure 4.3 and 4.5, respectively, outlines that the test statistics
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Figure 4.4: ROC of the wideband spectrum sensing detectors at SNR of −15 dB with noise un-
certainty of 0.1 dB.
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Figure 4.5: Detection probability of the wideband spectrum sensing detectors versus average
SNR with false-alarm level of 0.1 and noise uncertainty of 0.1 dB.
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that assume perfect noise variance side information suffer from performance degradation,
whereas the rest of the detectors which incorporate noise variance ML estimation remain
unaltered. This is a well-known result [TS08], and becomes the main motivation for the
spectrum sensing detectors derived in Section 4.2.3. As appreciated in both figures, the
performance curves of the estimator-correlator and the signal level detectors are displaced
below the signal level and noise variance, and noise variance detectors. Likewise, the
Toeplitz and energy detectors incur a penalty of approximately 2-3 dB of SNR sensibility,
as seen by comparing Figure 4.3 and Figure 4.5.

The ROC interpretation of the wideband GLRT spectrum sensing detectors is now
studied with fixed SNR = −15 dB, in two opposite conditions of primary systems’ rel-
ative occupancy. As depicted in Figure 4.6, the relative occupancies of 12.5%, and 62.5%
have been considered. By comparing both situations, it can be concluded that for a fixed
noise and signal powers, spectrum sensing is a more challenging task when the primary
signal is more spread over the sensed bandwidth. This effect is more remarkable for the
detectors that exploit temporal correlation (e.g., the signal level, noise level, signal and
noise levels, and toeplitz and noise level detectors) because temporal correlation decays
with frequency occupancy.

Finally, the performance of the GLRT spectrum sensing detectors is evaluated for multi-
frequency systems. A cognitive radio network with primary systems based on the DVB-T
standard in the 2k-mode is considered in an example with Q = 8 channels when sensing
an arbitrary channel. The secondary users take N = 32 samples with a sampling depth
of M = 2N . For comparison reasons, the nuisance estimator-correlator, i.e., the test statis-
tic (4.31) with perfect side information on (P1, . . . , PQ), is also added. The SNR at the
q-th channel is defined as SNRq

.
=

Pq
σ2 , with

∑Q
q=1 SNRq = SNR. On the one hand, the

sensing performance of the multi-frequency GLRT spectrum sensing detectors derived in
Section 4.2.4 are analyzed as follows. The ROC at SNRq = −15 dB is analyzed in Fig-
ure 4.7, whereas the detection probability versus average SNR is shown in Figure 4.8. It
can be highlighted that, analogous to the wideband detectors, the side information on the
normalized correlation matrices Rq is the most informative statistic on the primary sig-
nal as the multi-frequency detector (4.31) incurs roughly no sensing loss in estimating the
signal levels when the noise variance is perfectly known. However, the degradation of
the multi-frequency detector due to noise variance estimation can be clearly appreciated
in both figures. Whereas in terms of sensitivity the performance loss is roughly only 1-
2 dB in SNR, the ROC for very restrictive false-alarm levels incurs a large penalty. The
main reason for this last appreciation is that the false-alarm probability depends on the
remaining frequency contributions, whose estimates become highly sensitive to the noise
variance computation. It is further shown in Figure 4.9 how the kernels actuate over the pe-
riodogram of the observations in the multi-frequency detector when sensing the 3rd band
with P1 = P3 = P7, P2 = P4 = P6 = P8 = 0 and P5 with slightly more power As it can
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Figure 4.6: ROC of the wideband spectrum sensing detectors at SNR of −15 dB with low (12.5%)
and high (62.5%) primary systems relative occupancy.
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Figure 4.7: ROC of the multi-frequency spectrum sensing detectors at SNR per carrier of −15
dB.
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Figure 4.8: Detection probability of the multi-frequency spectrum sensing detectors versus aver-
age SNR per carrier with false-alarm level of 0.1.
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Figure 4.9: Frequency-domain interpretation of the kernels in multi-frequency spectrum sensing
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Figure 4.10: ROC of the estimator-correlator (dashed blue lines) and the MF-GLRT (dotted green
lines) in a wideband scenario with occupancy of 1/8 and SNR of −12.5 dB.

be appreciated, the kernel K7,q(ω,M) at q = 3 keeps the spectral shape of the estimator-
correlator detector with a small shift and scaling. Both kernels show how they are affected
by the spectral information outside the sensing frequency, because they are incorporated
in φν(ω) of K7,q(ω,M), along with the additive thermal noise. Hence, as an example, it is
observed the effort of the kernels in diminishing the contribution of the signals around ω5

and ω7 while augmenting the focus on the detected channel, i.e., on ω3.

4.4.2 Nonuniform Correlation-Matching Estimates

Finally, simulation results are provided to support the novel nonuniform correlation-matching
approach in terms of spectrum sensing detection in multi-frequency cognitive radio. Specif-
ically, a cognitive radio network with primary systems based on the DVB-T standard in the
2k-mode with Q = 8 bands is considered, when sensing an arbitrary band. The size of the
observation before nonuniform sampling is set to N = 32 samples. In order to strictly
focus on the performance behavior due to nonuniform sampling and remove the effect of
insufficient data records, M(κ) = 2Nκ−1, so that the size of the nonuniformly sampled
observations database X is 2N for any sampling density. In other words, small κ, the cog-
nitive radio takes samples from a larger period of time to preserve the total number of
available samples. The average occupancy of the system is κ0 = 1/8. For comparison pur-
poses, the estimator-correlator detector [Kay98a], i.e., the test statistic (4.50) with perfectly
known signal and noise power levels (P1, . . . , PQ, σ

2), is also included.
Firstly, the ROC of the MF-GLRT (4.50) and the estimator-correlator are presented in

Figure 4.10 for several sampling densities at an average SNR of SNR = −12.5 dB. It is ob-
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Figure 4.11: Detection probability performance of the estimator-correlator (dashed blue lines) and
the MF-GLRT (dotted green lines) versus sampling density, with occupancy of 1/8 and false-alarm
level of 0.01.
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Figure 4.12: Detection probability performance of the estimator-correlator (dashed blue lines) and
the MF-GLRT (dotted green lines) versus average SNR, with occupancy of 1/8, and false-alarm
level of 0.01.

77



served that the degradation in detection probability incurred by the estimates of the signal
and noise power levels (4.48) is small when compared to the performance bound estab-
lished by the estimator-correlator, for a wide range of false-alarm levels. As the sampling
density decreases (smaller κ), the ROC curves of both detectors suffer from degradation in
terms of detection probability, mainly for very restrictive false-alarm levels.

Secondly, Figure 4.11 plots the behavior of the MF-GLRT (4.50) and the estimator-
correlator versus κ, in terms of detection probability for several average SNR values. It
is deduced that for a fixed detection probability target, lower sampling densities (smaller
κ) are allowed as the average SNR increases. As an example, for an average SNR of
SNR ≥ −10 dB, it is argued that for a false-alarm level of ε0 = 0.01, the MF-GLRT offers
outstanding detection probability for a wide range of sampling densities , i.e., it provides
probabilities of detection near to 1 for κ ≥ κ0.

Finally, Figure 4.12 depicts the detection probability versus average SNR curves of the
MF-GLRT (4.50) and the estimator-correlator for several sampling densities, for a false-
alarm level of ε0 = 0.01. While supporting the former interpretations, it can be appreciated
from Figure 4.10 and Figure 4.12 that the performance loss incurred by (4.48) increases with
smaller κ, as the coupling between adjacent bands of the system matrix in (4.48) is larger
as κ becomes smaller. Moreover, it is seen that the performance loss incurred by the MF-
GLRT (4.50) is at most 1 dB in SNR when compared to the estimator-correlator, even for a
sampling density of the order of the primary system occupancy, i.e., for κ = κ0.

4.5 Conclusions

In this Chapter, the problem of spectrum sensing in wideband cognitive radios has been in-
vestigated. Under the low SNR assumption, a unified framework based on the frequency-
domain asymptotic interpretation of the optimal GLRT spectrum sensing detectors has
been derived. This unified framework uniquely consists of a kernel inherent to the de-
tector, and the periodogram of the observations. The corresponding kernels for a variety
of scenarios of practical interest by obtaining closed-form ML estimates of the unknown
parameters has been further obtained, including the signal level and noise variance, and
multi-frequency systems. Theoretical interpretations and simulation results show that the
primary signal’s second-order statistics constitute the most informative statistics for detec-
tion. It has been observed that while noise variance estimation guarantees robustness in
front of noise uncertainty, the detection kernel takes advantage of the spectral information
contained over all the sensed bandwidth.

Furthermore, a novel nonuniform correlation-matching approach and its application
to spectrum sensing of wideband sparse signals has been investigated. The closed-form
expression of the signal power level estimate has provided physical insight on the prob-
lem. The optimal MF-GLRT based on the nonuniform correlation-matching estimates of
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multi-frequency signal and noise power levels has been derived. Numerical results have
assessed the performance of the proposed technique, which remains tight to the estimator-
correlator bound for a wide range of sampling densitiy, SNR, and false-alarm level.
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Chapter5
Asymptotic Performance in Primary Signal

Detection

5.1 Introduction

The theoretical characterization of the primary signal detection performance is an impor-
tant problem in order to predict and benchmark the behavior of the detectors. In this
Chapter, the theoretical derivation of the false-alarm and missed-detection probabilities
is addressed in order to predict their behavior within the detection parameters, e.g., the
signal-to-noise ratio (SNR) the observation size, the correlation level of the primary signal,
the noise uncertainty, and the sampling density.

5.1.1 Stein’s Lemma

Statistical signal detection is evaluated by the associated error probabilities, i.e., the false-
alarm and the missed-detection probabilities. Finding closed-form expressions of the error
probabilities is impractical in many situations because the statistical characterization of the
detection test is of high complexity. Nonetheless, the asymptotic properties of the statis-
tics are sometimes useful to characterize the behavior and to obtain performance bounds.
The Stein’s lemma [CT91] is a fundamental result that provides the asymptotic behavior

S +W −→ Nonuniform Sampling −→ X −→ Signal Detection −→ limN→∞ T (X)

Figure 5.1: Asymptotic performance in primary signal detection problem.
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of the error probabilities associated to detection problems when the number of observa-
tions grows to infinity. More specifically, it shows that the error probabilities decay ex-
ponentially with the number of observations [Tun05], hence playing the role of error ex-
ponent as in coding theory. The potentials of the Stein’s lemma and the Kullback-Leibler
divergence (KLD) as a measure of distance have been recently explored in a wide vari-
ety of information theory and communication problems, from multiple-input multiple-
output (MIMO) radar [TLWP09] to sensor networks [MT08]. In the field of cognitive ra-
dio, the Stein’s lemma has been employed in asymptotic performance analysis in collabo-
rative spectrum sensing [RACV11] and quadratic likelihood detection [ZLLZ10]. Also, the
lemma has been recently applied in state-of-the-art mathematical tools such as random
matrix theory [BDMN11], or sparse principal components analysis [DJSS10].

In this thesis, the error exponents for the energy detector and the estimator-correlator
are derived. Both the energy detector and the estimator-correlator are optimal likelihood
ratio tests (LRTs) under the Neyman-Pearson criterion and have a central role in spec-
trum sensing for cognitive radio [GS08a]. It is shown that the error exponents of the false-
alarm and missed-detection probabilities in detection depend on the observation size and
the second-order statistics of the problem, i.e., the SNR. The main focus is to establish an
asymptotic relation between the observation size and the SNR for a fixed error probability.
In general, it is shown that the observation size scales as the inverse of a monotonically
increasing function of the SNR.

5.1.2 Sampling Walls in Nonuniform Sampling

This thesis shows the existence of sampling walls in detection of wideband signals from
Bernoulli nonuniform sampling in the presence of noise uncertainty. A sampling wall is
defined as the sampling density below which the target error probabilities, i.e., the missed-
detection and false-alarm probabilities, cannot be guaranteed at a given SNR regardless
the number of acquired samples. The Bernoulli nonuniform sampling is adopted because
it exhibits good tradeoff properties between complexity and performance. As shown in
Chapter 3, the Bernoulli nonuniform sampling suffers from noise enhancement, which
translates into a whitening effect in the correlation of the primary signal. Contrarily to
the existing literature, the signal detection problem is addressed without having to recon-
struct neither the signal nor its spectrum. More specifically, the optimal low SNR detector
is formulated as a generalized likelihood ratio test (GLRT) to exploit the available side in-
formation of the problem, i.e., the noise variance, the sampling density and the primary
signal autocorrelation. As shown in Chapter 4, the optimal GLRT signal detector in the
low SNR regime strictly depends on the normalized correlation matrix of the primary sig-
nal, which by the Bernoulli nonuniform sampling equivalence depends on the sampling
density.

Therefore, by deriving the asymptotic performance of the GLRT in the presence of noise
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uncertainty, explicit expressions for sampling walls are obtained as a function of the pri-
mary signal occupancy, the SNR and the noise uncertainty. Furthermore, a novel noise
uncertainty outage model is introduced, and SNR walls are derived as a function of the
sampling density and the primary signal occupancy. In the end, it is shown that, when
the SNR is comprised within the sampling walls region, closed-form expressions of sampling
walls, denoted as κwall, are derived. Hence, defining the sampling density κ as the rate be-
tween Bernoulli nonuniform sampling and Nyquist rate uniform sampling, it is shown that
signal detection is not feasible in the sense that the target missed-detection and false-alarm
probabilities cannot be guaranteed regardless the number of samples as far as κ < κwall.

5.1.3 Chapter Organization

The rest of the Chapter is organized as follows. In Section 5.2, a first approach to asymp-
totic performance analysis is addressed with the Stein’s lemma. One of the most important
results derived in this thesis is presented in Section 5.3: nonuniform sampling walls. Nu-
merical results are reported in Section 5.4, and Section 5.5 concludes the Chapter.

5.2 Stein’s Lemma

In this Section, it is shown that the observation size scales as the inverse of a monotonically
increasing function of the SNR, i.e.,

N ∝ 1

f(SNR)
. (5.1)

The main contribution is the derivation of simple, closed-form expressions of f(SNR) that
permit the evaluation of the main factors yielded in the signal detection task. In what fol-
lows, Section 5.2.1 describes the mathematical tools required for the derivation of f(SNR),
whereas the specific application of the lemma to the energy detector, estimator-correlator,
nonuniform sampling, diversity and coherent detection are carried out in Sections 5.2.2–
5.2.6, respectively.

5.2.1 The Stein’s Lemma

In a general framework of binary hypothesis testing problems based on block signal pro-
cessing, the set of i.i.d. vector observations X

.
= (x1, . . . ,xM ) is distributed according to

the probability density function (PDF) p(x). Each vector xm is composed by N consecu-
tive samples, being N the observation size large enough to arise cross-correlation between
samples and guarantee independence between samples within two separate vectors. De-
spite the total available amount of samples is MN , in this Section it is assumed that N
is a design parameter, while M can be arbitrarily large. The PDF p(x) takes one of the
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following forms under the two hypotheses

H0 : p(x) = p0(x) (5.2a)

H1 : p(x) = p1(x). (5.2b)

The detection problem consists of designing a decision function or test T (x) whose output
implies accepting eitherH0 orH1, as a function of the observations and the statistics of the
problem. The test is specified by the detection sets T0 and its complementary T1 over which
H0 or H1 is decided, respectively. Given the boundary which defines the aforementioned
sets, the error probabilities associated to the test T (x) are defined as

PFA = P [T (X) ∈ T1 | H0] (5.3a)

PMD = P [T (X) ∈ T0 | H1] . (5.3b)

In communications problems, the hypothesisH0 denotes the only noise situation (i.e., x =

w), whereas H1 denotes the signal plus noise situation (i.e., x = s + w). Therefore, PFA is
called the false-alarm probability, and PMD the missed-detection probability. In cognitive
radio, PFA is important to guarantee opportunistic communication for the secondary users,
while PMD protects the primary systems. According to the Neyman-Pearson criterion, the
LRT defined as

L(X) =
p1(X)

p0(X)
≥ γ (5.4)

provides optimal error probabilities pair (PFA, PMD) in the sense that for one fixed error
probability (e.g., the false-alarm probability), any other test will provide a higher proba-
bility pair (e.g., higher missed-detection probability). The LRT (5.4) makes decisions by
comparing to a threshold γ, which defines the decision sets as T0 = {L(X) < γ}, and
T1 = {L(X) ≥ γ}.

The Stein’s lemma may be expressed in two versions, which are summarized in the
following lemmas.

Lemma 5.1 (False-alarm probability Stein’s lemma) Consider the binary hypothesis testing
problem (5.2) and the likelihood ratio test (5.4). For a fixed missed-detection probability PMD ≤ ε1,
the false-alarm probability asymptotically behaves as

lim
M→∞

1

M
logPFA = −D(H1‖H0) (5.5)

where D(H1‖H0) evaluates the KLD given by

D(H1‖H0) =

∫
p1(x) log

p1(x)

p0(x)
dx. (5.6)

Lemma 5.2 (Missed-detection probability Stein’s lemma) Consider the binary hypothesis test-
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ing problem (5.2) and the likelihood ratio test (5.4). For a fixed false-alarm probability PFA ≤ ε0,
the missed-detection probability asymptotically behaves as

lim
M→∞

1

M
logPMD = −D(H0‖H1). (5.7)

A direct consequence of Lemmas 1 and 2 is that both error probabilities decay, as M
grows to infinity, exponentially with respect to each associated KLD, i.e.,

PFA ≈ u(M)e−MD(H1‖H0) (5.8a)

PMD ≈ v(M)e−MD(H0‖H1), (5.8b)

where u(M) and v(M) are slow-varying functions compared to the exponential, such that

lim
M→∞

1

M
log u(M) = lim

M→∞

1

M
log v(M) = 0. (5.9)

Therefore, given a number of observations, the detection performance exclusively depends
on the KLD between hypotheses, which in the sequel it is shown that it is related to the
observation size N and the second-order statistics of the problem. Let p0(x) = CN (0,R0)

and p1(x) = CN (0,R1). The KLD (5.6) is given by

D(H1‖H0) = tr(R−1
0 R1) + (m1 −m0)HR−1

0 (m1 −m0)− log
det(R1)

det(R0)
−N. (5.10)

From (5.10) it follows that under the Gaussian assumption the pseudo-distance between
two processes depends on four terms: the ratio between the second-order statistics, a dis-
tance measures between means, the log-radio of determinants of the covariance matrices,
and a penalty term of dimensionality.

5.2.2 Energy Detector

Though its simplicity, the energy detector is a low-complexity and well-studied test that
has been adopted in recent standards [CCBSS05] as a fast-sensing algorithm. The IEEE
802.22 standard defines the sensing requirements for detecting TV white spaces for wire-
less regional area network (WRAN) devices opportunities. The spectrum sensing defined
in the standard is based on two stages: fast and fine sensing. The energy detector is em-
ployed in the fast sensing stage as a coarse detector, whereas a more sophisticated detector
is used in the fine sensing stage when the fast sensing stage detects the presence of the sig-
nal. Hence, the energy detector is still an important statistical test for practical engineering
problems as it allows simple formulations to obtain insights on the required observation
size and SNR.

The energy detector is the optimal test in the Neyman-Pearson criterion when the pri-
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mary signal and noise have Gaussian white statistics, and is given by [Kay98a]

TED(x) = tr(XXH) ≥ τ. (5.11)

Under this assumption, the statistics of the observations are

p0(x) = CN (0, σ2I) (5.12a)

p1(x) = CN (0, P I + σ2I), (5.12b)

where P and σ2 are the signal and noise powers, respectively. As a consequence, the KLD
that define the error exponents in PFA and PMD for the energy detector are

D(H1‖H0) = N [SNR− log(1 + SNR)] (5.13a)

D(H0‖H1) = N

[
log(1 + SNR)− SNR

1 + SNR

]
, (5.13b)

respectively, where SNR .
= P/σ2. Due to the white statistics under both hypotheses, the

KLD (5.6) equals N times the KLD of each individual observation. Hence, the error expo-
nents of the energy detector (5.11) grow linearly with the observation size N in the same
way it linearly grows with the number of observations M , in the sense that the equiva-
lent total number of available samples is MN . In other words, no correlation needs to be
exploited.

The slope of the error probabilities is given by functions of the SNR, which from (5.13),
are given by SNR− log(1 + SNR) and log(1 + SNR)−SNR(1 + SNR)−1. The non-negativity
of the error exponents is guaranteed provided that the former functions are nonnegative
for all SNR ≥ 0. Additionally, they are monotonically increasing functions in SNR, which
ensures that in the limit of the high SNR regime the detection is error-free. Another inter-
pretation of (5.13) is how SNR and the observation size scale to preserve the error proba-
bilities in the asymptotic cases of low SNR (i.e., SNR → 0) and high SNR (i.e., SNR → ∞)
regimes.

False-alarm probability

The error exponent associated to the false-alarm probability admits the following approxi-
mations. In the low SNR regime, it can be approximated by the second degree polynomial
log(1 + SNR) ≈ SNR− 1

2SNR2. Therefore, (5.13a) approximates by

D(H1‖H0) ≈ 1

2
N · SNR2. (5.14)
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This means that the required observation size is inversely proportional to the squared
value of the SNR, i.e.,

N ∝ 1

SNR2 (5.15)

to preserve a target false-alarm probability ε0. Contrarily, the approximation SNR− log(1+

SNR) ≈ SNR is valid in the high SNR regime. In that case, the error exponent may be
approximated by

D(H1‖H0) ≈ N · SNR, (5.16)

for which the required observation size is related to the SNR by

N ∝ 1

SNR
. (5.17)

This concludes that the energy detector is more sensitive to a change in channel conditions
(i.e., SNR) when operating in the low SNR regime rather than in the high SNR regime.

Missed-detection probability

Regarding the error exponent associated to the missed-detection probability, the following
two approximations log(1 + SNR) ≈ SNR− 1

2SNR2 and SNR(1 + SNR)−1 ≈ SNR− SNR2

apply in the low SNR regime. Hence, (5.15) holds for PMD, as D(H0‖H1) ≈ 1
2NSNR2 as

well. In the high SNR regime, the behavior of the error exponent is more conservative with
the SNR, because by the approximation log(1 + SNR) − SNR(1 + SNR)−1 ≈ log(SNR) as
SNR→∞ it follows that

D(H0‖H1) ≈ N · log(SNR). (5.18)

In other words, the missed-detection probability is more restrictive in the observation size,
in the sense that is inversely proportional to the logarithm of the SNR.

N ∝ 1

log(SNR)
. (5.19)

As a common factor in, the observation size is always inversely proportional to a mono-
tonically increasing function of the SNR, as claimed by (5.1), which has the closed-form
expressions in (5.13)–(5.19).

5.2.3 Estimator-Correlator

The detection of a signal in Gaussian noise describes many real engineering situations,
including the energy detector discussed above. In the problem in hand, it is also a valid
assumption that the signal to be detected has Gaussian distribution. While it facilitates the
analysis, it is reasonable in signal detection problems in low SNR regimes as the Gaussian
distribution provides optimum second-order treatment [VV07], and acts as a worst-case
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distribution.
Claimed by the KLD, the performance of the detection in terms of error probabilities

depends on the distinctness between the two hypotheses (5.2). For zero-mean Gaussian
signals, this distinctness is reflected by the cross-correlation between hypotheses. The
correlation can be found in the time, frequency, or space domains. In what follows, the
temporal correlation of the signal to be detected is exploited when both noise and signal
correlation matrices are known.

In this setting, the observations are distributed according to

p0(x) = CN (0,Rw) (5.20a)

p1(x) = CN (0,Rs + Rw), (5.20b)

underH0 andH1, respectively; where Rs and Rw are the correlation matrices of the signal
and noise, respectively, defined as Rs

.
= E[ssH ] and Rw

.
= E[wwH ]. The optimal test in the

Neyman-Pearson criterion is the estimator-correlator, given by [Kay98a]

TEC(x) = tr
[
R−1
w Rs (Rs + Rw)−1 XXH

]
≥ τ. (5.21)

From (5.10), it follows that the KLD that define the error exponents in PFA and PMD for
the estimator-correlator are

D(H1‖H0) = tr(SNR)− log det (I + SNR) (5.22a)

D(H0‖H1) = log det (I + SNR)− tr
[
SNR (I + SNR)−1

]
, (5.22b)

respectively, where the Woodbury matrix identity has been used. The SNR matrix has been
defined as

SNR .
= R−1

w Rs. (5.23)

As it can be appreciated, the KLD (5.13) and (5.22) share the property that they exclusively
depend on the ratio of signal and noise second-order statistics, as well as the observation
size N . For the estimator-correlator, however, the effect of temporal correlation and the
effect of the observation size are both inherent in the structure of the SNR matrix SNR.

For clarity and comparison purposes, the expressions of the error exponents for asymp-
totically large observation size, i.e., N → ∞, as also provided. It is a well-known result
in statistical signal processing that any autocorrelation matrix asymptotically follows the
eigenvalue decomposition (EVD) R = UΛUH , where the eigenvectors in U are related to
the Fourier matrix and independent of the process, and the eigenvalues in Λ are equal to
the power spectral density (PSD) at the fn

.
= n/N frequency [Kay98a]. Therefore, SNR is

asymptotically equivalent to
SNR→ UΛ−1

w ΛsU
H , (5.24)
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in a weak norm sense. That is, its eigenvalues reflect the SNR at the fn frequency, denoted
by [Λ−1

w Λs]nn = SNRn. The expressions in (5.22) and the result (5.24) allow the following
interpretations.

False-alarm probability

For (5.22a), by applying the following Taylor series approximation log det(I + SNR) ≈
tr(SNR)− 1

2tr(SNR2) when SNR→ 0, it follows that in the low SNR regime,

D(H1‖H0) ≈ 1

2
tr(SNR2)→ 1

2
N · SNR2

q , (5.25)

where the quadratic mean of the SNR has been defined as

SNRq
.
=

√
1

N

∑
n

SNR2
n (5.26)

That is, the error exponent associated to PFA is proportional to the squared value of the
quadratic mean of the SNR. Furthermore, the observation size scales as

N ∝ 1

SNR2
q

, (5.27)

which shows consistency with (5.15) for white PSD. Contrarily, at the high SNR regime,
the KLD can be approximated as

D(H1‖H0) ≈ tr(SNR)→ N · SNRa, (5.28)

i.e., N times the arithmetic mean of the SNR defined as

SNRa
.
=

1

N

∑
n

SNRn. (5.29)

Therefore, at the high SNR regime, the PFA error exponent of the estimator-correlator scales
linearly with the observation size and arithmetic mean of SNR

N ∝ 1

SNRa
. (5.30)

Missed-detection probability

Regarding (5.22b), on the one hand, the same low SNR approximation aforementioned can
be applied to D(H0‖H1), together with the Taylor series approximation of the second term
tr[SNR(I + SNR)−1] ≈ tr(SNR) − tr(SNR2) as SNR → 0. As a consequence, this leads to
the same approximation (5.25), i.e., D(H0‖H1) ≈ 1

2tr(SNR2) and (5.27). This shows that
both error probabilities, PFA and PMD, show the same behavior in the low SNR regime in
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proportion to the squared of the second-order statistics. On the other hand, as SNR→∞,
the term tr

[
SNR (I + SNR)−1

]
≈ tr(I) can be neglected in front of the first term log det(I+

SNR) ≈ log det(SNR). Therefore,

D(H0‖H1) ≈ log det(SNR)
.
= N · log(SNRg), (5.31)

which coincides with the asymptotic behavior of the channel capacity formula. The geo-
metric mean of the SNR is defined as

SNRg
.
= n

√∏
n

SNRn. (5.32)

This concludes that the error exponent of the missed-detection probability scales with the
logarithm of the geometric mean of the SNR, whereas the required observation size be-
comes proportional to

N ∝ 1

log(SNRg)
. (5.33)

It is noticed that (5.33) reduces to (5.19) for white statistics.
In conclusion, it has been shown that signal detection based on the estimator-correlator

asymptotically (as M and N go to infinity) depends on the quadratic mean of the SNR
profile in the low SNR regime (i.e., wideband signals), and on the arithmetic and geometric
means in the high SNR regime (i.e., narrowband signals). In general, it has been shown
that the required observation size scales as inversely proportional to a function of the SNR
(5.1), whose closed-form expressions have been derived.

Frequency-Domain Interpretation

The asymptotic behavior of the error exponents of the estimator-correlator may be ex-
pressed in the frequency-domain as a function of the power density functions of the signal
and noise processes, denoted by φs(ω) and φw(ω). As N → ∞, it follows that (5.22) may
be written as

D(H1‖H0) =
N

2π

[∫ 2π

0

φs(ω)

φw(ω)
dω −

∫ 2π

0
log

φs(ω) + φw(ω)

φw(ω)
dω

]
(5.34a)

D(H0‖H1) =
N

2π

[∫ 2π

0
log

φs(ω) + φw(ω)

φw(ω)
dω −

∫ 2π

0

φs(ω)

φs(ω) + φw(ω)
dω

]
. (5.34b)

The expressions (5.34) reflect that the error exponents linearly scale with N and with a
slope that depends on the spectral coherence and spectral SNR of the signal and noise pro-
cesses of the problem averaged over the whole sensed bandwidth. From the expressions
in (5.34), the following considerations can be made. As N → ∞, the error exponents in
PFA and PMD scale proportionally to the observation sizeN , multiplied by the continuous-
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frequency average infinitesimal error exponents over frequency. As a result, both expo-
nents depend on the spectral SNR φs(ω)/φw(ω) in terms of capacity log(1 + φs(ω)/φw(ω))

and spectral coherence.

5.2.4 Nonuniform Sampling Signal Detection

As the number of observations increases, the Szëgo’s Theorem [Kay98a] applies and it
rapidly follows that, in the particular case of Bernoulli nonuniform sampling, the correla-
tion equivalence (3.47) derived in Section 3.3 translates into

R0 = κ2Rw + κ(1− κ)σ2I, (5.35a)

R1 = κ2Rs + κ2Rw + κ(1− κ)P I + κ(1− κ)σ2I (5.35b)

under H0 and H1, respectively. In this formulation, the signal power and noise variance
are defined as P = 1

N tr(Rs) and σ2 = 1
N tr(Rw), respectively, which is consistent with

rs[0] and rw[0] in the stationary case. From this point, it is seen that if the signal and noise
processes are i.d.d., the equivalent covariance matrices at both hypotheses are the ones
for the uniform sampling case with a common scaling factor of κ, i.e., R0 = κσ2I and
R1 = κ(P + σ2)I. As the error exponents exclusively depend on SNR under the zero-
mean Gaussian assumption, the pseudo-distances will not change. This means that for
white spectra, the effect of nonuniform sampling is only appreciated with the effective
number of samples K, hence having the same asymptotic behavior.

For the general case, it is obtained that the pseudo-distances are exactly as those in the
uniformly sampled estimator-correlator (5.22) with equivalent SNR matrix

SNRκ =
[
κRw + (1− κ)σ2I

]−1
[κRs + (1− κ)P I] . (5.36)

As expected, SNR1 = SNR. An interesting problem is relating the general expression of
SNRκ to that of SNR as a function of κ. This will allow a derivation of a relationship
between SNR, sampling density and number of samples and, maybe, establish SNR walls.
By employing the Woodbury matrix identity and after some mathematical manipulations,
it follows that the noise autocorrelation matrix can be expressed as follows

SNRκ =

(
I +

1− κ
κ

Σ−1

)−1(
SNR + SNR

1− κ
κ

Σ−1

)
, (5.37)

where Σ is the normalized noise correlation matrix and the SNR in this scenario is the ratio
of signal and noise variances, i.e., SNR .

= P
σ2 . Note that SNR = SNRa if at least one of the

processes (noise or signal) is white, which is consistent with the definitions of SNR and
SNRa for the energy detector and estimator-correlator above.

In the important case of white noise, Σ = I, (5.37) reduces to (3.51), which is recalled in
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this Chapter:
SNRκ = κSNR + (1− κ)SNRI. (5.38)

In the sequel, the asymptotic behavior of the error exponents for the estimator-correlator
in Bernoulli nonuniform sampling is analyzed in the slow SNR and high SNR regimes.

False-alarm probability

The error exponents in PFA for the white noise case are given by (5.22a) and (5.22b) with
the equivalent SNR matrix (5.38). Therefore, in the low SNR regime, the following approx-
imation applies

D(H0‖H1) ≈ 1

2
κ2tr(SNR2) +

1

2
SNR2N(1− κ2). (5.39)

The former equation allows the following considerations caused by nonuniform sampling
with respect to the uniformly sampled estimator-correlator. Interestingly, the error expo-
nent in this setting is bounded by the extremes cases of κ = 1, i.e., uniform sampling, and
κ = 0, i.e., no samples. For κ = 1, the error exponent reduces to D(H1‖H0) ≈ 1

2tr(SNR2),
i.e., the error exponent of the estimator-correlator (5.25). On the other hand, for κ = 0, it
is obtained that the error exponent equals D(H0‖H1) ≈ 1

2SNR2N , which is indeed that of
the energy detector (5.14). In conclusion, the error exponent of the false-alarm probability
in the low SNR regime in Bernoulli nonuniform sampling is bounded by the best scenario
(uniform sampling estimator-correlator) and the worst scenario (energy detector). Also, it
follows that the energy detector provides a lower bound in performance of signal detection
in nonuniform sampling, as it behaves in the same way as if asymptotically no samples are
taken.

In the high SNR regime, the error exponent associated to PFA equals

D(H0‖H1) = NSNR, (5.40)

that is, the effect of nonuniform sampling is not experienced when SNR is relatively high.

Missed-detection probability

For the error exponent in PMD, the low SNR regime is equivalent to PFA, whereas in the
high SNR regime it follows from (5.31) that D(H0‖H1) approximates by

log det(SNRκ) = log det [κSNR + (1− κ)SNRI] . (5.41)

For κ = 0, the former expression reduces to N log(SNR), i.e., (5.18), whereas for κ = 1 goes
back to the uniformly sampled estimator-correlator (5.31).

An interesting problem consists in finding the optimum value of κ that maximizes the
error exponents in the error probabilities. For that purpose, in the following the KLD in
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the case of white noise are first analyzed. However, as a constrained optimization problem
with 0 ≤ κ ≤ 1, it follows that in any scenario the maximum error exponent is always
achieved by κ = 1, i.e., uniform sampling.

Relation to the Sparsity Level

For the white noise case, let c
.
= [SNR1, . . . , SNRN ]T be the vector containing the eigen-

values of the SNR matrix SNR. In an Q-sparse environment, the vector c contains only Q
nonzero elements. The sparsity level is defined as as

κ0
.
=

1

N
‖c‖`0 , (5.42a)

where the `0-norm counts the number of nonzero elements of c, i.e., ‖c‖`0 = Q. The
following lower-bounds on the operations on the SNR matrix SNR are noted. First, for
comparison purposes, a fixed average SNR is considered, i.e.,

1

N
tr(SNR) =

1

N

N∑
n=1

SNRn = SNRa (5.43)

for any sparsity pattern of the SNR. As a consequence, for large enough N , it is shown in
Appendix C.1 that

tr(SNR2) ≥ 1

κ0
tr2(SNR). (5.44)

Employing (5.44), it follows that the KLD (5.39) associated to both the false-alarm and
missed-detection error exponents in the low SNR regime are given by

D(H0‖H1) = D(H1‖H0) ≥ 1

2
tr2(SNR) · κ0 + (1− κ0)κ2

κ0︸ ︷︷ ︸
.
=ρ

, (5.45)

i.e., the KLD in nonuniform sampling is that of uniform sampling, i.e., (5.25), scaled by a
factor ρ which is a function of the sampling density and the sparsity level, i.e., the primary
signal occupancy.

5.2.5 Diversity in Signal Detection

Diversity has been introduced in communication systems to efficiently combat fading.
Based on the premise that the SNR in fading channels is a random variable, transmitting
the same signal through L separate fading channels will, with high probability, produce a
reliable signal at the output of the channel. Many techniques have been advocated to gen-
erate diversity, such as space diversity through multiple antennas, polarization diversity
though cross-polarized antennas, frequency diversity through different frequency carriers,
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and time diversity through coding and interleaving.
In a real scenario of spectrum sensing for cognitive radio, the diversity is obtained

by the secondary user through the use of multiple antennas (all the work by [ZLLZ10,
WFHL10, TNKG10, RVS10, RVVLV+11]) or time diversity (if the channel between the pri-
mary user and the secondary user has fast fading). In multi-frequency systems, frequency
diversity is exploited [FSVR11]. Slow and fast-fading with unknown parameters and prior
information is addressed in [FSW10].

In the following, it is assumed that the channel response between the primary users
and the secondary users is known by the latter. This knowledge can be obtained by exploit-
ing the transmission system employed by the primary users (e.g., orthogonal frequency-
division multiplexing (OFDM)) when this one is broadcasting, or extracting information
from the pilot sequences in a communication systems. Furthermore, coherent signal detec-
tion provides performance upper bounds on the best achievable error exponent, and the
behavior on the diversity L.

A general formulation to include both time correlation and diversity is the following.
Consider the reception of L independent signals of the form

xl[m] = sl[m] + wl[m], (5.46)

where sl[m] and wl[m] contain N consecutive signal and noise samples at the l-th path,
respectively, for the m-th observation, with l = 1, . . . , L and m = 1, . . . ,M . In a di-
versity scenario, the received signals sl[m] are the different signatures of the primary
user signal, u[m], multiplied by the channel gain hl[m], i.e., sl[m] = hl[m]u[m]. In a
slow-fading scenario, hl[m] ≈ hl. The joint time-diversity formulation is encompassed
by stacking the L vectors xl[m] in a larger vector of dimension NL denoted by x[m] =

(x1[m]T , . . . ,xL[m]T )T . By defining the channel vector as h = (h1, . . . , hL)T , it follows that

x[m] = h⊗ s[m] + w, (5.47)

where s[m] and w[m] have been similarly defined. As a result, the following PDF hold for
the spectrum sensing problem

p0(x) = CN (0,Rw) (5.48a)

p1(x) = CN (0,hhH ⊗Ru + Rw), (5.48b)

where Rw = E(w[m]wH [m]) is the NL × NL noise correlation matrix, and on the other
hand Ru = E(u[m]uH [m]) is the N ×N primary signal correlation matrix. The Kronecker
product hhH ⊗ Ru reflects the diversity in the hhH term and the time correlation in the
Ru term. The KLD associated to the error probabilities for the detection problem (5.48)
are given by the error exponents of the estimator-correlator (5.22) with a new associated
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NL×NL SNR matrix given by

SNR = R−1
w

(
hhH ⊗Ru

)
. (5.49)

Obtaining insights on (5.49) is difficult, as it jointly addresses the diversity and the time
correlation. In the special case of i.i.d. white noise (Rw = σ2I and defining Ru = PΣu and
SNR = P/σ2), the following low SNR and high SNR approximations hold for KLD.

False-alarm probability

By taking the asymptotic expression of the error exponent associated to the false-alarm
probability in the low SNR regime (5.25) with SNR = SNR(hhH ⊗Σu) it rapidly follows
that in a diversity scheme,

D(H1‖H0) ≈ 1

2
SNR2tr(Σ2

u)‖h‖4, (5.50)

where the property tr(A ⊗B) = tr(A) · tr(B) has been used. The error exponent evolves
with the squared value of the SNR, the squared value of the second-order statistics of the
primary signal, and the squared value of the squared norm of the diversity channel. For
L = 1 and h1 = 1, (5.50) reduces to (5.25). On the other hand, the high SNR behavior of
the KLD is given by the trace of the SNR matrix SNR, i.e.,

D(H1‖H0) ≈ N · SNR · ‖h‖2. (5.51)

The linear dependence with N and SNR is clear from (5.51). However, how the number
of paths in the diversity channel affects the false-alarm probability is hidden inside the
statistics of the ‖h‖2 term. By modeling the channel gains as independent complex Gaus-
sian variables with unit gain, it is shown in Appendix C.2 that the average error exponent
(5.51) in Rayleigh fading is given by

E[D(H1‖H0)] = LN · SNR. (5.52)

Therefore, in average, the number of paths in the diversity channel L plays the same role
as the observation size in the time-domain N . As a result, the false-alarm probability PFA

scales proportional to
logPFA ∝ −LN log SNR, (5.53)

i.e., at high SNR the false-alarm probability decreases as the LN -th power of the SNR,
which corresponds to a slope of −LN in the logarithmic-logarithmic scale.
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Missed-detection probability

Regarding the error exponent of the missed-detection probability, from (5.31) it is deduced
that in the high SNR regime,

D(H0‖H1) ≈ N · log
(

SNR · ‖h‖2 · N
√

det(Σu)
)
. (5.54)

In (5.54), the time correlation is evaluated by the geometric mean of the eigenvalues of the
primary signal correlation matrix Σu as N

√
det(Σu). The contribution of the SNR and the

diversity is, as expected, as the product SNR · ‖h‖2. This means that, contrary to the false-
alarm probability, the only parameter that affects to the slope of the probability is N , as is
a common factor in the error exponent. That is,

PMD ∝
1(

SNR · ‖h‖2 · N
√

det(Σu)
)N . (5.55)

Evaluating the average probability with respect to the fading is difficult, in the following
study the particularization to N = 1 is addressed. From a wider perspective, however, it
is seen that the effective SNR grows linearly with the number of diversity paths, as ‖h‖2 is
the sum of L squared magnitudes. This means that L does not change the slope of PMD in
the logarithmic scale, rather than produces a shift in the SNR.

5.2.6 Coherent Signal Detection

To be more precise with the diversity, in the sequel the observation size N is set to one.
Under this assumption, the signal model (5.46) reduces to the scalar expression xl[m] =

hl[m]u[m]+wl[m]. This expression can be further formulated in matrix notation in the case
of slow-fading as

x[m] = hu[m] + w[m], (5.56)

where now w[m] = (w1[m], . . . , wL[m])T and x[m] = (x1[m], . . . , xL[m])T . As a result, the
binary hypotheses problem (5.48) reduces to

p0(x) = CN (0,Rw) (5.57a)

p1(x) = CN (0, PhhH + Rw), (5.57b)

where P is the variance of u[m] and Rw = E(w[m]wH [m]) is the L × L noise correlation
matrix which exploits the noise correlation among the diversity paths. The KLD associated
to the error probabilities for the detection problem (5.57) are given by the error exponents
of the estimator-corrector (5.22) with an associated L× L SNR matrix given by

SNR = R−1
w PhhH . (5.58)
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In the special case of i.i.d. noises with equal variance σ2, the former SNR matrix reduces
to SNR = SNR · hhH , i.e., a matrix with rank equal to one. This derives to the following
low SNR and high SNR approximations of the KLD.

False-alarm probability

Either from (5.25) with an equivalent SNR as (5.58), or from (5.50) with N = 1, it follows
that in the low SNR regime the error exponent associated to the false-alarm probability in
this scenario becomes

D(H1‖H0) ≈ 1

2
SNR2‖h‖4. (5.59)

Mimicking the Rayleigh scenario as in the former developments, the average error expo-
nent with respect to the fading is derived in Appendix C.3 and is given by

E[D(H1‖H0)] =
1

2
(L+ 1) · L · SNR2. (5.60)

Interestingly, in the low SNR regime the the false-alarm probability is related to L by its
squared value. If L is large enough, then the false-alarm probability scales as

logPFA ∝ −2L2 · log(SNR), (5.61)

i.e., in a log-log scale, the false-alarm probability is linear with the SNR with slope −2L2.
Finally, in the high SNR regime, the following approximation holds

D(H1‖H0) ≈ SNR‖h‖2. (5.62)

In Rayleigh fading, the average of (5.62) is further given by

E[D(H1‖H0)] = L · SNR. (5.63)

Therefore, PFA decays with slope L in the logarithmic scale with SNR. Presumably, this
does not happen with the missed-detection probability, which is addressed in the follow-
ing analysis.

Missed-detection probability

In the low SNR, the KLD of PMD is the same as the KLD of PFA. Hence, the high SNR
regime is considered here. From (5.54) with N = 1, it follows that

D(H0‖H1) ≈ log
(
SNR‖h‖2

)
. (5.64)

97



As a direct consequence, the missed-detection probability scales as the inverse of the effec-
tive SNR SNR · ‖h‖2, i.e.,

PMD ∝
1

SNR · ‖h‖2 . (5.65)

As a concluding remark, the average missed-detection probability with Rayleigh fad-
ing is evaluated in Appendix C.4 and is given as

E[PMD] =
1

(L− 1)SNR
(5.66a)

for L > 1. This is a surprising result which states that, contrary to the false-alarm proba-
bility, the missed-detection probability asymptotically as M → ∞ and SNR → ∞ has an
effective SNR given by (L − 1)SNR. Therefore, the diversity does not introduce a change
in slope in the error probability, rather than only a shift in SNR.

5.3 Nonuniform Sampling Walls

5.3.1 Problem Formulation

This Section considers the problem of detecting the presence of a primary signal in the
additive noise model. Let s(t) and w(t) denote the wide-sense stationary (WSS) signal and
noise complex analytic processes, respectively. Within the band of interestB, it is assumed
that the additive noise is a zero-mean white Gaussian process with known PSD equal to
N0, whereas the signal has known spectral support and unknown power P 1. The spectral
support of s(t) is parameterized by the occupancy κ0 comprised within 0 < κ0 ≤ 1, which
is defined as the ratio between the `1-norm of the spectral support and B. The detector
must infer between the hypothesis H0 in which the observation process has only noise,
and the hypothesesH1 in which the observation process has both signal and noise.

The detection problem is cast as an hypotheses testing problem based on a set of N =

TB nonuniform samples acquired during a sensing period of T seconds. The aim of the
hypotheses testing problem is to exploit the side information available in the problem,
i.e., the noise variance, the sampling density and the primary signal autocorrelation. To
the end of the Chapter, the wideband regime B � 1 and asymptotically large number of
samples N � 1 are considered.

The sampling pattern ψn, for 0 ≤ n < N , is distributed according to a Bernoulli distri-

1Because this work focuses on detecting whether the band of interest is totally or partially occupied, a
general formulation on s(t) is adopted based on the normalized correlation matrix. This model encompasses
practical scenarios such as multiple primary signals s(t) =

∑
j sj(t), or the exploitation of channel state

information (CSI) s(t) =
∑
j hj(t) ∗ sj(t).
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bution, independent from the signal process, with parameter κ such that

P
[
ψn =

1√
κ

]
= κ, (5.67a)

P [ψn = 0] = 1− κ, (5.67b)

where 0 < κ ≤ 1. Therefore, as shown in Chapter 3, the second-order statistics of the
nonuniformly sampled vector2

x = Ψs, (5.68)

exhibit the following equivalence

Rx = κRs + (1− κ)P IN , (5.69)

where Rx
.
= E

[
xxH

]
, Rs

.
= E

[
ssH

]
, x

.
= (x0, . . . , xN−1)T , s

.
= (s0, . . . , sN−1)T , Ψ

.
=

diag(ψ0, . . . , ψN−1), and
xn = ψn · sn, (5.70)

where sn are uniformly samples at a rateB. Note thatP is the power of s(t). It is interesting
that, even in the noise free case, the correlation of a Bernoulli nonuniform sampling signal
suffers from a self interference term or noise enhancement term which is proportional to
the product between (1−κ) and the signal power. This self interference has white statistics,
i.e., it only affects to the main diagonal of Rs. It is also important to point out that the
signal power is preserved, since tr(Rx) = tr(Rs) for any value of κ. As a consequence,
the nonzero correlation lags suffer from an attenuation factor of κ, decreasing the overall
correlation of the Bernoulli nonuniform sampling signal. This is not surprising, as the
nonzero samples in x become more separate in average as κ decreases.

The detector acquires samples during a sensing time of duration T . Because this Chap-
ter focuses on the asymptotic performance of exploiting the side information of the prob-
lem, i.e., the noise variance, the sampling density and the primary signal autocorrelation,
the sensing time is scaled in order to satisfy a constant average nonzero samples in the
observation process equal to M . This parameter will be referred to as the number of ef-
fective samples, or simply the number of samples. This is straightforwardly accomplished
by setting the sensing time T to satisfy the relation TκB = M , where M is a constant
independent on κ. Under these assumptions, the signal detection problem reads

H0 : x = Ψw, (5.71a)

H1 : x = Ψ (s + w) , (5.71b)

2Even though (5.68) reminds the compressed sensing formulation, this work adopts a different approach
by considering zeros in the non-sampled positions. This allows to tackle the problem as a product of random
discrete-time sequences and conduct a second-order statistical analysis.

99



where the observation size is the nearest integer N to satisfy M = κN . Signal detection in
wideband regimes is a challenging problem due to the hard low SNR and sparsity condi-
tions. Let

SNR .
=

P

N0B
. (5.72)

Notice that the SNR of the problem is preserved in Bernoulli nonuniform sampling, as
the power is preserved for both the signal and noise processes. Clearly, for a fixed signal
power, it follows that when the sensing bandwidth increases as B � 1, the SNR asymp-
totically approaches to zero. In statistical signal detection, the signal detection problem
described in (5.71) is equivalent to consider

H0 : x ∼ g0(x), (5.73a)

H1 : x ∼ g1(x), (5.73b)

where g0(x) and g1(x) denote the Gaussian distributions of the observations underH0 and
H1, respectively3.

Let CN (µ,R) denote the N -dimensional circular symmetric complex Gaussian distri-
bution with mean µ and covariance matrix R. Then, g0(x) = CN (0,R0) and g1(x) =

CN (0,R1), where the correlation matrices are given, from (5.69) and (5.71), as

H0 : R0 = σ2IN , (5.74a)

H1 : R1 = σ2IN + PΣκ, (5.74b)

where σ2 = N0W is the total noise power, and Σκ is the normalized correlation matrix of
Ψs, given from (5.69) as

Σκ
.
= κΣs + (1− κ)IN , (5.75)

being Σs the normalized correlation matrix of s, related to P and Rs as Rs = PΣs. The
definition of the normalized correlation matrices Σκ and Σs has been done in analogy to
the noise correlation matrix, i.e., all satisfy tr(Σκ) = tr(Σs) = tr(IN ) = N . The matrix
Σκ is a function of the sampling density and the normalized correlation of s(t). In a cog-
nitive radio scenario the detector may have knowledge on the noise power σ2 and on the
normalized statistics of the signal. However, the knowledge on the signal power is rather
impractical. For this reason, this work considers signal detection in the general case of
unknown P and studies the effect of uncertainty around the knowledge of σ2.

3While underH0 the Gaussian assumption on the noise process is widely accepted, in general the distribu-
tion of the observations underH1 remains unknown. In this thesis, the properness of the Gaussian assumption
of s is twofold. Firstly, it has been proved that adopting the Gaussian distribution for the signal statistic is valid
in the low SNR regime [VV07]. And secondly, the Gaussian distribution is the least favorable distribution in
signal detection for a given signal power, as claimed in Appendix C.5. Furthermore, in practical scenarios
such as multiple primary signals s(t) =

∑
j sj(t), the Gaussian assumption holds for each sj(t) and, hence,

for s(t).
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5.3.2 Optimal Detector

In this Section, the formulation of the optimal test statistic to solve the signal detection
problem (5.71) in the Neyman-Pearson sense is discussed. The optimal test statistic that
exploits the available side information of the problem, i.e, the noise variance, the sampling
density and the primary signal autocorrelation, and addresses unknown parameters (P )

is given by the GLRT. The GLRT consists of the ratio of the PDF of the observations where
the unknown parameter is substituted by its maximum likelihood (ML) estimate. In the
sequel, the ML estimation of the signal power is first addressed for the case of B � 1.
The expression of the ML estimate is then used to formulate the GLRT. The asymptotic
performance of the GLRT is further analyzed for the asymptotic cases of large data records,
i.e., when the observation size N � 1.

The ML estimate of the signal power, derived in Appendix C.6, is given as B � 1 by

P̂ =
xHΣκx−Nσ2

tr(Σ2
κ)

. (5.76)

The estimate (5.76) admits the following two interpretations. At first, the term xHΣκx im-
plements a generalized energy detector in the norm defined by the Bernoulli nonuniform
sampling normalized correlation matrix. As the power in the observations includes the
noise contribution, the latter is compensated with the term Nσ2. The power estimation
is finally obtained after a normalization factor given by the trace of the squared value of
the Bernoulli nonuniform sampling normalized correlation matrix. A second interpreta-
tion is understood when arranging the numerator of (5.76) as tr[Σκ(xxH − σ2IN )], which
implements the scalar product between the Bernoulli nonuniform sampling normalized
correlation matrix and the matrix (xxH − σ2IN ). The latter evaluates solely the contri-
bution of the signal in the second-order statistic of the observations, because the rank-1
matrix xxH behaves as an estimation of the correlation matrix and the noise contribution
is balanced by subtracting its correlation matrix, i.e., σ2IN .

The GLRT is given by the ratio

L(x) =
CN (0, σ2IN + P̂Σκ)

CN (0, σ2IN )
≥ γ, (5.77)

where P̂ is given by (5.76), and the threshold γ defines the regions for whichH0 (L(x) < γ)

or H1 (L(x) ≥ γ) are decided. The threshold can be set analytically when the test statistic
(5.77) admits perfect statistical characterization, which is not the case in most situations
except in some special assumptions such as the asymptotic scenarios considered in this
work with B � 1 and N � 1. Under these premises, the GLRT signal detector is derived
in Appendix C.7, and is given as B � 1 by

T (x) = xHΣκx ≥ τ, (5.78)
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where the new threshold can be related to the original threshold by the expression

τ = σ2
[
N +

√
tr(Σ2

κ) log(γ)
]
. (5.79)

Interestingly, the expression of the GLRT signal detector (5.78) is simply given by the part
of the ML estimate of the signal power which involves the observations. It is also worth
noting that, in general, the non-negativity of the numerator of (5.76) is not guaranteed, and
therefore (5.76) is not properly an estimate of the signal power. If the constraint P ∈ R+ is
included as a complimentary Lagrange multiplier in the optimization problem involved in
the derivation of (5.76), it will follow that the non-negativity must be forced by max(0, P̂ ).
However, this remains unnecessary when the purpose of (5.76) is signal detection, because
the mathematical operations which relate (5.76) and (5.78) incur in a shift and scaling in
the computation of the threshold, independent on the observations.

Recall that in this work the GLRT signal detector (5.78) is derived under the wideband
assumptionB � 1. Since the wideband regime is equivalent to the low SNR regime, (5.78)
puts in remembrance classical results [Kay98a] and several works in the recent literature.
One recent method for spectrum sensing in open spectrum communications based on the
correlation matching approach has been reported in [PNLRS09]. Although [PNLRS09]
adopts a different technique, it is worth noting that (5.78) acts as a correlation matching es-
timate when the candidate matrix is the Bernoulli nonuniform sampling normalized corre-
lation matrix. This is not surprising, as the correlation matching behaves as an equivalence
to ML in the low SNR regime [Por08]. Similarly, the recent work [QZSS11] has shown that
exploiting spectral features, i.e., a second-order statistic of the primary signal, is optimal
for asymptotically low SNR regimes.

5.3.3 Asymptotic Statistical Characterization

The statistical characterization of GLRTs is usually a hard problem. The GLRT signal de-
tector (5.78) is a quadratic form on the observation vector x. The statistics of a quadratic
form is known if and only if the matrix involved in the quadratic form has properties
of symmetry and idempotence within the covariance matrix of the observations [GM69].
That is not the case, as in general Σκ is not idempotent, i.e., Σ2

κ 6= Σκ, nor it is idempotent
within any correlation matrix under the two hypotheses (5.74), i.e., ΣκR0Σκ 6= Σκ and
ΣκR1Σκ 6= Σκ. Alternatively, the quadratic form (5.78) has the same distribution as the
following weighted sum of independent Chi-square random variables with two degrees
of freedom [Gra76]

T (x) ∼
r∑

n=1

λn(RxΣκ)wn
2

, (5.80)
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Figure 5.2: Theoretical (lines) and empirical (stems) PDF of the GLRT signal detector under both
hypotheses, for several sampling densities of a randomly generated signal with squared correla-
tion coefficient of 8/3, observation size of 64 samples, and SNR of −10 dB.

where r = rank(Σκ), wn ∼ X 2
2 and the weights λn(RxΣκ) denote the n-th largest eigen-

value of the quadratic form, given by

H0 : λn(R0Σκ) = σ2λn(Σκ) (5.81a)

H1 : λn(R1Σκ) = σ2λn(Σκ) + Pλ2
n(Σκ), (5.81b)

where λn(Σκ) the n-th largest eigenvalue of Σκ. As N � 1, the former weighted sum
of Chi-square random variables can be approximated by Gaussian distributions [AS64]
whose means and variance are derived in Appendix C.8. As a result, the GLRT signal
detector (5.78) is asymptotically distributed as

H0 : T (x) ∼ N
(
Nσ2, 2Nσ4ρ

)
(5.82a)

H1 : T (x) ∼ N
(
Nσ2(1 + SNRρ), 2σ4tr(Σ2

κ(IN + SNRΣκ)2)
)
, (5.82b)

whereN (µ, σ2) denotes the continuous Gaussian probability distribution with mean µ and
variance σ2. The properness of the Gaussian distribution for T (x) is corroborated in Figure
5.2, which shows the theoretical (5.82) and empirical PDF in four sampling density scenar-
ios. As it can be appreciated, the Gaussian distribution is more pessimistic than the true
distribution. Hence, the Gaussian assumption on the distribution of the GLRT signal de-
tector (5.78) behaves again as a worst case formulation. Also, it is worth noting that as the
sampling density diminishes, the theoretical distribution behaves as better approximation
because the Bernoulli nonuniform sampling observations become more uncorrelated. In
(5.82), the squared correlation coefficient has been introduced as

ρ
.
=

1

N

r∑
n=1

λ2
n(Σκ). (5.83)
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This parameter, which can be rewritten as ρ = (1/N)tr(Σ2
κ), is a measure of dependence,

and plays a relevant role in the rest of the Chapter. The parameter ρ strongly depends
on the sampling density κ of Bernoulli nonuniform sampling, as well as the structure of
the correlation matrix Σs. By employing the Cauchy-Schwarz inequality

∑r
n=1 λ

2
n(Σκ) ≥

(1/N) (
∑r

n=1 λn(Σκ))2 and recalling the normalization
∑r

n=1 λn(Σκ) = N , it follows that
the squared correlation coefficient (5.83) is lower bounded by ρ ≥ 1, where the equality
ρ = 1 is achieved for Σκ = IN . It is easy to see from the Bernoulli nonuniform sampling
correlation equivalence (5.75) that this situation is asymptotically true as κ � 1. On the
other extreme, since ρ computes the sum of the squared value of the eigenvalues of Σκ, the
maximum of ρ is achieved when Σκ has a unique eigenvalue equal toN . This corresponds
to the uniform sampling (κ = 1) fully correlated case (e.g., deterministic signals employed
as pilots) in which Σκ is a rank-1. In such a scenario, ρ = N . Therefore, the squared
correlation coefficient is comprised within the interval 1 ≤ ρ ≤ N .

5.3.4 Frequency-Domain Interpretation

In [ZPQ10], it has been shown that quadratic detectors can be approximated by the corre-
lation between the periodogram of the observations and an spectral mask corresponding
to the N -points sampled vector of the Fourier transform of the matrix involved in the
quadratic detection. In fact, this approximation behaves asymptotically as N � 1 equiv-
alently to the optimum quadratic detector, because the matrix involved in the quadratic
detection is equivalent to a circulant matrix whose eigenvalues are given by the spectrum
evaluated at the n-th frequency bins and whose eigenvectors are from the Fourier matrix
[Gra06]. In this work, the GLRT signal detector (5.78) is asymptotically equivalent to the
frequency-domain test

T (x) ' N

2π

∫ π

−π
φκ(ω)P (ω)dω, (5.84)

In (5.84), φκ(ω) is the normalized spectrum of the Bernoulli nonuniform sampling signal
(i.e, the frequency-domain version of Σκ) normalized to the unit power as

1

2π

∫ π

−π
φκ(ω)dω = 1, (5.85)

and P (ω) is the periodogram of the observations, i.e.,

P (ω) =
1

N

∣∣eH(ω)x
∣∣2 , (5.86)

where e(ω)H = [1 e−ω . . . e−(N−1)ω].
Analogously, the squared correlation coefficient ρ defined in (5.83) admits the following

104



asymptotic frequency-domain implementation

ρ ' 1

2π

∫ π

−π
φ2
κ(ω)dω. (5.87)

Because φκ(ω) is normalized, the squaring operation in (5.87) attenuates the areas in which
the spectrum is low and preserves the areas in which the spectrum is high. Therefore, the
frequency-domain squared correlation coefficient is a measure of the concentration of the
spectrum in frequency. In Bernoulli nonuniform sampling, the spectrum of the observa-
tions suffers from the self interference term or noise enhancement term analogous to the
normalized correlation (5.75). The normalized spectra are then related by the linear com-
bination

φκ(ω) = κφs(ω) + (1− κ), (5.88)

being φs(ω) the normalized spectrum of s(t). Restricting the study to flat spectrum signals4

with unknown spectral support and known occupancy κ0, it rapidly follows that the nor-
malized spectrum of s(t) is of the form φs(ω) = 1/κ0 when ω lies in the spectrum support,
and φs(ω) = 0 otherwise. This formulation allows to parameterize the frequency-domain
squared correlation coefficient as a function of the sampling density and the occupancy by

ρ ' κ0 + (1− κ0)κ2

κ0
, (5.89)

which is in fact the same factor ρ that affects the KLD in the Stein’s lemma in (5.45). The
former expression will essentially describe the behavior of the asymptotic performance of
the GLRT signal detector (5.78) in terms of the relation between κ and κ0. To this point,
the coherence between (5.83) and (5.89) is complemented in the following extreme cases.
When the occupancy approaches to one, ρ ' 1 regardless the sampling density κ. This
corresponds to the case in which the Bernoulli nonuniform sampling signal has white
statistics, i.e., Σκ = IN , and the GLRT signal detector only exploits the zero lag correla-
tion. Finally, if the sampling density approaches to one (uniform sampling), the remaining
terms simplify to ρ ' 1/κ0 which increases inversely proportional to the occupancy. There-
fore, the frequency-domain squared correlation coefficient is comprised within the interval
1 ≤ ρ ≤ 1/κ0, provided that N � 1/κ0.

4The properness of adopting the flat spectrum assumption is threefold. Firstly, it allows to obtain clear
insights as the frequency-domain squared correlation coefficient is characterized by a single parameter of
the primary signal, i.e, the occupancy κ0. Secondly, the flat spectrum assumption holds in many practical
primary systems, such as terrestrial digital video broadcasting (DVB-T) based OFDM. And thirdly, for a given
occupancy, the flatness assumption acts as a worst case scenario, as any signal with equal power and non-flat
spectrum will exhibit larger correlation coefficient. This claim is proved in Appendix C.9.
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5.3.5 Asymptotic Performance

The performance of the GLRT signal detector (5.78) is evaluated by means of the error
probability pair (PFA, PMD), namely the false-alarm and missed-detection probabilities,
defined as PFA

.
= P [T (x) ≥ τ | H0] and PMD

.
= P [T (x) < τ | H1], respectively. From the

asymptotic PDF (5.82), in Appendix C.10 it is shown that the minimum SNR for achiev-
ing a target error probability pair (ε0, ε1) scales with the observation size and the squared
correlation coefficient as

SNRmin ∝
1√
Nρ

. (5.90)

The rate at which SNRmin decreases is strongly related to the correlation level present in
the Bernoulli nonuniform sampling signal. Restricting to uniform sampling (κ = 1 and
N = M ), the squared correlation coefficient (5.83) evaluates the correlation level of s(t).
Therefore, the scaling of SNRmin has the following extreme values. On the one hand, the
worst scenario is given by the lower bound ρ = 1, which represents a totally uncorrelated
signal. In such a case, SNRmin ∝

√
1/M , which corresponds to the scaling of the SNR in

the energy detector [Kay98a]. This is a known detection result in digital communications,
as the error probability in noncoherent communications (e.g., detection or synchronization
of unknown waveforms) scales as the inverse of the squared root of the sensing time. On
the other hand, the best scenario is given by the upper bound ρ = M , which represents a
fully correlated signal. In such a case, it follows that SNRmin ∝ 1/M , i.e., the minimum
SNR scales inversely proportional to the observation size. This is also a known result in
digital communications, as the error probability in coherent communications (e.g., detec-
tion or synchronization of known waveforms) scales with the inverse of the sensing time
[Kay98a].

For arbitrary sampling density 0 < κ ≤ 1, one can evaluate the evolution of SNRmin by
making use of the frequency-domain interpretation of the squared correlation coefficient
(5.87). After some mathematical manipulations and recalling that N is the nearest integer
that satisfies M = κN , it follows that the minimum SNR scales as

SNRmin ∝
√

κκ0

κ0 + (1− κ0)κ2
· 1√

M
. (5.91)

The importance of the former expression is given by the fact that it evaluates the rate at
which the minimum SNR required for signal detection in Bernoulli nonuniform sampling
scales with the sampling density and the occupancy. In Figure 5.3, the normalized mini-
mum SNR is plotted against the sampling density for several occupancies. It is appreciated
that if the occupancy is below κ0 < 1/2, there exists a sampling density given by

κmin =

√
κ0

1− κ0
, (5.92)
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Figure 5.3: Evolution of the minimum SNR as a function of the sampling density and the occu-
pancy, and location of the sampling densities that achieve worst case minimum SNR.

above which the GLRT signal detector is able to exploit the remaining correlation in the
Bernoulli nonuniform sampling signal. Hence, the minimum SNR is monotonically de-
creasing (improves) with the sampling density (higher rates) only if κ > κmin. On the
other hand, for sampling densities κ < κmin, the white self interference incurred in Ber-
noulli nonuniform sampling degrades the signal autocorrelation in such a level that the
GLRT signal detector essentially resorts to energy detection. Therefore, in this range the
minimum SNR decreases with a rate of

√
κ as κ� 1, because the sensing time is increased

with a factor of κ. In conclusion, the minimum sampling density κmin acts as a worst case
scenario on the minimum SNR in Bernoulli nonuniform sampling signal detection. Inter-
estingly, both the location of the minimum sampling density and the value of the worst
case minimum SNR (red cross markers in Figure 5.3) increase with the occupancy. This
corroborates that smaller sampling rates can be attained when the occupancy of the signal
is small compared to B. In the limit, as κ0 � 1, the minimum sampling density can be ap-
proximated by κmin ≈

√
κ0. In such a case, the Bernoulli nonuniform sampling sampling

density must be higher than the squared root of the occupancy in order to take advantage
of the side information of the problem, i.e., the noise variance, the sampling density and
the primary signal autocorrelation.

A final highlight is that an alternative indicator of the asymptotic performance of the
GLRT signal detector is the normalized minimum sensing time Tmin. This parameter be-
haves as a measure of complexity involved in the detection process, as the complexity of
a quadratic form with Toeplitz matrices is of the order O(2N). From (5.90) and after some
mathematical manipulations, it follows that the normalized minimum sensing time that
achieves a target error probability pair scales with the SNR and the squared correlation
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coefficient as
Tmin ·B ∝

1

SNR2ρ
, (5.93)

i.e., it scales inversely to the squared value of the SNR and with the inverse of the squared
correlation coefficient.

5.3.6 Sampling Walls in Noise Uncertainty

This Section addresses the performance of (5.78) in the presence of noise uncertainty. Be-
cause the noise variance cannot be known with infinite precision in real physical systems,
a small error model is adopted as noise uncertainty. This model imposes fundamental lim-
itations on the detection performance, even though when the noise level in silent times
is estimated in a time duration that do not scale with the sensing time [MGC11]. These
limitations are presented in terms of SNR walls [TS08]. In this thesis, these detection walls
are extended to sampling walls, i.e., sampling densities below which the detection is not
possible, even for infinite sensing time.

Let σ̂2 be a random variable denoting the prior information on the noise variance. In
the small error model, it is assumed to be uniformly distributed within the range

σ2/δ ≤ σ̂2 ≤ δσ2. (5.94)

In the sequel, this will be referred as having a noise uncertainty of u = 10 log10 δ dB. From
the asymptotic PDF (5.82), the error probability pair (ε0, ε1) cannot be guaranteed because
the uncertainty on the noise variance translates to a wrong setting of the threshold (5.79).

In this work, the threshold is set to guarantee a given outage on the false-alarm and
missed-detection probabilities. In other words, the value of τ delivers a false-alarm PFA

and a missed-detection PMD such that P[PFA ≥ ε0] < ε and P[PMD ≥ ε1] < ε, 0 ≤ ε < 1,
where the probability is evaluated in the randomness of σ2. If ε = 0, then the target error
probability pair is satisfied for any range of σ̂2 (worst case approach). In Appendix C.11, it
is shown that the minimum SNR for achieving a target error probability pair (ε0, ε1) with
outage probability ε scales with the observation size and the squared correlation coefficient
as

SNRmin ∝
1√
Nρ

+
U − 1

ρ
, (5.95)

where U a parameter that relates the uncertainty level and the outage probability as

U =
δ2(1− ε) + ε

δ2ε+ 1− ε . (5.96)

Notice that for ε = 0, U becomes the peak-to-peak ratio of the uncertainty model. By
comparing (5.95) to (5.90), it is easy to see that the noise uncertainty incurs in a penalty
in terms of SNR which is inversely proportional to the squared correlation coefficient and
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Region Interval
Unfeasibility Region 0 ≤ SNR < κ0(U − 1)

Sampling Walls Region κ0(U − 1) < SNR < U − 1
Wallfree Region SNR > U − 1

Table 5.1: SNR Regions for Sampling Walls.

that it is always nonnegative, as U ≥ 1. This term is referred as the SNR wall associated to
the GLRT signal detector (5.78), defined as

SNRwall
.
= lim

N→∞
SNRmin =

U − 1

ρ
. (5.97)

In the worst case of uncorrelated signal (ρ = 1), the SNR wall is linear with the parameter
(5.96) as SNRwall = U−1. This is the classical energy detector SNR wall [TS08]. In the most
favorable scenario of fully correlated signal, i.e., when ρ = N , the SNR wall improves as it
scales inversely proportional to the observation size.

The SNR wall (5.97) admits the following frequency-domain interpretation by plugging
the expression of the squared correlation coefficient that relates the Bernoulli nonuniform
sampling sampling density and the occupancy. This leads to

SNRwall =
κ0

κ0 + (1− κ0)κ2
· (U − 1). (5.98)

For Nyquist uniform sampling, i.e, κ = 1, the SNR wall is directly related to the occu-
pancy as SNRwall = κ0(U − 1). This means that the SNR wall is smaller when the primary
signal has low occupancy, because the signal detector preserves the ability of distinguish-
ing a narrowband signal immersed in white noise, regardless the exact level. On the con-
trary, for a very low sampling density, i.e., κ approaching zero, the SNR wall approaches
the energy detector: SNRwall = U − 1. The two aforementioned SNR walls, which corre-
spond to Nyquist uniform sampling and energy detector, define the SNR region in which
sampling walls are experienced. In Table 5.1, the three following SNR regions are intro-
duced:

• First, the unfeasibility region is the SNR region characterized by the inability of the
GLRT signal detector (5.78) to guarantee the target error probabilities, even for an
infinite number of samples.

• Second, the wallfree region is lower bounded by the SNR wall of the energy detec-
tor. In this region, the nonexistence of sampling walls is guaranteed regardless the
combination of sampling density and primary signal occupancy.

• And third, the sampling walls region is the SNR region comprised within the SNR
walls κ0(U − 1) and U − 1. The existence of sampling walls inside this region is
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consequence from the feasibility condition SNR > SNRwall in (5.98).

After some mathematical manipulations, the feasibility condition (5.98) is translated to the
feasibility condition

κ > κwall, (5.99)

where the sampling wall κwall is given as a function of the noise uncertainty, the primary
signal occupancy and the SNR by the following expression

κwall =

√
κ0(U − 1− SNR)

(1− κ0)SNR
. (5.100)

The sampling wall (5.100) is a fundamental limit, below which detection is not feasible, i.e.,
the target error probabilities cannot be guaranteed. From (5.100), it is seen that the sam-
pling wall is proportional to the occupancy. Therefore and as expected, smaller sampling
densities can be achieved in low occupancy scenarios.

Finally, an alternative representation of sampling walls is reported through the normal-
ized minimum sensing time that achieves the target error probabilities, Tmin. By rewriting
(5.95), the normalized minimum sensing time scales as

Tmin ·B ∝
1

ρ (SNR− SNRwall)
2 , (5.101)

i.e., inversely proportional to the squared correlation coefficient and with asymptotes lo-
cated at the SNR walls and sampling walls.

5.4 Numerical Results

5.4.1 Stein’s Lemma

Simulation results are provided to assess the behavior of the error probabilities of the en-
ergy detector (5.11) and the estimator-correlator (5.21) in low SNR conditions. More specif-
ically, the linear behavior of the logarithm of the error probabilities as well as the tightness
of the Stein’s lemma are evaluated. In the sequel, the number of observationsM vary from
1 to 1024 and are equally spaced in a base-2 logarithmic scale.

The Stein’s lemmas on the false-alarm probability and missed-detection probability for
the energy detector (5.11) are evaluated in Figures 5.4 and 5.5, respectively, for N = 2.
As it can be appreciated in both figures, the error probabilities in signal detection obey a
linear scaling with the number of observations as M →∞. Furthermore, the rate at which
the error probabilities diminish with M , i.e., the slope associated to the error exponents,
is asymptotically given by the KLD (5.13) which depend on the SNR of the problem, as
well as the observation size N . As the scenario conditions are in the low SNR regime, the
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Figure 5.4: False-alarm probability versus observation size and simulated false-alarm error ex-
ponent versus the number of observations compared to the theoretical error exponents for the
energy detector.
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Figure 5.5: Missed-detection probability versus observation size and simulated missed-detection
error exponent versus the number of observations compared to the theoretical error exponents for
the energy detector.

asymptotic error exponents depend on the squared value of the SNR. Therefore, the three
error exponents in the right hand of the Figures are equally spaced, as the SNR points are
equally spaced as well in the logarithmic scale. Also, because of the low SNR regime, both
false-alarm and missed-detection probabilities show very similar performances in terms of
achievable error exponents. This corroborates the fact that the KLD (5.22) have the same
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Figure 5.6: False-alarm probability versus number of observations and simulated false-alarm er-
ror exponents versus number of observations compared to the theoretical error exponents for the
estimator-correlator.

approximation in the low SNR regime.
Secondly, the asymptotic performance of the estimator-correlator (5.21) is evaluated in

terms of Monte Carlo trials on the error probabilities in several low SNR conditions. In
this example, the following simple correlation matrix Rs = SNR[1 −0.5;−0.5 1] has been
employed, and Rw = I. The false-alarm probability and its associated error exponent is
depicted in Figure 5.6, whereas the missed-detection probability and its associated error
exponent is depicted in Figure 5.7. Under the same conditions of SNR, observation size,
and number of samples, the estimator-correlator performs slightly better than the energy
detector as it is able to exploit the correlation of the signal in Rs. This is seen in the asymp-
totic error exponents (5.22) which, for white Gaussian noise, reduce to SNR = 1

σ2 Rs. Fi-
nally, as expected, for arbitrarily large M , e.g., for M ≥ 100, the linear behavior of the
logarithm of the error probabilities with M is observed, as well as the tightness of the
Stein’s lemma for M ≥ 500.

Thirdly, the behavior of the Stein’s lemma in Bernoulli nonuniform sampling is illus-
trated in Figure 5.8 and Figure 5.9 for an SNR of −10 dB. In both Figures, where the error
probabilities and their associated simulated and theoretical error exponents are depicted
for several sampling densities, it can be appreciated how the Stein’s lemma in this sce-
nario accurately predicts the slope of the error probabilities as M grows. In particular, the
error exponents match the KLD of the estimator-correlator (5.22) with the equivalent SNR
matrix (5.37) in Bernoulli nonuniform sampling. Further as expected, the error exponents
suffer from degradation as the sampling density is decreased due to the noise enhance-
ment phenomenon.
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Figure 5.7: Missed-detection probability versus observation size and simulated missed-detection
error exponent versus the number of observations compared to the theoretical error exponents for
the estimator-correlator.
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Figure 5.8: False-alarm probability versus number of observations and simulated false-alarm er-
ror exponents versus number of observations compared to the theoretical error exponents for the
estimator-correlator in Bernoulli nonuniform sampling.
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Figure 5.9: Missed-detection probability versus observation size and simulated missed-detection
error exponent versus the number of observations compared to the theoretical error exponents for
the estimator-correlator in Bernoulli nonuniform sampling.

Finally, the false-alarm probability and its associated error exponent of the estimator-
correlator in coherent signal detection with N = 1 is depicted in Figure 5.10, whereas the
missed-detection probability and its associated error exponent is plotted in Figure 5.11. In
both figures, several diversity levels L are considered, at an average SNR of −10 dB. In
this particular scenario, the Stein’s lemma has been applied on the KLD of the estimator-
correlator, i.e, (5.22), with the SNR matrix (5.58), where the diversity channel h has been
generated as i.i.d. complex Gaussian with unit variance. Apart from noticing that in this
scenario the Stein’s lemma provides a tight bound on the error exponents as well, it can be
appreciated how the diversity incurs a high improvement in the slope of the error expo-
nents, as predicted in Section 5.2.6.

5.4.2 Sampling Walls

In this Section, the performance of the GLRT signal detector (5.78) and the behavior of the
fundamental limits derived in this Chapter are empirically evaluated. In what follows,
the primary signal is generated according to the DVB-T standard in the 2k-mode with
Q = 8 bands, which exhibits a flat spectrum in the spectral support and allows concrete
configurations of the occupancy.

The performance of the GLRT signal detector (5.78) in Bernoulli nonuniform sampling
is evaluated in terms of the false-alarm and missed-detection probabilities in the following
scenarios of occupancies and noise uncertainties. In the following, the number of samples
has been fixed to M = 64 samples. First, Figure 5.12 plots the receiver operating charac-
teristics (ROC) at two values of SNR for several occupancies when the sampling density

114



0 500 1000
10

−3

10
−2

10
−1

10
0

Number of observations

F
a
ls

e
−

a
la

rm
 p

ro
b
a

b
ili

ty

 

 

0 500 1000
−10

0

−10
−1

−10
−2

−10
−3

Number of observations

F
a
ls

e
−

a
la

rm
 e

rr
o
r 

e
x
p
o
n
e
n
t

L = 1

L = 2

L = 3

Stein’s lemma

Figure 5.10: False-alarm probability versus number of observations and simulated false-alarm
error exponents versus number of observations compared to the theoretical error exponents for
the estimator-correlator in coherent signal detection.
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Figure 5.11: Missed-detection probability versus observation size and simulated missed-
detection error exponent versus the number of observations compared to the theoretical error
exponents for the estimator-correlator in coherent signal detection.
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Figure 5.12: Theoretical (lines) and empirical (markers) ROC for several occupancies at the mini-
mum sampling density and two values of SNR.

of Bernoulli nonuniform sampling has been set to κ = κmin, according to the expression
(5.92). Markers denote the empirical probabilities obtained through 100,000 random real-
izations of the Bernoulli nonuniform sampling with occupancy κ0. Because the sampling
density has been set to the minimum sampling density, the ROC depicted in Figure 5.12
are fundamentally worst case scenarios. In other words, the maximum penalty incurred
in Bernoulli nonuniform sampling is evaluated. At an SNR = −7.5 dB, it can be appreci-
ated that the theoretical false-alarm and missed-detection probability pair given in (C.20)
and (C.22) in Appendix C.10 behave as good approximations of the empirical probabili-
ties. However, as the SNR increases, it is seen that the theoretical expressions based on the
Gaussian assumption act as a worst case scenario, being an upper bound on the empirical
missed-detection probability for any false-alarm probability. In both SNR ranges, the per-
formance of the GLRT signal detector improves with smaller occupancies. For instance,
for a false-alarm probability of 10% and SNR = −2.5 dB, a signal with an occupancy of
12.5% has an improvement in terms of missed-detection probability of almost two orders
of magnitude with respect to the energy detection of white signals.

Analogous results are obtained in the evolution of the complimentary missed-detection
probability, as plotted in Figure 5.13 against the SNR for a fixed false-alarm probability of
1% for several occupancies when the sampling density of Bernoulli nonuniform sampling
has been also set to κ = κmin. Markers denote the empirical probability obtained through
100,000 random realization of the Bernoulli nonuniform sampling and a flat spectrum sig-
nal with occupancy κ0. In this plot, it is noted that for a fixed missed-detection probability
level, the gain attained with Bernoulli nonuniform sampling in low occupancy scenarios
is of several dBs of SNR. Further, the penalty incurred by a noise uncertainty of u = 0.5 dB
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Figure 5.13: Theoretical (lines) and empirical (markers) complimentary missed-detection proba-
bility versus SNR for several occupancy at the minimum sampling density, with (red) and without
(black) noise uncertainty.

with a probability outage of ε = 0.1 is of the same order regardless the occupancy of the
signal, and implies a shift in the missed-detection probability of about 1-2 dB.

In this thesis, two fundamental detection walls have been derived under noise un-
certainty, namely the SNR walls and the sampling walls. The theoretical SNR walls and
sampling walls are visually depicted as asymptotes in Figure 5.14 and 5.15, respectively,
both plotting the evolution of the normalized minimum sensing time (5.101) for a target
error probability pair ε0 = ε1 = 0.01. In both figures, markers denote the empirical sensing
times obtained through 100,000 random realizations of the Bernoulli nonuniform sampling
signal.

The SNR walls are illustrated in Figure 5.14 when plotting the normalized minimum
sensing time versus the SNR for several sampling densities for an occupancy of 37.5%.
When there is no noise uncertainty (u = 0 dB), the scaling of Tmin with the SNR is linear
in the logarithmic scale, according to (5.93). In other words, for every increase of 5 dB in
SNR, the target error probability pair can be achieved 10 times faster. Further, sampling
at a lower density also requires sensing during a larger period of time. Finally, when the
noise variance has an uncertainty of u = 0.5 dB with a probability outage of ε = 0.1, the
SNR walls (5.98) appear as asymptotes on the normalized minimum sensing time, as if
SNR ≤ SNRwall, the false-alarm and missed-detection target error probability pair cannot
be achieved regardless the normalized minimum sensing time devoted to detection. Also,
as it can be appreciated in the expression of the SNR walls, the location of the walls moves
toward higher SNRs as the sampling density is smaller. The empirical results validate both
the slope of the minimum sensing time with the SNR and the location of the SNR walls for
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Figure 5.14: Theoretical (lines) and empirical (markers) evolution of the normalized minimum
sensing time as a function of the SNR for several sampling densities, several noise uncertainties,
and occupancy of 3/8.

the sampling densities considered.
On the other hand, the sampling walls are illustrated in Figure 5.15 when plotting the

normalized minimum sensing time versus the sampling density for several occupancies
and for a fixed SNR of−11.5 dB. For a given occupancy, the normalized minimum sensing
time is monotonically increasing when moving toward smaller sampling densities. Since
the SNR conditions are inside the sampling wall region, the sampling walls (5.100) appear
as asymptotes in the normalized minimum sensing time. For instance, for an occupancy
of κ0 = 1/8 and a noise uncertainty of u = 0.5 dB, the SNR wall in the energy detector
and the SNR wall in Nyquist uniform sampling are given by U − 1 = −10.15 dB and
κ0(U − 1) = −19.18 dB, respectively. Hence, for SNR = −11.5 dB, the inequality

κ0(U − 1) < SNR < U − 1 (5.102)

is satisfied. The location of the specific sampling wall is given, from (5.100), by κwall =

0.2275, which is slightly below the minimum sampling density κmin =
√

1/7 = 0.3780.
In other words, sampling below κmin makes impossible signal detection based on the sig-
nal autocorrelation, while sampling below κwall makes the target error probability pair
unattainable. Finally, the empirical markers confirm the existence and location of sampling
walls for the occupancies considered, as well as the behavior of the minimum sensing time
with the sampling density of Bernoulli nonuniform sampling.
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Figure 5.15: Theoretical (lines) and empirical (markers) evolution of the normalized minimum
sensing time as a function of the sampling density for several occupancies and noise uncertain-
ties, at SNR of −11.5 dB.

5.5 Conclusions

In this Chapter, the asymptotic behavior of the error probabilities in signal detection has
been addressed by means of the Stein’s lemma in several scenarios including the energy
detector, the estimator-correlator, nonuniform sampling, diversity and coherent detection.
It has been shown that the error exponents in the energy detector and the estimator-
correlator depend on the observation size and the SNR profile of the problem. Closed-form
expressions of the asymptotic relation between observation size and SNR have been ob-
tained. Simulation results have been reported to assess the linear behavior of the logarithm
of the error probabilities, as well as to evaluate the tightness of the lemma.

Furthermore, closed-form expressions of sampling walls in Bernoulli nonuniform sam-
pling have been derived in the presence of noise uncertainty. The optimal low SNR GLRT
signal detector has been derived. The asymptotic statistical characterization of the test
has provided theoretical insights into the minimum SNR, false-alarm probability, missed-
detection probability, SNR walls and sampling walls as functions of the primary signal
occupancy and sampling density. Numerical results have been reported to assess the va-
lidity of the derived theoretical expressions.
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Chapter6
Cyclostationary Primary Signal Detection

6.1 Introduction

Cyclostationary signal detection is a problem of interest in cognitive radio networks, as
cyclostationary processes exhibit a form of frequency diversity which can be exploited
by secondary users to perform spectrum sensing. Even though their robustness in front
of noise uncertainty, cyclostationary-based detectors are highly sensible to the frequency-
selective nature of the primary-to-secondary propagation channel. For this reason, this
Chapter focusses on the design of cyclostationary detectors under the assumptions of un-
known white noise, unknown timing parameter, and unknown channel gains.

6.1.1 Quadratic Sphericity Test

A first invariant detector is proposed by deriving a blind detector based on the squared
mean to arithmetic mean ratio of the eigenvalues of the autocorrelation matrix of the ob-
servations, denote as the quadratic sphericity test (QST). Even though this detector does
not exploit cyclostationarity, it exhibits invariance with respect to the noise power and
the channel gain, important properties for the derivation of cyclostationary detectors, as
channel fading estimation is required. First, a test statistic which is optimal in terms of a
correlation-matching of the second-order statistics of the problem is derived. The QST is

S +W −→ Uniform Sampling −→ X −→ Cyclostationary Signal Detection −→ T (X)

Figure 6.1: Cyclostationary primary signal detection problem.
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derived by optimizing the correlation-matching cost function with respect to the unknown
channel fading coefficients.

Prior work related to the QST is detailed as follows. Spectrum sensing detectors based
on the autocorrelation matrix of the observations are reported in [PNLRS09, ZL09, QZSS11].
These works exploit the structure of the correlation matrix of the transmitted primary sig-
nal, but fading is not considered. Spectrum sensing detectors based on the eigenvalues
of the sample covariance matrix include the maximum to minimum eigenvalue (MME)
[ZcL09] and the normalized maximum eigenvalue (NME) [ZLZ08]. The latter is considered
in the numerical results for comparison. There is also a large body of spectrum sensing
detectors taking into account unknown parameters, e.g., [ZLLZ10, TNKG10, RVVLV+11,
VVLVS11, SAVVLV12]. However, these works exploit the spatial correlation that arises
from the use of multiple antennas. In this thesis, a single antenna receiver in time-varying
frequency-selective channels is rather considered. Finally, the works [MMA11, FSW10]
consider signal detection in fading channels, but considering prior knowledge on the
statistics of the channel.

6.1.2 Frequency-Domain Detection

The frequency diversity exhibited by cyclostationary signals is further exploited in Sec-
tion 6.3. A novel rank-1 frequency-domain representation of a digital waveform is pro-
posed to address the generalized likelihood ratio (GLR) detection of a cyclostationary sig-
nal with unknown white noise. With the aim of avoiding the well-known sensitivity of
cyclostationary-based detectors to frequency-selective fading channels, a parametric chan-
nel model based on the coherence bandwidth is adopted and incorporated in the general-
ized likelihood ratio test (GLRT). The proposed detector outperforms the classical spectral
correlation magnitude detectors by exploiting the rank-1 structure of small spectral covari-
ance matrices.

The adoption of the primary user model is a relevant issue, and may include features
such as the transmitted power spectral density (PSD) [QZSS11], cyclostationarity, modu-
lation type, etc. [ALLP12]. On the other hand, the frequency-selective and time-varying
nature of the wireless propagation channel can severely affect the detectors’ performance
[TS07]. The use of multiple antennas has received attention in order to improve perfor-
mance [BKS06, ZLLZ10, RVVLV+11, RVSS13]. The multiple antenna formulation leads to
low rank spatial covariance matrices. This fact is exploited to improve, for instance, the
noise floor estimation, as one has access to a noise subspace which is free of the signal
component. In the single antenna case, the specification of a model for the temporal au-
tocorrelation function of primary user and noise components is required. By resorting to
asymptotic properties of Toeplitz matrices, [ZPQ10] shows that detection can be formu-
lated from the signal periodogram, smoothed by an appropriately selected spectral mask.
This yields to significant saving on computational complexity, which is specially interest-
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ing in order to make cognitive radios feasible.
This work formulates the single-antenna detection problem of a second-order cyclosta-

tionary signal by taking benefit from the mature and recent detection theory advances in
array processing. This provides an original formulation of cyclostationary detection based
on a vectorial frequency-domain processing that leads to a signal model which exhibits
low rank structure. Particularly, the rank-1 structure for pulse-shaped digital modulations
considered in our formulation plays the equivalent role of the spatial signature typically
found in the array processing field.

Cyclostationarity feature detection had originally emerged as a tool to relax the as-
sumptions on the noise statistics [Gar86], and it has hence gained recent attention in the
field of spectrum sensing for weak signals [GS93, FSRVV13] and unknown noise statis-
tics [HT13, RVSS13, FSRVV13] to achieve robustness to signal-to-noise ratio (SNR) walls
[TS05]. In particular, the scheme reported in [GS93] and method based on [RVVLV+11,
FSRVV13] are considered as benchmarking. The frequency-domain formulation adopted
in this thesis was introduced by the authors in [RVV10] in the SNR estimation problem.

6.1.3 Chapter Organization

The rest of the Chapter is organized as follows. The QST is proposed in Section 6.2. The
frequency-domain GLR detection is addressed in Section 6.3. Section 6.4 reports numerical
results, and Section 6.5 provides the concluding remarks.

6.2 Quadratic Sphericity Test

6.2.1 Problem Formulation

The detection of a primary wide-sense stationary (WSS) signal is cast as the following
binary hypotheses testing problem:

H0 : x = w, (6.1a)

H1 : x = s + w (6.1b)

where x = [x(0), . . . , x(N−1)]T collectsN consecutive samples as observations, w denotes
the noise samples of variance σ2, s denotes the signal samples with power P . The signal-
to-noise ratio (SNR) is defined as the ratio SNR = P/σ2.

In this Section, the signal s is the output of a time-varying linear system given as1

s = AHu, (6.2)

1For simplicity it is assumed that the convolution matrix AH models the pulse shaping at transmission, the
fading nature of the channel, and the matched-filtering at the receiver.
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where s is a column vector containing a sufficiently large number of K digitally modu-
lated symbols, and AH models the time-varying frequency-selective nature of the fading
channel as

AH =



h0(1) 0 · · · 0
... h1(1)

...

h0(L)
...

. . . 0

0 h1(L) hK−1(1)
...

. . .
...

0 · · · 0 hK−1(L)


. (6.3)

It is worth noting that the model adopted in (6.3) illustrates how each of the transmitted
symbol s(k) is propagated through the channel with fading coefficients hk. For sake of
notation, the channel matrix is defined as

H = [h0, . . . ,hK−1] (6.4)

where each column contains the channel impulse response at time index k, i.e.,

hk = [hk(1), . . . , hk(L)]T . (6.5)

6.2.2 Blind Detector for Time-Varying Frequency-Selective Channels

In this Section, the following test statistic is adopted, which shows invariance with respect
to the time varying frequency-selective channel gain and the noise variance, given by

T (x) =
1

xHx
max

H

tr(HHHR̂)

‖HHH‖F
≥ τ, (6.6)

where

R̂ =
1

K

K−1∑
k=0

xkx
H
k (6.7)

is the L× L autocorrelation matrix of the observations, τ is the detection threshold, and

xk = [x(k), . . . , x(k + L− 1)]T . (6.8)

The correlation-matching proof of (6.6) is reported in Appendix D.1. In general, the solu-
tion to the maximization problem (6.6) leads to the following blind detector as a function
of the eigenvalues of the autocorrelation matrix of the observations, as elaborated in Ap-
pendix D.2:

TQST(x) =

√∑L
i=1 λ

2
i (R̂)∑L

i=1 λi(R̂)
≥ τ. (6.9)
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Note that the numerator and denominator of (6.9) can be computed as the squared root of
tr(R̂2) and as tr(R̂) with reduced complexity, respectively. This detector is denoted as the
QST, as it evaluates the squared mean of the eigenvalues of the autocorrelation matrix of
the observations divided by the arithmetic mean of the eigenvalues. Therefore, from the
structure of the autocorrelation matrix (6.7), it is observed that the QST is a measure of
dispersion of the eigenvalues in the L-dimensional space that arises from the structure of
the fading channel H. Under H0, the QST will observe a flat distribution of the eigenval-
ues, whereas under H1 the distribution of the eigenvalues will depend on the rank of H.
Finally, because slow-fading scenarios have lower variability, the eigenvalues of R̂ will ex-
hibit large dispersion as some of them will approach zero, whereas in fast-fading scenarios
the dispersion will be lower.

6.3 Frequency-Domain Detection

6.3.1 Problem Formulation

This Section addresses the detection of a digital pulse-shaped modulated signal as

H0 : x(t) = w(t) (6.10a)

H1 : x(t) = s(t) + w(t), (6.10b)

wherew(t) is a WSS circular noise of PSDN0/2 inside the band of interest, and s(t) is given
by

s(t) =
√
γTh(t) ∗

∑
n

a[n]p(t− nT ). (6.11)

In (6.11), γ > 0 is the signal strength, T is the symbol interval, h(t) is the complex prop-
agation channel, a[n] is the unit variance symbol sequence, and p(t) is the unit energy
modulation pulse. This signal model is valid for a wide class of digital modulations such
as pulse amplitude modulation (PAM), quadrature amplitude modulation (QAM) and
amplitude phase-shift keying (APSK). The two-sided bandwidth of s(t) is

B =
1 + α

T
, (6.12)

where 0 < α < 1 is the excess bandwidth or roll-off parameter.

6.3.2 Cyclostationary Signal Background

This section summarizes the main concepts behind cyclostationarity. The reader is referred
to [SD98, SS10, Gar86, SPSG05, GNP06] for more details on this subject. The cyclic spectral
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density (CSD) of a process s(t) is defined as the cross spectral density

φαs (f)
.
= lim

T0→∞
E
[
ST0

(
f +

α

2

)
S∗T0

(
f − α

2

)]
, (6.13)

where ST0(f) is the normalized finite-size Fourier transform of a T0-size realization of the
process. Assuming stationary zero-mean uncorrelated symbols, the CSD of (6.11) is given
as

φl/Ts (f) = γG

(
f +

l

2T

)
G∗
(
f − l

2T

)
, (6.14)

for l ∈ Z and 0 for l /∈ Z, and G(f) is

G(f) = H(f)P (f) (6.15)

i.e., the product between the channel frequency response and the modulation pulse Fourier
transform. The factorization (6.14) holds even in the presence of a frequency-selective
channel, as it is consequence of the pulse-shaped modulation structure of (6.11).

6.3.3 Asymptotic Frequency-Domain Signal Detection

Now, consider the Fourier transform of M blocks of length T of x(t), namely, XMT (f). In
vector notation, the frequency-domain observation vector is defined as

x(υ)
.
= XMT (f(υ)), (6.16)

where f(υ) scans the sensing interval (−B/2, B/2) with small sampling intervals of L .
=

dBT e samples through the auxiliary variable −1/(2T ) ≤ υ ≤ 1/(2T ), i.e.,

f(υ) = υ1 +
1

T


(L− 1)/2

...
−(L− 1)/2


︸ ︷︷ ︸

.
=z

. (6.17)

Under this notation, a consequence of (6.14) and the stationarity of the noise is that the
second-order statistics of (6.16) obey

E
[
x(υ + δ)xH(υ)

]
→

 Φx(υ)

0

δ = 0

δ 6= 0
, (6.18)

where the entries of the L× L spectral matrix Φx are related to the CSD of x(t) by

[Φx]i,j∈{1,...,L} = φ
fi(υ)i−fj(υ)
x

(
fi(υ) + fj(υ)

2

)
, (6.19)

126



where fi(υ) is the i-th element of f(υ). By introducing a vectorial spectral process to treat
cyclostationary signals, the incorrelation property (6.18) is hereby unveiled. In fact, this
constitutes and extension of the frequency-domain treatment of WSS signals to cyclosta-
tionary signals, just by extending the dimension of the frequency-domain process.

It is a well-known result that for a fixed value of f , ST0(f) has asymptotic normality
as T0 → ∞ [Bri81]. As a result of, the log-likelihood function of the frequency-domain
observation vector (6.16) can be written as

L(x) = −
∫

1/T
ln det Φx(υ) + xH(υ)Φ−1

x (υ)x(υ)dυ. (6.20)

An advantage of this formulation is that the matrix involved in (6.20) exhibits low di-
mensionality L, independent from the data size. Hence, mathematical and computational
simplicity will be attained compared with the time-domain approach which typically in-
volves the estimation of cumbersome covariance matrices, e.g., as in [DG94]. Using (6.14),
the spectral matrices under both hypotheses read

H0 : Φx(υ) = N0I, (6.21a)

H1 : Φx(υ) = N0I + γg(υ)gH(υ), (6.21b)

where g(υ) = G(fυ) � ej2πεz, being 0 ≤ ε ≤ 1 the time-delay or timing parameter, and z

has been defined in (6.17).
It is noted that as a result of the frequency-domain formulation of the likelihood func-

tion, the general problem posed in (6.10) is translated to the specific problem (6.21). Here,
the important feature of (6.21) is that the signal component has rank-1 structure, while the
noise component is full-rank. This low rank nature of the signal to be detected is what
provides the basis of the detection of cyclostationary signals developed in the sequel.

6.3.4 GLR Detection over Frequency-Selective Fading Channels

It is known that in the presence of unknown frequency-selective channels, the performance
of cyclostationary-based detection methods is severely downed [TS07]. This is due to the
fact that the channel can attenuate or even kill the specific cyclostationary feature which
is exploited for detection. However, as stated in the former section, pulse-shaped modu-
lated signals preserve the factorization property (6.14) even in frequency-selective chan-
nels. This means that the rank-1 structure is still present in the received waveform as indi-
cated in (6.21), but with a modified pulse shaped according to (6.15). Under the asymptotic
frequency-domain formulation, this is modeled as

g(υ) =
√
g(υ)g̃(υ), (6.22)
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i.e., g(υ)
.
= ‖g(υ)‖ models the frequency-dependent arbitrary gain, g̃(υ) is a unit-norm

vector. If the coherence bandwidth of the channel is known in the form Bc = 1/(KT ), a
K-parameterization of (6.22) is proposed as

g(υ) =
√
gkg̃k, (6.23)

for υ ∈ Ik, where

Wk =

(−1/2 + (k − 1)/K

T
,
−1/2 + k/K

T

)
, (6.24)

for k = 1, . . . ,K. Note that the key assumption in the previous model is that every entry
of the frequency vector (6.23) remains constant for values of υ which are within the coher-
ence bandwidth. Under this model, the eigenvalue decomposition (EVD) of the spectral
coherence matrices underH1 within the range (6.24) is

Φx(υ) = N0I + gkg̃kg̃
H
k︸ ︷︷ ︸

.
=UkΛkU

H
k

(6.25)

where the eigenvector matrix Uk has been defined as Uk =
[
g̃k,U

⊥
k

]
, and Λk is given as

Λk =

[
Nk 0

0 N0IL−1

]
. (6.26)

Because this Section addresses GLR detection with unknown white noise PSD and un-
known frequency-selective channel, the set of nuisance parameters for the log-likelihood
function (6.20) are

N0, Nk = N0 + γk and g̃k, (6.27)

for k = 1, . . . ,K. The Neyman-Pearson optimal frequency-domain GLR detector of the
second-order cyclostationary signal (6.11) over a frequency-selective channel is derived in
Appendix D.3 and is given by

T (x) =
1(∏K

k=1 λk

)1/K (
1−∑K

k=1 λk

)α ≥ τ, (6.28)

where λk is given as λk = λmax{Bk}, where the matrices Bk are given as

Bk =
1

P̂x

∫
Wk

x(υ)xH(υ)dυ. (6.29)

and P̂x is an estimate of the total received signal power.
Here, the matrices Bk in (6.29) are short-band estimates of the spectral covariance ma-

trix of the received signal normalized by the total received signal power. The entries of
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Figure 6.2: ROC of the QST, FD, and NME in a slow-fading scenario.

these matrices can be seen as samples of the frequency-smoothed cyclic periodogram of
the signal. The interpretation of the detector (6.28) goes as follows. While the first term of
the denominator implements a classical measure of inter-band sphericity (a term that refers
to flatness), the second term of the denominator is in charge of measuring the intra-band
sphericity, i.e., the lack of spectral correlation. The second term has no influence for α = 0,
whereas its relative importance increases within the excess band. As a whole, the value
of the detector increases when high spectral correlation, i.e., high eigenvalue dispersion in
Bk, is assessed, and/or when the the measured spectrum is far from white.

6.4 Numerical Results

6.4.1 Quadratic Sphericity Test

In this Section, numerical results are provided to assess the performance of the QST (6.9) in
terms of the receiver operating characteristics (ROC) curve (missed-detection probability
PMD versus false-alarm probability PFA) in several scenarios. As a benchmarking, the fol-
lowing additional signal detectors are similarly considered. On the one hand, the feature
detector (FD) which is given by the invariant detector (6.6) with side information of the
channel coefficients Ĥ, i.e.,

TFD(x) =
1

xHx

tr(ĤĤHR̂)

‖ĤĤH‖F
≥ τ, (6.30)

with

Ĥ =

√
1

1 + ε2
H +

√
ε2

1 + ε2
∆, (6.31)
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Figure 6.3: ROC of the QST, FD, and NME in a fast-fading scenario.

where H is the true channel matrix, and ∆ is uniformly distributed within the range
‖∆‖ ≤ 1 to model the error incurred in the estimation of the channel in pilot-based cog-
nitive radio networks. Remarkably, both the perfectly known case ε = 0, and the FD with
channel uncertainty ε = 1 are considered. On the other hand, the NME , given by [ZLZ08]

TNME(x) =
λ1(R̂)∑L
i=1 λi(R̂)

≥ τ, (6.32)

is included as well.
In particular, the simulations contemplate the transmission of K QPSK symbols over

a fading channel H containing K realizations of the channel coefficients according to the
block fading model [BPS98], i.e., throughout K channel realizations, it is assumed that the
channel response h remains constant through T realizations and then changes indepen-
dently to another value. In the sequel, the slow fading scenario (T � K), and the fast
fading scenario (1 ≤ T � K) are considered. The local receiver operates at a SNR of 5
dB and acquires N = 256 samples. A channel of length L = 12 unit variance i.i.d. lags is
employed.

The ROC of the QST (6.9), the FD (6.30) with ε = 0 and ε = 1, as well as the NME (6.32)
in a slow-fading and fast-fading (T = 5) scenarios are depicted in Figure 6.2 and Figure
6.3, respectively. As it can be appreciated, the FD with channel errors incurs a severe per-
formance loss compared to the FD without errors in both scenarios due to the mismatching
between the true channel and the available side information. On the other hand, both QST
and NME outperform the FD with errors. In general, it is seen how the proposed QST has
a performance gain with respect to the NME , as the NME is only concerned in extracting
a channel feature corresponding to the largest eigenvalue. Finally, whereas detecting the
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channel structure in fast-fading scenarios is a challenging task for both QST and NME , in
the slow-fading scenario the QST provides good performance characteristics and incurs a
degradation relative to the FD with perfectly known channel smaller than the NME .

6.4.2 Frequency-Domain Detection

The performance of the proposed detector (6.28), referred as GLRT-K, is evaluated by
Monte Carlo simulations using 100,000 realizations per scenario. The transmission is mod-
eled byM QPSK symbols using root raised cosine (RRC) pulses. A tapped delay line chan-
nel model [BPS98] with exponentially decaying power profile is considered with mean
delay-spread proportional to 1/Bc symbols, such that is remains constant in each realiza-
tion of MT seconds. In all Figures, M = 256, K = 8 and α = 0.8.

For comparison, the following detectors are evaluated in all the scenarios. First, the
well-known multi-cycle spectral correlation magnitude detector (MCSCMD-K) proposed
by Gardner [GS93] with `0 = 1. Second, the GLR detector not exploiting the frequency-
selective nature of the fading channel, i.e., considering g(υ) =

√
gg̃(υ) instead of (6.22).

This yields

TGLRT−1(x) =
1

λ(1− λ)α
≥ τ, (6.33)

with λ = P̂s/P̂T [RFSVV14]. It is noted that this corresponds to the GLRT-1, i.e., (6.28)
particularized for K = 1. This detector is considered to illustrate the lack of robustness in
presence of a frequency-selective channel. Third, the LMPIT-K, i.e., the Frobenius norm of
a normalized version of the autocorrelation matrix

TLMPIT−K(x) =
K∑
k=1

‖Bk‖2F ≥ τ. (6.34)

This detector has been proposed [LdV01, FSRVV13] and proved [RVSS13] to be optimal for
close hypotheses, i.e., low SNR. This is the main reference for comparison, as it assumes
identical prior knowledge.

Figure 6.4 depicts the complementary ROC when the channel has a mean delay-spread
of τ = 1 symbol and illustrates the high sensitivity of GLRT-1 in front of an unknown
channel response. In contrast, the performance of the proposed GLRT-K detector exhibits
a robust behavior in detection performance in front of unknown frequency-selective chan-
nels. The missed-detection probability of the detectors versus the SNR is shown in Figure
6.5, where the thresholds have been set to satisfy a false-alarm level of 0.05. It is rapidly
observed that the error exponent associated to this error probability, i.e., the scaling of the
detection performance with the SNR conditions, is significantly improved by the proposed
GLRT-K. Figure 6.6 illustrates the main advantage of the proposed detector by showing
the missed-detection probability versus the mean delay-spread, with a false-alarm level of
0.05. It is rapidly appreciated that small values of delay-spread cause a significant degrada-
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Figure 6.4: Complementary ROC with a delay-spread of 1 symbol and SNR of −0.5 dB.
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Figure 6.5: Missed-detection probability versus SNR for a false-alarm level of 0.05 with a delay-
spread of 1 symbol.
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Figure 6.6: Missed-detection probability versus delay-spread for a false-alarm level of 0.05 with
and SNR of −0.5 dB.

tion in the detectors’ performance. In contrast, the GLRT-K tolerates higher delay-spread
and shows a degradation only when the delay-spread is of the same order as the num-
ber of sub-bands, i.e., K. Furthermore, the performance of the GLRT-K improves for
small values of the delay-spread. This is due to the fact that the GLRT-K is partly sen-
sitive to the lack of sphericity measured by the geometrical mean term in the expression
(6.28). Hence, in contrast to other cyclostationary detectors, the proposed detector does
not ignore the stationary spectral component of the signal, which is less flat in the pres-
ence of a frequency-selective channel. Finally, compared to the benchmarking LMPIT-K,
the proposed GLRT-K provides a systematic gain in the simulated scenarios, whereas the
performance of the LMPIT-K approaches that of GLRT-K for asymptotically low SNR, as
expected and confirmed in Figure 6.6.

6.5 Conclusions

In this Chapter, the QST for blind detection of WSS signals in time-varying frequency-
selective fading channels has been introduced. By deriving a correlation-matching optimal
invariant test statistic, it has been shown that the QST is the solution in the blind case.
The QST evaluates the ratio between the squared mean and the arithmetic mean of the
eigenvalues of the autocorrelation matrix. Numerical results have been reported to assess
and benchmark the performance of the QST in slow and fast-fading scenarios. In slow-
fading, the proposed blind QST exhibits good performance and incurs smaller degradation
compared to the NME .

On the other hand, the GLR detection of a cyclostationary signal is addressed by ex-
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ploiting the rank-1 structure of small spectral covariance matrices in a novel frequency-
domain representation of digital waveforms. By incorporating aK parameterized frequency-
selective channel model based on the coherence bandwidth, the proposed GLRT-K is de-
rived. Numerical results have assessed the detection performance and the robustness in
front of frequency-selective channels.
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Chapter7
Noise Subspace Communication

7.1 Introduction

This last Chapter focusses on the design of the transmission scheme of the secondary users.
The goal is to design the secondary transmitted signal Y from the local noisy observations
X of the primary signal S, as shown in Figure 7.1.

7.1.1 Cyclostationary Secondary Transmission

Firstly, the design of the secondary transmitted signal is addressed with the objective of
mitigating the interference caused to other secondary users, while keeping orthogonality
to the primary users. More specifically, the problem of spectrum sensing performed by a
silent non intended cognitive receiver in the presence of an active cognitive transmitter is
considered.

Because the silent receiver does not decode the information, the transmitted signal acts
as strong interference to the spectrum sensing process. It is known that cyclic feature detec-
tors show robustness in front of noise uncertainty and have gained much recent attention
[SND08, LKHP09, LKK10]. However, acquiring the cyclic statistics requires knowledge on
the primary cyclic frequencies. Here, a primary spectrum sensing detector which exploits
the statistical features of cyclostationarity is developed, albeit from a different context that

S +W −→ Uniform Sampling −→ X −→ Waveform Optimization −→ Y

Figure 7.1: Waveform optimization problem.
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the aforementioned methods. Specifically, it is considered that spectrum sensing is per-
formed by a silent cognitive user in a cognitive radio network when a cognitive transmitter
is active. A silent cognitive user is referred to as a user who is not transmitting nor receiv-
ing information from the active transmitter, but it is synchronized with the cognitive radio
network. If the cognitive radio network is localized in a small area, the transmitting user
may act as strong interference to the non intended receivers, making spectrum sensing
a further challenging problem. By operating directly on the oversampled cyclostationary
signal at the receive antenna, the silent cognitive user is able to exploit the cyclostationarity
in order to identify a noise subspace where primary spectrum sensing can be performed
free of interference [RVV10]. Because the key signal property to be exploited is related with
the cyclic spectral density of the cognitive signal, the noise subspace detector is formulated
rather in the frequency-domain. In order to evaluate the performance of the proposed de-
tector, the deflection [Pic95] is used as a performance indicator. Although the formulation
of the problem is general, the derived results are particularized to the realistic scenario
in which the primary signal has flat spectrum within the detection interval, e.g., a ter-
restrial digital video broadcasting (DVB-T), and in which the active cognitive transmitter
employs a squared-root raised cosine (SRRC) pulse. The deflection reveals that the per-
formance of the noise subspace detector is proportional to the roll-off factor of the SRRC
pulse, and proportional to the squared of the signal-to-noise ratio (SNR), defined as the
ratio between the primary signal average power and the average noise power at the silent
cognitive antenna. This results demonstrates that the proposed detector operates in the
free-interference regime, whereas any of the spectrum sensing methods mentioned above
would see a strong interference.

It is worth noting that the spectrum sensing problem formulated in the presence of
other non-primary interference has received little attention in the literature. For further
information on this topic, the reader is referred to the work [MH13].

7.1.2 Minimum Description Length

One important problem when designing secondary waveforms is the determination of the
noise subspace dimension, i.e., the amount of available resources for secondary communi-
cation orthogonal to the primary system. This problem is cast as a model order selection
problem.

The minimum description length (MDL) is the most commonly adopted model order
selection statsitic [SS04]. The model order selection problem consists of determining the
dimension of the parameter vector of the data model, which has many applications in a
wide range of signal processing problems. This work focusses on the model order selection
of the dimension of the second-order statistics of a signal. This particular scenario has
practical applications in the cognitive radio context [MM99], where the dimension of the
unused resources by the primary users has to be determined [HTR09].

136



More precisely, the model order selection problem is formulated for a zero-mean Gaus-
sian signal with unknown low rank correlation matrix immersed in zero-mean white Gaus-
sian noise with unknown noise variance. Because a likelihood ratio is involved in the MDL
statistic, the signal correlation matrix and the noise variance are incorporated as nuisance
parameters. This leads to the formulation of the generalized likelihood ratio (GLR) statis-
tic, which has been recently reported as the sphericity test for low rank Gaussian signals
[RVVLV+11]. Because the GLR asymptotically follows a non-central Chi-squared distribu-
tion, the statistical characterization of the proposed sphericity MDL is further addressed
in this Chapter.

The problem of model order selection of Gaussian random variables with unknown
parameters has been addressed in [SL07, GS08b, BGH09] employing least squares estima-
tion (LSE), instead of maximum likelihood (ML) estimation.

7.1.3 Rotationally Invariant Minimum Norm Waveform Optimization

The last research of this thesis seeks secondary waveforms that satisfy the favorable prop-
erties of white frequency response, invariance to rotation, and that rely only on the second-
order statistics of the secondary-to-primary interference channel. Signals with white spec-
trum exhibit good properties in terms of entropy and residual correlation, whereas invari-
ance to rotation allows noncoherent detection. The benefits of second-order channel state
information (CSI) are straightforward: it represents a slower time-varying statistic com-
pared to first-order CSI, and it further exhibits quantization advantages.

Under these requirements, it is shown that linear predictors that arise from minimum
norm filtering exhibit the white frequency response and rotation invariance rotation. The
resulting waveforms implement a form of null space communication similar to that in mul-
tiple antennas (e.g., see [YHR+09]), but will show enhanced stability and low complexity
benefits as it is based on the temporal correlation rather than the spatial correlation. In
front of statistical CSI mismatching, a robust waveform optimization problem is also ad-
dressed. The robust waveform optimization is based on the worst-case performance sce-
nario initially motivated by Gershman et. al in [SGLW03]. The worst-case performance
scenario regularizes the objective function by adding a penalty term which is equivalent to
the squared value of the spectrum of the optimization waveform, which is a well-known
result in spectral estimation theory. Both the nonrobust and robust waveform optimiza-
tion problems are solved in an iterative fashion, and show efficient implementation in the
asymptotic frequency-domain.

7.1.4 Chapter Organization

The rest of the Chapter is organized as follows. The design of cognitive cyclostationary
waveforms is addressed in Section 7.2. The obtention of second-order statistics of the
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primary system by means of the MDL problem is addressed in Section 7.3. Section 7.4
presents the minimum norm waveforms based on the second-order statistics of the pri-
mary system, in both nonrobust and robust versions. Numerical results are reported in
Section 7.5, whereas the conclusions are outlined in Section 7.6.

7.2 Cognitive Cyclostationary Waveform

7.2.1 Noise Subspace Induced By Cylostationarity

This Section considers a cognitive radio network consisting of Q = 3 cognitive users: an
active cognitive transmitter, an active cognitive intended received, and a silent cognitive
unintended receiver. The spectrum sensing problem will be addressed in the AWGN chan-
nel at the antenna of the silent cognitive unintended receiver. Let y(t), w(t) and s(t) denote
the active cognitive transmitted signal, the AWGN and the primary signal to be detected,
respectively. The cognitive signal admits the following linear modulation form:

y(t) =
∑
k

a[k]g(t− ε− kT ), (7.1)

being a[k] the complex zero-mean uncorrelated symbols, ε the timing parameter, T the
symbol period and g(t) the unit-energy pulse shape. Because the silent user belongs to the
same cognitive radio network, it has perfect knowledge on the pulse shape and timing pa-
rameter ε involved in (7.1). The frequency response of g(t) is given by G(f), with spectral
support

WG =

(
−1 + α

2T
,
1 + α

2T

)
, (7.2)

where α is the roll-off factor that determines the excess of bandwidth with respect to the
Nyquist bandwidth 1/T .

Because this Section is motivated to exploit the statistical features of cyclostationarity
available in y(t), the MT -size Fourier transform of the complex received signal is consid-
ered as

X(f) = S(f) +W (f) + Y (f), (7.3)

where Y (f), W (f) and S(f) are the finite-size Fourier transforms of the cognitive signal,
noise and primary signal components, respectively, and M is the signal block length. In
order to display the inherent second-order periodicity of y(t), the following normalized
two-dimensional frequency-domain observation vector is adopted [RVV10]

ox(ν)
.
=

1√
MT

[
X (ν+)

X (ν−)

]
, (7.4)
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where the frequency pair ν±, defined through the auxiliary variable ν as

ν±
.
= ν ± 1

2T
, (7.5)

indicates the correlation of the spectral components of y(t), which are separated by the fun-
damental cycle frequency 1/T [Gar90]. In the cognitive radio network context addressed
in this Section,

ox(ν) = oy(ν) + ow(ν) + os(ν), (7.6)

where oy(ν), ow(ν) and os(ν) have been similarly defined as (7.4) for the cognitive signal,
noise and primary signal components, respectively. Assuming uncorrelated components1,
the second-order statistics of the observation vector Φx(ν)

.
= E

{
ox(ν)oHx (ν)

}
may be writ-

ten as
Φx(ν) = Φy(ν) + Φw(ν) + Φs(ν), (7.7)

where Φy(ν), Φw(ν) and Φs(ν) are the spectral coherence matrices of the cognitive signal,
noise and primary signal components, respectively. The structure of the former matrices is
the enabling key factor of the proposed detector.

On the one hand, because y(t) is a pulse amplitude modulation (PAM), its spectral
coherence matrix will exhibit a low rank structure. For signals having an excess of band-
width α ≤ 1 and with an associated pulse shape fulfilling the Nyquist criterion of free
inter symbol interference (ISI)

1

T

∞∑
k=−∞

∣∣∣∣G(f +
k

T

)∣∣∣∣2 (7.8)

it can be shown that the spectral coherence matrix of the cognitive signal is a rank-one
matrix which can be expressed as the self outer product

Φy(ν) = Pg(ν)gH(ν), (7.9)

where P is the cognitive signal power, and the unitary vector g(ν) is related to the fre-
quency response of the pulse shape, the timing parameter and the symbol period through

g(ν) =
1√
T

[
G (ν+) e−jπε/T

G (ν−) ejπε/T

]
. (7.10)

For a more detailed understanding of the cyclostationary concepts involved in the deriva-
tion of (7.9), c.f. [RVV10, Equations (8)–(18)] and the references therein. On the other hand,

1This assumption is only valid if the cognitive signal is generated independently on the statistics of the
primary signal, e.g., if spectral shaping is not employed.
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because the noise and primary signal components are wide-sense stationary (WSS)2, their
spectral coherence matrices can be expressed as

Φw(ν) = N0I, (7.11)

and

Φs(ν) =

[
φs (ν+) 0

0 φs (ν−)

]
, (7.12)

respectively, where N0 is the power spectral density (PSD) of the AWGN.

7.2.2 Primary Spectrum Sensing

The detection of the primary signal is addressed from the second-order statistics of the
observation vector exploiting the noise subspace induced by the cyclostationary cognitive
signal. Therefore, a signal detector which jointly operates with the transmission and re-
ception of cognitive signals is proposed, without resorting to silent periods to perform
detection. In particular, the signal detection problem is cast as the following binary hy-
potheses testing problem

H0 : Φx(ν) = Φy(ν) + Φw(ν) (7.13a)

H1 : Φx(ν) = Φy(ν) + Φw(ν) + Φs(ν), (7.13b)

where the spectral coherence matrices are given by (7.9), (7.11) and (7.12) derived above.
The matrix Φy(ν) is seen as interference in the spectrum sensing process and it is

present in both hypotheses in (7.13). Because the cognitive signal space is spanned by the
unitary vector g(ν), the proposed detector projects the observation vector onto the space
orthogonal to the signal space, namely the noise subspace, by means of the orthogonal
unitary vector that spans the noise subspace. That is, the noise subspace detector is given by

TNS(x) =
1

|W| ·
∫
W

∣∣gH⊥ (ν)ox(ν)
∣∣2 dν ≥ τ, (7.14)

where the integration is done over a frequency regionW , τ is the detection threshold for
which H1 is decided in front of H0, and g⊥(ν) is the unitary vector that spans the orthog-
onal space to g(ν), and is related to the frequency response of the pulse shape, the timing
parameter and the symbol period as

g⊥(ν) =
1√
T

[
G∗ (ν−) e−jπε/T

−G∗ (ν+) ejπε/T

]
. (7.15)

2Even though the primary signal may exhibit cyclostationarity, it is assumed that it is not exploited at the
cognitive receiver due to the lack of synchronism.
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Because the spectral support of the cognitive signal is WG given in (7.2), the detection
intervalW is restricted by the possible values that the frequency variable ν can take:

W =
(
− α

2T
,
α

2T

)
. (7.16)

Therefore, the detection interval will be given by the spectral support ofW , i.e.,

|W| = α

T
. (7.17)

In the following, the statistical properties of TNS(y) are derived in order to illustrate how
the projection onto the noise subspace is able to cancel out the cyclostationary cognitive
component from the observation vector, as well as to demonstrate that the conditions in
which the detector operates are related to the SNR, defined as the ratio between the pri-
mary signal power and the noise power, instead of signal-to-interference-plus-noise ra-
tio (SINR).

7.2.3 Deflection Performance

In order to evaluate the performance of the proposed detector, as well as to investigate
the parameters of the cognitive and primary signals involved in the detection process, this
Section makes use of the deflection [Pic95] as a performance indicator of the test TNS(y).
The motivation of employing deflection is twofold. On the one hand, it is a one number
instead of a curve, hence it provides simpler and more concise interpretations. And on the
other hand, maximizing the deflection becomes asymptotically equivalent to optimizing
the performance calculated in terms of the ROC. The deflection associated to a detector L
is given by

D(T ) =
(E1[T ]− E0[T ])2

V0[T ]
, (7.18)

where E0 and E1 evaluate the expectation under H0 and H1, respectively; and V0 evalu-
ates the variance under H0. In Appendix E.1 it is shown that the deflection of the noise
subspace detector is given by

D (TNS) =
1

N2
0 |W|

(∫
W

gH⊥ (ν)Φs(ν)g⊥(ν)dν

)2

. (7.19)

Because (7.19) can be regarded as the inner product between two matrices, in Appendix
E.2 the Cauchy-Schwarz inequality is applied to obtain the following upper bound

D (TNS) ≤ 1

N2
0

∫
W

tr
(
Φ2
s(ν)

)
dν, (7.20)
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i.e., the deflection is related to the expression tr
(
Φ2
s(ν)

)
, which is a fourth-order measure

of the primary signal.
Finally, it is worth noting that the upper bound is achieved when the primary signal

has flat spectrum, i.e., if
Φs = N1I. (7.21)

In such a case, the deflection reduces to the expression

D{TNS} =
α

T
· SNR2, (7.22)

where (7.17) has been used, and the SNR has been defined as the ratio between the PSD of
the primary signal and noise components, i.e.,

SNR =
N1

N0
. (7.23)

On the one hand, the deflection is proportional the squared value of the SNR, therefore
the proposed noise subspace detector operates at an SNR conditions free from any in-
terference caused by the cognitive signal present in the cognitive radio network. On the
other hand, it rapidly follows that the detection performance increases with the roll-off
factor. Even though higher roll-off factors incur lower spectral efficiency due to the excess
of bandwidth, higher values of α are also preferred in non data aided systems for timing
synchronization purposes [RSV01].

7.3 Sphericity Minimum Description Length

7.3.1 Problem Formulation

The problem of determining the dimension of the primary signal subspace spanned by
the eigenvectors of the correlation matrix is cast as follows. Each of the secondary users
acquire a data set of LM samples in the silent periods in which the secondary system is
inactive. These observations are vectorized in L vectors xl of dimension M which follow
the discrete-time model

xl = sl + wl, (7.24)

for 1 ≤ l ≤ L, where each realization sl and wl represent the primary signal and the noise
components at secondary user with power P and variance σ2, respectively. The average
SNR in this problem is defined as

SNR .
=
NP

σ2
, (7.25)

where N is the true dimension of the primary signal. Typically, the primary signal sub-
space estimation problem involves low SNR regimes, as the secondary system may be far
away from the primary system. In the assumption of white noise with unknown noise
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variance3, the primary signal subspace estimation problem requires estimating the follow-
ing parameters: the noise variance, the dimension of the primary signal subspace, and
the eigenvectors associated to the primary signal subspace. Because the estimation of the
dimension of the primary signal subspace is a model order selection problem, the formu-
lation of the following MDL statistic is required [Kay98a]

MDL(n) = − log GLR(n) + nM log(L), (7.26)

where GLR(n) is the GLR which jointly estimates the unknown parameters, i.e., the noise
variance and the eigenvectors associated to the primary signal space. That is,

GLR(n) =
maxσ2,Rs

p(x1, . . . ,xL|Hn)

maxσ2 p(x1, . . . ,xL|H0)
, (7.27)

where Hn and H0 denote the hypotheses that the primary signal has dimension n or zero,
respectively, in (7.24). Solving (7.27) for Rs and σ2 for a given primary signal subspace size
n derives to the rank-n sphericity test [RVVLV+11]. As a result, for n < M − 1, the MDL
for the primary signal subspace estimation problem is given by the expression

MDL(n) = LM log

∏M
m=1 λ

1/M
m

1
M

∑M
m=1 λm

− L(M − n) log

∏M
m=n+1 λ

1/(M−n)
m

1
M−n

∑M
m=n+1 λm

+ nM log(L), (7.28)

where λ1, . . . , λM are the eigenvalues of the sample covariance matrix

R̂ =
1

L

L∑
l=1

xlx
H
l . (7.29)

As noted in [RVVLV+11], for n ≥ M − 1 the low rank structure of the signal correlation
matrix cannot be exploited, and hence (7.28) particularizes to the arithmetic-to-geometric
mean (AGM) detector, i.e.,

MDL(n) = LM log

∏M
m=1 λ

1/M
m

1
M

∑M
m=1, λm

+ nM log(L). (7.30)

From (7.28) and (7.30), the estimation of the primary signal subspace dimension reads

N̂ = arg min
n

MDL(n), (7.31)

3As in signal detection, the phenomenon of noise uncertainty is an important problem in noise subspace
estimation when the noise variance is inaccurately known a priori by the secondary user. Typically the noise
variance is considered as nuisance parameter, hence providing robustness to noise uncertainty.
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where the search is in the set n = 0, . . . ,M .

7.3.2 Statistical Characterization

The statistical characterization of the primary signal subspace estimation problem resorts
to identify the statistical properties of the MDL function in (7.31). Because the MDL(n) in
(7.26) implements a GLR statistic for n > 0, its distribution is asymptotically given by a
non-central Chi-square distribution. More specifically, as

2 log GLR(n) ∼ X 2
rn(µn), (7.32)

it follows from (7.26) that

2 · (nM log(L)−MDL(n)) ∼ X 2
rn(µn), (7.33)

where rn are the degrees of freedom and µn is the non-centrality parameter. On the one
hand, it involves the computation of the degrees of freedom of the matrix R̂s underHn. As
a rank−n semidefinite positive Hermitian matrix, it is determined by n real eigenvalues
and n complex eigenvectors, the first one having 2(M−1) degrees of freedom (M complex
numbers and one complex orthonormality restriction), the second one having 2(M − 2)

degrees of freedom (M complex numbers, one orthonormality restriction and one orthogo-
nality condition), successively until the n-th eigenvector with 2(M−n) degrees of freedom.
The summation leads to

n+ 2

n∑
i=1

(M − i) = 2Mn− n2. (7.34)

UnderHn, the determination of the noise variance requiresM−n real eigenvalues, whereas
under H0 it only requires to determine one real variance. Subtracting the degrees of free-
dom ofH0 to those ofHn, leads to

rn = 2Mn− n2 +M − n− 1 (7.35)

On the other hand, the non-centrality parameter µn depends on the occupancy of the
primary signal, i.e., the true hypothesesHN . If the primary signal is not present (i.e., ifH0

is true), the distribution is non-central and µn = 0 for all 1 ≤ n ≤ M . This task under HN
is a more difficult problem, as it involves the computation of the non-centrality parameter
µn. A good approximation for n ≥ N holds:

µn + rn
2

≈ L log

(
1 +

SNR
M

)M
(

1 +
SNR
N

)N . (7.36)
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It is worth noting that for n ≥ N , i.e., when the MDL(n) statistic has reached the true
primary signal dimension N , the non-centrality parameter does not improve with n. This
is due to the fact that the second part of the MDL(n) in (7.28) uncovers no structure in the
noise subspace. Even tough, as the nM log(L) penalty term in (7.26) continues to increase
with n, the MDL will “prefer” n = N in front of higher dimensions. Finally, for n < N , the
non-centrality parameter is affected by a negative term, i.e.,

µn + rn
2

≈ L log

(
1 +

SNR
M

)M
(

1 +
SNR
N

)N − L log

(
1 +

N − n
M − n

SNR
N

)M−n
(

1 +
SNR
N

)N−n , (7.37)

because the second part of the MDL(n) in (7.28) now evaluates a portion of the signal
subspace of dimension N − n. A last note on MDL is that by construction, MDL(0) = 0 in
a deterministic fashion. A sketch of the proof of the non-centrality parameters (7.36) and
(7.37) is provided in Appendix E.3 by making use of heuristic approximations.

An important application of the statistical characterization of the primary signal sub-
space estimation problem is the computation of the error probability. In particular, the
statistical characterization of the sphericity MDL allows to determine the probability of
selecting n as the dimension of the primary signal subspace is employed, i.e.,

Pn
.
= P

[
arg min

n
MDL(n) = n

]
, (7.38)

for n = 0, . . . ,M . In Appendix E.4 it is shown that this probability is given by

Pn =

n−1∏
m=0

CDF−X 2
rn−rm (µn−µm)

(
(m− n)M log(L)

2

)

×
M∏

m=n+1

CDFX 2
rm−rn (µm−µn)

(
(m− n)M log(L)

2

)
, (7.39a)

where rn and µn are given in (7.35) and (7.36)–(7.37), respectively, under either H0 or HN .
The error probability is defined as the complementary probability to the probability of
detection, i.e,

Pe
.
= 1− PN , (7.40)

being PN the probability of detection given by (7.39) for n = N under HN . As it is appre-
ciated from (7.39), the pairs (n,m) that exhibit smaller µn − µm will contribute to the error
probability.

It is worth noting that in cognitive radio an incorrect primary signal subspace detection
will produce a different effect, depending if either the estimated dimension is smaller or
larger than the true dimension. If N̂ < N , the secondary user will underestimate the

145



primary signal subspace, hence will cause interference, whereas if N̂ > N , the secondary
user will overestimate the primary signal subspace, hence losing opportunity. However,
this Section focusses on the error probability as a single parameter measure of the behavior
of the MDL, for sake of clarity.

7.3.3 Problem Formulation with Known Noise Variance

Assuming that the noise variance is known at the receiver, the MDL problem now involves
the following GLR, which only accounts for the estimation of the primary signal correla-
tion matrix, i.e.,

GLR(n, σ2) =
maxRs p(x1, . . . ,xL|Hn)

p(x1, . . . ,xL|H0)
. (7.41)

Similarly to the unknown noise variance scenario, the GLR statistic (7.41) is asymptotically
distributed as

2 · (nM log(L)−MDL(n, σ2)) ∼ X 2
rn(µn). (7.42)

In Appendix E.5 it is shown that, after ML estimating Rs and compressing the GLR stat-
sitic, the MDL is given by

MDL(n, σ2) = LM log

(
n∏

m=1

(
λm
σ2

)1/M
)
−LM

(
1

M

n∑
m=1

(
λm
σ2
− 1

))
+nM log(L), (7.43)

for n ≤ M . In view of (7.42), the MDL with known noise variance has the same rn pa-
rameter as the MDL with unknown noise variance (as the degrees of freedom inH1 minus
the degrees of freedom in H0 are preserved), whereas the non-centrality parameter can be
approximated analogously to the developments in Appendix E.3, i.e., by

µn + rn
2

≈ Ln
(

SNR
N
− log

(
1 +

SNR
N

))
(7.44)

if n ≤ N , and
µn + rn

2
≈ LN

(
SNR
N
− log

(
1 +

SNR
N

))
(7.45)

if n > N . If there is a mismatching between the prior σ2 and the true σ2, then the ratios
λm/σ

2 in (7.30) will produce random shifts in (7.44)–(7.45) in average as

E
[
λm
σ̂2

]
=
P + σ2

σ̂2
6= 1 +

SNR
N

. (7.46)

The noise uncertainty in the model order selection problem requires a different analysis
than that of signal detection. In particular, the SNR shift due to noise variance mismatching
will affect in the same way to all the MDLs, and therefore the key point in the analysis is the
evaluation of the parameters in Pn (7.39). As an example, the worst-case for a uniformly
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distributed noise variance with uncertainty δ ≥ 1, i.e.,

σ2 ∼ U
(
σ̂2

δ
, δσ̂2

)
, (7.47)

corresponds to the case σ̂2 = δσ2 (i.e., the receiver has a prior noise variance which is δ
times the true noise variance). In such a case, for instance,

µn − µm
2

≈ L(n−m)

(
1

δ

SNR
N

+
1− δ
δ
− log

(
1

δ

(
SNR
N

+ 1

)))
, (7.48)

which decreases with δ. The specific behavior of the MDL with known noise variance
with respect to the noise uncertainty δ and the error probability is numerically evaluated
in Section 7.5.2.

7.4 Minimum Norm Waveform Optimization

7.4.1 Problem Formulation and Requirements

The problem of coexistence of a secondary system with a primary system is addressed
in this Section. The secondary system must opportunistically transmit over the unused
resources of the primary system, causing no or little interference to the primary system.
Hence, the coexistence problem is cast as a waveform optimization problem in which the
each waveform os the set of M -samples discrete-time complex secondary waveforms

A = (a1, . . . ,aK), (7.49)

is designed to minimize the average interference caused to the primary system, i.e.,

min
ak

ξ(ak), (7.50)

iteratively for k = 1, . . . ,K. The average interference (7.50) induced by the transmission of
the waveforms ak is related to the second-order statistics of the primary system, R as

ξ(ak) = aHk Rak. (7.51)

This means that R is the minimum required CSI for the waveform optimization prob-
lem (7.50). Hence, the secondary waveforms designed in this Section will depend on the
second-order statistics of the interference channel (i.e., the eigenvectors and the eigenval-
ues of R), rather than the complete CSI contained in the primary-to-secondary channel at
signal level. The advantages of second-order statistical CSI are twofold. On the one hand,
R represents a slower time-varying statistic compared to first-order (instantaneous) CSI,
which provides a more realistic feedback scenario. And on the other hand, R is quantiza-
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tion friendly due to its Hermitian and positive definiteness properties [SMPI10]. Asymp-
totically, the minimization of the objective function (7.51) has the meaning of maximum
spectrum mismatch, as

ξ(ak) = aHk Rak = tr
(
Raka

H
k

)
=

1

2π

∫ π

−π
φ(ω)|Ak(ω)|2dω, (7.52)

where Ak(ω) is the frequency response of the waveform ak, and φ(ω) is the Fourier trans-
form of the second-order statistics of the primary system. Therefore, minimizing (7.52)
involves finding the secondary waveforms that exhibit higher mismatch in spectrum.

Because opportunistic communication investigates low primary system occupancy sce-
narios, the low rank structure of R is exploited. In particular, the dimension of the primary
system is defined as

N = rank(R), (7.53)

i.e., the first N eigenvectors of R span the primary subspace. It is precisely through these
eigenvectors that the secondary waveforms will produce interference. As far as N < M ,
the aim of the secondary system is to direct the secondary waveforms into the noise sub-
space, i.e., the orthogonal subspace to the primary subspace, spanned by the K = M − N
remaining eigenvectors of R. In the following, the primary occupancy is defined as

κ0
.
=
N

M
< 1. (7.54)

It is worth noting that CSI on the secondary-to-primary communication channel is not
sufficient to exploit the unused resources by the primary system, as the activity of the pri-
mary users is not reflected in this particular channel. To this end, it is assumed that the
interference channel is the combined effect of the true secondary-to-primary communica-
tion channel plus a spectral mask that models the spectrum holes of the primary system,
i.e., the Fourier transform of the interference channel response has zero spectral contribu-
tion in the frequency resources not used by the primary system.

7.4.2 Nonrobust Waveform Optimization with Perfect CSI

In the case of perfect CSI, the optimization problem (7.51) reads

min
ak

aHk Rak subject to aHk ek = 1, (7.55)

for k = 1, . . . ,K, and where the additional constraint aHk ek = 1 has been added to avoid
the trivial solution. The solution of the optimization problem (7.55) is derived in Appendix
E.7 and is given by

ak =
P⊥Uk

ek√
αk

, (7.56)
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where αk is a scaling factor to guarantee that ak is unit-norm, and

P⊥Uk

.
= I−UkU

H
k , (7.57a)

U1
.
= U, (7.57b)

R = UΛUH , (7.57c)

Uk+1
.
= [Uk ak] , (7.57d)

ek
.
= [0 · · · 0︸ ︷︷ ︸

M−k

1 0 · · · 0︸ ︷︷ ︸
k−1

]T . (7.57e)

The solution of the waveform optimization problem is presented as an iterative algorithm,
which has implementation advantages as the secondary system is able to sequentially ob-
tain new waveforms until the full noise subspace is exploited, or until the quality of ser-
vice (QoS) required (i.e., the size of the physical layer alphabet) is achieved.

From (7.56), it is seen that the secondary waveforms implement an orthogonal projec-
tor to the primary subspace, i.e., (7.57), which depends on the eigenvectors of R and is
independent on the eigenvalues of R. This means that to achieve complete orthogonality,
the information contained in the eigenvalues, i.e., the strength of each eigenchannel is not
necessary. As a result, when perfect second-order statistical CSI (P-CSI) on the interference
channel is available, the average interference is completely nulled, i.e.,

ξP-CSI(A) = 0. (7.58)

Interestingly, the interference minimization problem (7.55) becomes equivalent to the
following minimum norm problem with orthogonality constraint

min
ak

aHk ak subject to aHk ek = 1 and UHak = 0, (7.59)

as proved in Appendix E.8. This means that (7.56) will exhibit all the good properties of
the classical linear predictor [TKK82]. In particular, the polynomial zeroes of the secondary
waveforms will have an asymptotic distribution which is uniform on a circle of radius less
than unity, as advocated in [Pak87]. A direct consequence of this result it that the proposed
waveforms satisfy the desired property of white frequency response in the noise subspace,
a preferable condition in cognitive radio communication.

Furthermore, one key property of minimum norm waveforms is that it relies on the
orthogonal projector (7.57), which exhibits invariance to rotations within the primary sub-
space. This property is suitable in cognitive radio networks, as several secondary users
may obtain rotated versions of the second-order statistical CSI (e.g., by observing the pri-
mary signal or exploiting available pilots). Modeling the rotation by a rotation matrix Ψi

4,

4Note that a rotation matrix satisfies ΨΨH = I and det(Ψ) = ±1.
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each of the versions available at the secondary users can be modeled as

Vi = UΨi. (7.60)

Distances are preserved in the primary subspace, therefore the proposed minimum norm
waveforms are rotationally invariant as PVi = PU for any Ψi. However, if the rotation is
not within the primary signal subspace, i.e., of the type ΨiU, then mismatching between
known subspaces may arise. This motivates the design of robust waveforms, as addressed
in the following.

7.4.3 Robust Waveform Optimization with Imperfect Channel State Informa-
tion

In practical cognitive radio networks, the errors in obtaining the second-order statistical
CSI of the interference channel could translate to an inaccurate knowledge on R, as it has
been studied in the former Section 7.3 in the MDL problem. If the priorly known second-
order statistical CSI is denoted as R̂, the existence of the following mismatching in the
interference channel

R = R̂ + ∆, (7.61)

where ∆ is the semi-definite positive second-order mismatching. The existence of ∆ could
lead to increasing interference to the primary system, as well as performance loss in the
secondary system, as the knowledge on the primary subspace may differ from the actual
primary subspace, as well as among secondary users. For this reason, the robust wave-
form optimization problem is addressed. In contrast to (7.49), this section optimizes the
following waveforms

Ã = (ã1, . . . , ãK) (7.62)

to minimize (7.50) taking into account the mismatching (7.61).
Particularly, the mismatching (7.61) is bounded by [Höl89]

‖∆‖∞ ≤ ε, (7.63)

where the parameter ε > 0 takes the meaning of uncertainty level, and ‖∆‖∞ evaluates
the infinite norm of ∆, i.e., its maximum eigenvalue. Hence, addressing robust waveform
optimization involves solving the following problem

min
ãk

ãHk

(
R̂ + ∆

)
ãk for any ‖∆‖∞ ≤ ε, (7.64)

instead of that of (7.51). Contrarily to the P-CSI scenario, the waveforms cannot meet
the orthogonality equality for any possible mismatching ∆ in the imperfect second-order
statistical CSI (I-CSI) scenario. In this sense, the worst-case performance optimization, mo-

150



tivated by [SGLW03] in the beamforming problem, is addressed. More specifically, finding
the worst-case subspace mismatching ∆ given an uncertainty level ε will produce a set of
waveforms which will exhibit better interference performance for any other realization of
∆. The worst-case performance optimization is written as

max
∆

ãHk

(
R̂ + ∆

)
ãk subject to ‖∆‖∞ ≤ ε. (7.65)

Solving (7.65) leads (see Appendix E.9 for the details) to

∆ = εãkã
H
k (7.66)

In other words, the worst-case subspace mismatching scenario with uncertainty ε is such
mismatching that concentrates all the uncertainty in a subspace isotropically spanned by
the direction to be minimized. This is indeed a very pessimistic scenario, as in general
mismatching could expand or shrink the primary subspace up to a certain measure. After
plugging (7.66) into the objective function (7.64), the objective function becomes

ξ(Ã) = ãHk

(
R̂ + εI

)
ãk (7.67)

i.e., the worst-case performance scenario involves a diagonal loading into the Gramm ma-
trix of the interference channel. Hence, together with the nontriviality constraint, the ro-
bust waveform optimization problem reads

min
ãk

ãHk

(
R̂ + εI

)
ãk subject to ãHk ek = 1, (7.68)

for k = 1, . . . ,K.
The solution to the former problem is derived in Appendix E.10 and is given by the

expression

ãk =
(I− ÛkΦkÛ

H
k )ek√

α̃k
(7.69)
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where α̃k is a factor that guarantees unit-norm waveforms, and where

Φ1 =


λ̂1
λ̂1+ε

0

. . .

0 λ̂N
λ̂N+ε

 , (7.70a)

Û1 = Û, (7.70b)

R̂ = ÛΛ̂ÛH , (7.70c)

Φk+1 =

[
Φk 0

0 1

]
, (7.70d)

Ûk+1 =
[
Ûk ãk

]
(7.70e)

ek
.
= [0 · · · 0︸ ︷︷ ︸

M−k

1 0 · · · 0︸ ︷︷ ︸
k−1

]T . (7.70f)

In (7.70), λ̂n denotes the n-th eigenvalue of R̂. From (7.69), it can be appreciated that the
robust waveforms implement a soft orthogonal projector of the form (I−ÛkΦkÛ

H
k ), where

the eigenvectors of the priorly known Gram matrix are combined by means of the diagonal
elements of Φk, which take into account the tradeoff between the uncertainty level ε and
the magnitude of each eigenchannel, λ̂k. In other words, it implements a measure of the
quality level of the CSI, as each of the elements of the diagonal of Φk can be seen as

λ̂n

λ̂n + ε
=

SNRn
1 + SNRn

, (7.71)

where the SNRn has been defined as SNRn
.
= λ̂n/ε.

If the quality of the CSI is asymptotically high, it follows that ε → 0, SNRn → ∞,
Φk → I, (I− ÛkΦkÛ

H
k )→ PUk

in (7.57), and therefore that

ãk → ak (7.72)

in (7.56) for k = 1, . . . ,K, which is consistent with the nonrobust solution. On the other
hand, if the quality of the CSI is asymptotically poor, it follows that ε → ∞, SNRn → 0,
Φ1 → 0, and hence that

ãk → ek (7.73)

for k = 1, . . . ,K. In general, the robust solution is partially using the information con-
tained in R and the pre-agreed structure inherent in the nontriviality constraint ãHk ek = 1.

7.4.4 Efficient Frequency-Domain Implementation

In order to investigate the frequency components exploited by the secondary waveforms
in opportunistic communication, the asymptotic behavior of (7.56) and (7.69) is addressed
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in the following for asymptotically large M . A direct consequence of the asymptotic be-
havior is that the implementation of the minimum norm waveforms can be efficiently done
as a function of the frequency bins (library), instead of computing the eigenvalue decom-
position (EVD) of an autocorrelation matrix.

Nonrobust Waveforms Asymptotic Frequency Response

AsM →∞, the eigenvectors of the second-order statsitical CSI of the interference channel,
i.e., the Gram matrix R, approach to the frequency bins with non-zero spectral contribution
[Gra06]. In this setting, the orthogonal projector (7.57) for k = 1 can be written as a function
of the frequency bins

P⊥U =
∑
n∈W

fnf
H
n , (7.74)

whereW indexes the frequency bins not occupied by the primary subspace, i.e., the noise
subspace, and where

fn =
1√
M


1

ωn
...

ωM−1
n

 , (7.75)

being ωn the primitive n-th root of unity. After some mathematical manipulations, the first
waveform can be expressed as

a1 ∝
∑
n∈W

fn, (7.76)

i.e., it implements a uniform linear combination of the frequency bins located in the noise
subspace. Hence, it is straightforward to show that the first waveform exhibits the max-
imally flat frequency response in the noise subspace. As stated above, this is a known
property of minimum norm filtering with orthogonality constraints with respect to a cer-
tain positive measure on the unit circle.

Taking into account the iterative procedure for the subsequent waveforms a2, . . . ,aK ,
it follows that the asymptotic frequency response will strictly depend on the frequency
bins located in the noise subspace, i.e.,

ak ∝
∑
n∈W

βknfn (7.77)

where the set of parameters βkn depend on the particular configuration of W . In other
words and given the orthogonality constraints with respect to the former waveforms, the
rest of the waveforms will also exhibit the mostly flatter frequency response.

The same interpretations follow from the Z-transform of (7.76) and, in general, (7.77),
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given by

A1(z) ∝
∑
n∈W

1− z−M
1− ωnz−1

, (7.78)

and

Ak(z) ∝
∑
n∈W

βkn
1− z−M

1− ωnz−1
, (7.79)

respectively. In any case, it is easy to observe that each of the frequencies occupied by the
primary subspace are actually zeros of the secondary waveforms, i.e.,

Ak(z → ωn) = 0, (7.80)

for k = 1, . . . ,K and n ∈ P , being P the complementary set toW , i.e., the set that indexes
the frequency components of the primary subspace. In general, the weights in (7.79) out-
line that a secondary system based on minimum norm waveforms exhibit a multi-carrier
code division multiple-access (CDMA) strategy.

A final note is that |P| = N and |W| = K, meaning that κ0 in (7.54) asymptotically
acquires the meaning of spectrum occupancy, i.e., the primary system spectrum support
to the total available bandwidth ratio.

Robust Waveforms Asymptotic Frequency Response

In order to study the asymptotic frequency response of the robust waveforms (7.69), the
complete spectral decomposition of R̂ is required, i.e,

R̂ =
∑
n∈P

ĝnfnf
H
n , (7.81)

where ĝn is the squared value of the spectral contribution of the interference channel at the
n-th frequency bin, i.e.,

ĝn
.
= |G(fn)|2, (7.82)

where G(f) is the frequency response of secondary-to-primary interference channel. Em-
ploying (7.81), the first robust waveform can be expressed as

ã1 ∝
(

e1 −
1√
M

∑
n∈P

ĝn
ĝn + ε

fn

)
, (7.83)

which implements a negative linear combination of he frequency bins located in the pri-
mary subspace, with an associated weights that depend on both ĝn and ε. In particular,
those frequency bins with high

SNRn
.
=
ĝn
ε

(7.84)
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will have a large contribution in the negative linear combination. Because of the iterative
procedure for the subsequent waveforms ã2, . . . , ãK , in general

ãk ∝
(

ek −
1√
M

∑
n∈P

β̃knfn

)
. (7.85)

It is straightforward to appreciate that complete orthogonality to the prior CSI Û is not
achieved in the robust waveforms, as the orthogonal projector in the numerator of (7.69) is
implementing a soft version taking into account the quality of the CSI, i.e., SNRn.

Similar interpretations follow from the Z-transform of (7.83) and (7.85), given as

Ã1(z) ∝
(

1−
∑
n∈P

ĝn
ĝn + ε

1− z−M
1− ω̂nz−1

)
, (7.86)

and

Ãk(z) ∝
(

1−
∑
n∈P

β̃kn
1− z−M

1− ω̂nz−1

)
, (7.87)

respectively. Only when βkn = 1, i.e., when the quality of the CSI in the n-th frequency bin
is high, complete nulling W̃k(z → ωn) = 0 will occur. For other values of βkn, the position
of the zeroes in W̃k(z) is shifted to gain robustness in front of CSI uncertainty.

Residual Interference

As the robust formulation is motivated to reduce the residual interference that the nonro-
bust waveforms may produce due to imperfect CSI, this section evaluates the theoretical
basis of this residual interference. Under the mismatching model (7.61), the waveforms
(7.56) based on the CSI R̂ have the following normalized residual interference

ξI-CSI(ak) = aHk ∆ak. (7.88)

This is direct consequence of the orthogonality constraint between a1, . . . ,aK and the
eigenvectors of R̂. If ∆ is a random error matrix constrained by (7.63), it is clear to see
that the residual interference associated to the nonrobust waveforms is bounded by the
worst-case scenario, i.e., (7.66), which provides an upper bound on (7.88) as

ξI-CSI(ak) ≤ ε. (7.89)

On the other hand, the residual interference associated to the robust waveforms is
given by the general expression

ξI-CSI(ãk) = ãHk Rãk. (7.90)
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Focussing on the first waveform, in Appendix E.11 it is shown that ξ(ã1) is upper bounded
by

ξI-CSI(ã1) ≤ ε ·
1− 1

M

∑
n∈P

SNRn
SNRn + 1

1− κ0 +
1

M

∑
n∈P

(
1

1 + SNRn

)2

︸ ︷︷ ︸
.
=1/Γ1(SNR1,...,SNRN )

, (7.91)

where Γ1(SNR1, . . . , SNRN ) has been defined as the interference gain. As expected, for
SNRn →∞, there is no gain between the robust and the nonrobust waveform, i.e.,

Γ1(∞) = 1. (7.92)

7.5 Numerical Results

In this Section, the performance of the proposed secondary communication strategies, as
well as the primary signal identification problem, is evaluated by means of numerical re-
sults.

7.5.1 Interference-Free Primary Signal Detection

In the following, numerical results are shown to assess the performance of the noise sub-
space detector. For sake of practical convenience, the operations involved in (7.14) have
been implemented in the time-domain, as in view of the unitary property of the Fourier
transform, the results presented in this work will hold for large enough signal block length.
In the following simulations, M = 256, the noise and primary signal are white Gaussian
distributed, the cognitive signal is a binary phase-shift keying (BPSK), with G(f) a SRRC
pulse with roll-off factor α, and the received signal is sampled at two samples per symbol.
With the aim of benchmarking the following detectors are included in the simulations: a
genie-aided detector which is able to subtract the x(t) contribution from the observations
and performs energy detection in the interval W , as well as the energy detector which
performs energy detection in the intervalW directly on the observations.

Figure 7.2 depicts the receiver operating characteristics (ROC) of the genie aided, noise
subspace and energy detector for several average SNR conditions and a roll-off factor of
α = 0.8. The performance of the proposed noise subspace detector reaches that of genie
aided in all SNR conditions, whereas the energy detector incurs a severe performance loss
due to the interference caused by the cognitive signal.

The same conclusions are obtained in Figure 7.3, which plots the ROC of the aforemen-
tioned detectors at the average SNR of−6 dB, for several values of α. It is worth noting that
the ability of the noise subsapce detector to perform spectrum sensing free of interference
is preserved for a wide range of roll-off factors.
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Figure 7.2: Complementary ROC of the genie aided, noise subspace and energy detector meth-
ods for several average SNR conditions with 256 samples and roll-off factor of 0.8.
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In both figures, it is appreciated that the performance of the proposed detector in-
creases with α and the SNR, as it is forecast by the deflection (7.22) and corroborated by
Figure 7.4, which illustrates the deflection of the genie aided, noise subspace and energy
detector detectors versus the roll-off factor for several average SNR conditions. On the
one hand, it can be noted how numeric simulations match the theoretical results as, e.g.,
for an SNR of 0 dB, α = 1 and |W| = αM = 256, the deflection of the proposed detector
equals D{TNS} = 256×12 = 24 dB. Furthermore, it is seen that a change in SNR conditions
of 3 dB translates to a shift of 6 dB in deflection, as expected. On the other hand, in the
energy detector case, it follows that the deflection is approximately 3.5 dB below that of
the noise subspace and genie aided detectors, because the energy detector operates under
SINR conditions, i.e.,

D(LED) ∝ |W| · SINR2, (7.93)

where the SINR is defined as
SINR .

=
N1

N0 + P/2
. (7.94)

The degradation of the energy detector increases in high interference scenarios. In this sim-
ulation, N0 = P = 1. Because, SINR = SNR− 10 log10(1 + P/2N0) dB, the energy detector
incurs a systematic loss with respect to the noise subspace and the genie aided of 1.75 dB,
which translates into 3.5 dB in deflection, as prognosticated by Figure 7.4. Broadly speak-
ing, the performance of the genie aided, noise subspace and energy detector accomplish
the following condition:

D(TED) < D(TNS) ≈ D(TGA). (7.95)
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7.5.2 Minimum Description Length

The probability density function (PDF) of the proposed sphericity MDL is depicted in Fig-
ure 7.5 under the true hypotheses of H0 and H3, for L = 1, 000 and SNR = 10 dB, along
with the PDF of the MDL with known noise variance with perfect prior information on σ2,
and the PDF of the MDL with known noise variance with imperfect prior information on
σ2 with uncertainty level of 0.5 dB, in Figures 7.6 and 7.7, respectively. In all Figures it is
appreciated that the theoretical statistical characterization of the MDLs is accurate. Under
H3, the MDL for n < 3 are disjoint with those for n > 3 due to incompleteness of the
GLR(n) for n < 3. On the other hand, since the sphericity is complete for n ≥ 3, it is the
penalty term in (7.26) that plays a role in the model order selection. It is worthy to point
out that the noise uncertainty plays a fundamental role underH0, as seen in Figure 7.7.

The error probability is depicted in Figure 7.8 and Figure 7.9 versus SNR and L, respec-
tively, under H3. It is appreciated that the theoretical statistical characterization forecasts
an accurate behavior of the error probability as a function of the main parameters involved
in the model order selection problem, namely, N , L and the SNR. In both figures, it is seen
that for a fixed pair (L, SNR), the error probability degrades as the signal subspace di-
mension N increases and approaches to the full dimension. This is due to the fact that
the sphericity ratios involved in the sphericity MDL (e.g., the ratio inside the logarithm in
(7.36)) are closer to one. Compared to the MDL with known noise variance, in all scenarios
the proposed sphericity MDL suffers from a degradation in either SNR or sensing time
(required number of observations). However, the proposed sphericity MDL shows robust-
ness in front of inaccurate knowledge on the noise variance, as the MDL with known noise
variance under noise uncertainty of 0.5 dB shows a severer degradation to the point that,
e.g., at an SNR of 0 dB the error free model order selection for N = 5 is unfeasible.

7.5.3 Performance of Minimum Norm Waveform in Noncoherent Communica-
tion

The theoretical assessments derived in Section 7.4 are evaluated in numerical simulations.
For sake of simplicity, in the sequel the primary system is modeled as a set of 8 DVB-T
channels, and a flat secondary-to-primary channel is considered. The nonrobust (7.56) and
robust (7.69) waveforms are considered for secondary transmissions, and a genie aided
waveform consisting of (7.56) with perfect CSI is employed as benchmark. In the imperfect
CSI scenarios, i.e., when ε > 0, a random error matrix ∆ is generated such that the norm
constraint (7.63) and the positive semi-definite structure of R̂ are satisfied.

As waveform optimization in cognitive radio networks involves spectral shaping, the
frequency response of the genie aided, robust, and nonrobust waveforms is computed,
when the primary system consists of 3 occupied channels out of the 8 available for oppor-
tunistic communication, i.e., a primary occupancy of κ0 = 3/8.
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Figure 7.5: PDF of the robust MDL under the true hypotheses of (a) no primary signal, and (b) a
primary signal with dimension 3.
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Frequency-Response

The zero-pole distribution of the genie aided, nonrobust, and robust waveforms of length
M = 32 samples is depicted in Figure 7.10, for three values of uncertainty ε = 1/10, ε = 1/2

and ε = 1. In the three scenarios, it can be appreciated how the proposed waveforms
exhibit the zero distribution characteristic of minimum norm filtering, i.e., the zeroes are
distributed uniformly in a circle of radius less than unity. The orthogonality with the
primary system met by the genie aided waveforms is not satisfied in imperfect CSI, as the
zeros of the waveforms are not located in the primary subspace, i.e., the set of frequencies
occupied by the primary system. This fact can be appreciated for ε = 1 in the range, e.g.,
−π/2 ≤ ω ≤ 0.

The comparison between the nonrobust and the robust counterparts is more clear in
the frequency response. In particular, Figure 7.11 plots the PSD of the genie aided, robust
and nonrobust waveforms for uncertainty levels of ε = 1/2 and ε = 1. In both cases, it
can be appreciated that the proposed waveforms take advantage of the white spaces, and
distribute the power over the noise subspace, i.e., the frequency components unused by
the primary system, achieving maximally flat frequency response. Compared to the genie
aided waveform, the proposed nonrobust waveform exhibits a noise floor which increases
with the uncertainty level ε, as the orthogonality is not met. On the other hand, the robust
waveform is able to diminish the floor effect by implementing a soft projection that takes
into account the uncertainty in R, i.e., it is more conservative on the information of the
primary subspace.
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Performance in Noncoherent Communication

This Section discusses the performance of the waveforms (7.49) and (7.62) over the sec-
ondary channel. More specifically, a point-to-point noncoherent communication channel is
considered such that the channel remains invariant within the transmission of each wave-
form, i.e., during M symbols. The transmission of L waveforms is considered. The signal
at the secondary receiver is given by Z = HY + W, where the secondary channel matrix
is

H = diag(h1, . . . , hL), (7.96)

and the transmitted symbols Y, the received symbols Z and the noise W are defined as

Y = [y1, . . . ,yL] , (7.97a)

Z = [z1, . . . , zL] , (7.97b)

X = [x1, . . . ,xL] , (7.97c)

respectively. For each transmission, the secondary transmitter selects with equal probabil-
ity a waveform from A, i.e, yl =

√
Pak, where P is the transmitted power. Noncoherent

communication are adopted in hostile environments where the channel conditions change
from transmission to transmission, as reflected by (7.96), so channel equalization is not
practical. As the channel gain is unknown at each transmission, the noncoherent detection
involves [BB99]

â = max
a∈A
|aHz|2. (7.98)

In this setting, the noncoherent channel (7.96) is drawn from a zero-mean unit-norm nor-
mal distribution at each symbol transmission over a coherence of M = 8 samples.

In Figure 7.12, the bit error rate (BER) versus the average bit SNR of the noncoherent
channel with several primary occupancies is depicted, for an uncertainty level of ε = 1/2.
The curves show better error probability vs per bit SNR tradeoff in low occupancy sce-
nario, as the cognitive radio users are able to exploit a larger noise subspace (larger K) for
opportunistic communication. Furthermore, the degradation incurred by imperfect CSI
is reflected as a error floor in the error probability, i.e., as SNR → ∞ the error exponent
of BER tends to zero. This degradation is further increased with κ0, as the scenario is
more restrictive. Compared to the nonrobust counterpart, the proposed robust waveforms
achieve significant gain in imperfect CSI, as the error floor is displaced several orders of
magnitude.

To observe the effect of ε over the error floor Figure 7.13 depicts the BER versus per bit
SNR when the primary system has an occupancy of κ0 = 3/8 with uncertainty levels of
ε = 0, ε = 1/2, and ε = 1. It is seen that for moderate uncertainty on the CSI, the proposed
robust waveform exhibits low error exponent degradation compared to the genie aided
waveform. However, in severely imperfect CSI, both nonrobust and robust waveform
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Figure 7.12: BER versus bit SNR per Hz of the genie aided, nonrobust and robust minimum norm
waveforms of length 8 samples with uncertainty level of 1/2, with occupancies of 1/8, 3/8, and 5/8.

saturate at high SNR, as the mismatching between the CSI among secondary users is too
severe.

The contour plot of the BER versus the uncertainty level of the secondary transmitter,
ε1, and the uncertainty level of the secondary receiver, ε2, at SNR of −1.5 dB is plotted in
Figure 7.15. It can be observed that for a wide range of uncertainty pair (ε1, ε2) the gain in
error probability of the robust waveform with respect to the nonrobust waveform is of 1
order of magnitude. Furthermore, a symmetric behavior is appreciated, in the sense that
an increment in either the uncertainty level of the transmitter or the uncertainty level of
the receiver acts as bootle neck regardless the CSI quality of the other.

Finally, the average interference generated by a secondary signal employing the non-
robust and nonrobust waveforms is examined in Figure 7.14 versus the uncertainty level
ε for primary occupancies of κ0 = 1/8, κ0 = 3/8, and κ0 = 5/8. The interference has
been normalized so that it admits the meaning of portion of secondary transmitted power
that actually interferes to the primary system. For fixed uncertainty level ε, the interfer-
ence caused to the primary system is larger in more crowded scenarios. Additionally, the
robust waveforms offer an improvement throughout a wide range of CSI uncertainty.

7.6 Conclusions

This Chapter has proposed a primary signal detector that exploits the noise subspace in-
duced by the cyclostationarity exhibited by the cognitive signal. This detector allows per-
forming spectrum sensing free of the interference caused by other cognitive users trans-
mitting in the network. It has been shown that the deflection associated to the proposed
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detector is proportional to the roll-off factor of the cognitive signal and proportional to the
squared value of the SNR, instead of the SINR. Numerical simulations corroborate the the-
oretical results, and show, for flat primary spectrum, detection performance is practically
that of the genie aided detector.

Secondly, the sphericity MDL statistic with unknown signal correlation matrix and
unknown noise variance has been derived for the Gaussian model order selection prob-
lem with application to cognitive radio. The asymptotic statistical characterization of the
sphericity MDL has been derived, which allows to predict the performance of model order
selection as a function of the main parameters of the system, i.e,. the SNR, the observation
size and the primary signal dimension. Simulation results have been provided to assess
the performance of the proposed sphericity MDL in comparison to the MDL with known
noise variance.

Finally, a minimum norm based approach for waveform optimization to achieve or-
thogonality to the primary signal subspace has been presented. This solution has the im-
portant properties of rotational invariance and maximally flat frequency response. Fur-
thermore, in order to cope with the possible mismatching among the subspaces estimated
by each cognitive radio user, a robust version of the minimum norm waveform has been
proposed. Simulation results on both the frequency properties of the waveforms as well
as its performance in secondary communication have been provided.

169



170



Chapter8
Conclusions and Future Work

8.1 Conclusions

This thesis has considered three signal processing problems in the context of the cognitive
radio technology: the sensing of the activity of the primary system, the detection of avail-
able resources, and the waveform optimization for opportunistic communication. The
three signal processing problems have been posed under a common denominator: wide-
band regimes. As a consequence and as shown throughout the thesis, the proposed al-
gorithms are focalized in low signal-to-noise ratio (SNR) scenarios, exploit the sufficient
temporal second-order statistics of the primary signal and noise components, and take ad-
vantage of the potentials of nonuniform sampling. The objective of this thesis has been
twofold: not only to derive practical, low complexity signal processing tools, but also to
establish fundamental, theoretical limits in asymptotic regimes. Both perspectives have
been contrasted with Monte Carlo numerical simulations.

As recalled by Figure 1.1 of Chapter 1, this thesis has been organized in six main parts,
whose conclusions are summarized as follows.

The signal processing research challenges for spectrum sensing and dynamic access for
wideband cognitive radio communication have been outlined in Chapter 2. The design of
low complexity sensing and transmitting schemes that exhibit robustness to model inac-
curacies has been identified as a major objective in the spreading of cognitive radio tech-
nology. State-of-the-art nonuniform sampling algorithms have been revised while noting
that signal detection does not require actual data reconstruction. The recent advances in
signal detection have also been outlined, with special highlights on the sensitivity of signal
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detectors to signal, noise and channel model inaccuracies. Thirdly, several approaches to
opportunistic communication have been reviewed, keeping in mind the degree of chan-
nel state information (CSI) and spectrum sensing errors as crucial factors in the design of
transmitting waveforms.

The first problem of spectral analysis in nonuniform sampling has been addressed in
Chapter 3. It has been shown that nonuniform sampling incurs the phenomenon of noise
enhancement and power loss in the second-order statistics of the sampled signal. This
phenomenon has been shown from experimentation in the design of the periodogram and
Capon spectral estimates, and from the asymptotic theoretical analysis of Bernoulli non-
uniform sampling. The proposed correlation-matching based spectral estimates, based on
a rank-1 fitting from linearly projected data, circumvent the noise enhancement problem
by implementing a denoising process in the spectral estimation. On the other hand, an
equivalence between the noise enhancement and SNR has been introduced, which relates
the degradation incurred by nonuniform sampling with the sampling density. Hence, this
has allowed to predict the conditions in which many signal detection problems will oper-
ate under nonuniform sampling.

Chapter 4 has addressed the problem of signal detection in multi-frequency systems
with priorly known normalized correlation matrices and by computing the estimates of
the power profiles by maximum likelihood (ML) estimation and correlation-matching es-
timation for uniform and nonuniform sampling, respectively. On the one hand, under the
low SNR assumption, a unified framework based on the frequency-domain asymptotic
interpretation of the optimal generalized likelihood ratio test (GLRT) detectors has been
derived, which consists of a kernel inherent to the detector and the periodogram of the
observations. The detectors and associated kernels corresponding to a wide variety of sit-
uations involving several degrees of knowledge on the signal and noise statistics have been
addressed, including the important case of multi-frequency systems. On the other hand,
a correlation-matching approach for parameter estimation has allowed the derivation of
the GLRT in nonuniform sampling for multi-frequency systems. The performance of the
resulting detector remains tight to the estimator-correlator for a wide range of sampling
densities and SNRs.

The asymptotic performance of signal detection has been addressed from two perspec-
tives in Chapter 5. On the one hand, the Stein’s lemma has been applied to the energy
detector and the estimator-correlator in several scenarios, ranging from nonuniform sam-
pling to noncoherent channels. The Stein’s lemma allows to discover the main parameters
that shape the error exponents in the error probabilities, i.e., the SNR, the number of ob-
servations, the primary signal occupancy, the sampling density, the diversity order. On
the other hand, the asymptotic statistical characterization of the GLRT with unknown sig-
nal power in Bernoulli nonuniform sampling has been further derived. This has allowed
the derivation of closed-form solution of sampling walls in noise uncertainty, specifically
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as functions of the primary signal occupancy and the sampling density. Sampling walls
state a sampling density limit bellow which the target detection probabilities cannot be
guaranteed, regardless the number of observations.

In Chapter 6, the cyclostationarity properties of primary signals have been exploited
to improve performance in the primary signal detection problem. More precisely, in the
first part, by deriving a correlation-matching optimal invariant test statistic, the quadratic
sphericity test (QST) has been obtained for the blind scenario. The QST evaluates the ratio
between the squared mean and the arithmetic mean of the eigenvalues of the autocorrela-
tion matrix. In the second part, the GLRT of a cyclostationary signal has been addressed
by exploiting the rank-1 structure of small spectral covariance matrices in a frequency-
domain representation of digital waveforms. By incorporating a parameterization of the
frequency-selective channel, the proposed detector shows robustness in front of fading
channels and outperforms the classical cyclostationarity-based detectors.

Finally, the last problem of waveform optimization has been reported in Chapter 7. In
particular, the design of a secondary transmitting scheme has been addressed from two
perspectives. First, a cyclostationary secondary waveform scheme has been proposed in
order to mitigate the interference that active secondary users may cause to inactive sec-
ondary users who are performing spectrum sensing. By oversampling the received obser-
vations, the inactive cognitive radios are able to project the observations to a reduced noise
subspace which is free from interference. It has been shown that the performance of the
proposed detector is proportional to the roll-off factor of the cognitive transmitting signal,
and proportional to the squared value of the SNR, instead of the signal-to-interference-
plus-noise ratio (SINR). The second approach has been the design of maximally flat,
invariant secondary waveforms that lie in the primary noise subspace. Beforehand, the
sphericity minimum description length (MDL) statistic with unknown noise variance has
been addressed to determine the dimension and directions of the primary signal subspace.
The asymptotic characterization of the sphericity MDL has allowed to predict the perfor-
mance of the model order selection as a function of the main parameters, i.e., the SNR, the
observation size and the primary signal occupancy. When the primary noise subspace has
been identified, a minimum norm based approach for waveform optimization has been
presented. The advantage of minimum norm filtering is that it exhibits the properties of
linear predictors: maximally flat frequency response and invariance. The proposed min-
imum norm waveform optimization has been further addressed in the important case of
imperfect CSI in order to cope with the possible mismatching among the subspaces ac-
quired by each cognitive user. The proposed waveforms exhibit low complexity imple-
mentation in the frequency-domain, and show robustness in front of imperfect CSI, as
advocated by the numerical results on both the performance of the secondary channel and
the interference level caused to the legacy system.

173



8.2 Future Work

After completing this thesis, the following future lines of research have been identified.

8.2.1 Sampling Pattern Optimization

This thesis has considered the Bernoulli nonuniform sampling, as the Gaussian-Bernoulli
distribution which results from the formulation as product of sequences allows a neat anal-
ysis of the second-order statistics of the sampling. A possible future line of investigation
would consist of generalizing the sampling patter, i.e., the sequence ψn, to adaptively op-
timize a performance metric such as the SNR or the Kullback-Leibler divergence (KLD) in
signal detection, e.g.,

ψn = arg maxD(H1||H0). (8.1)

This would allow to design nonuniform sampling patterns that exhibit matching and are
adapted to the primary signal, noise and channel statistical parameters, while at the same
time enhancing the detection performance, or reducing the actual sampling density for a
given target performance.

8.2.2 Capacity Tradeoff with Imperfect Sensing

In the ideal scenario of perfect spectrum sensing, the cognitive radios are able to fully
take advantage of the available resources to perform opportunistic communication, while
keeping the legacy system free of interference. However, in practice, spectrum sensing
techniques incur errors, namely false-alarms and missed-detections, with arbitrary small
probabilities related to the signal detection conditions, i.e., the SNR, the observation size,
the legacy system occupancy and the nonuniform sampling density. This nonzero error
probabilities are translated into a degradation in both the secondary and primary channel
capacities. Hence, the establishment of a tradeoff between the primary user capacity, the
secondary user capacity, and the spectrum sensing performance could be explored. In a
first attempt by resorting to the flat fading channel case, an scalar parameterization of the
tradeoff would consist of determining an upper-bound on the product between capacities
as a function of the channel and spectrum sensing parameters, i.e.,

CP · CS ≤ f(SNR, N, PFA, PMD, κ, κ0, ...). (8.2)

The characterization of such a function would allow to establish fundamental limits and
observe how the detection parameters affect the primary and secondary links actual qual-
ity.
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8.2.3 Cutoff-Rate Waveform Optimization

Resource allocation is an important problem in underlay cognitive radios in order to take
advantage of the underutilized resources by the licensed primary users. In the underlay
paradigm, the secondary transmissions may cause little interference to the primary users,
hence utilizing a larger amount of resources. With the use of side information provided by
the spectrum sensing part, a possible line of investigation consists of studying the problem
of power allocation in coded cognitive radio communications from a maximum cutoff-rate
perspective, i.e.,

P1, . . . , PL = arg maxR0(SNR, PMD, PFA, κ, κ0, ...), (8.3)

where R0 stands for the cutoff-rate. The cutoff-rate was originally proposed as a sensitive
criterion for the design of block and convolutional coded communications, as with low-
density parity-check (LDPC) codes and iterative decoding the cutoff-rate was considered
as an upper bound for the rates where feasible codes can be achieved. However, although
current codes achieve rates higher than the cutoff-rate, this parameter still maintains the
importance as an indicator of the error exponent behavior. The motivation of using the
cutoff-rate instead of capacity rises from the fact that since the capacity only gives a po-
tential maximum rate, probably the more convenient form of the coding theorem is the
evaluation of the packet error rate (PER) as a function of the block length and the infor-
mation rate [Sha59]. Particularly, Gallager showed that the average error probability of a
family of randomly generated codes decreases exponentially with the block length accord-
ing to an error exponent, as far as the code rate is below the channel capacity [Gal68]. The
main motivation behind the minimization of the PER is that this parameter is a realistic
indicator of the quality of the communication link in numerous communications systems.
Specifically, it is directly related to the real throughput as the PER potentially minimizes
the total amount of packets required in a transmission.

8.2.4 Interference Alignment

Along with fading, interference is one of the main concerns in digital communications.
While fading has been the central phenomenon in point-to-point communications, the per-
formance in current communication networks is often limited by the interference produced
among users. Therefore, managing the interference is an important factor in cognitive ra-
dio communications. Basically, there are three conventional approaches in treating the in-
terference in communication networks: decoding the interference, orthogonalization, and
consider the interference as noise. The first approach consists in decoding the interference
caused by the interferer, to further subtract the interferer contribution to the received sig-
nal and finally decode the useful signal. The second approach tries to avoid interference
by having signal and interference to be orthogonal in some domain, e.g., time, frequency,
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space, or code. Lastly, the third scheme treats the interference as noise, which is a useful
approach when the interference is weak.

The three aforementioned interference management approaches share the property
that the sum-rate capacity of the network is independent on the number of users, hence
limited by interference. Surprisingly, the theory behind interference alignment states that
the sum-rate capacity of a time-varying interference network with limited resources can be
increased linearly with the number of users Interference alignment was independently in-
troduced by several authors, e.g., [JS07, JS08, MAMK08, CJ08, CJ09, SCKP10]. Interference
alignment permits a transmitter to partially or completely align its interference within the
unused dimensions of the channel, given by the degrees of the interference channel. In
other words, it refers to the construction of signals (codes) such that the resulting trans-
mitted signal lies in a subspace which is orthogonal to the one spanned by the signal of
interest at each receiver. In a frequency selective channel with K users, up to K/2 degrees
of freedom are achievable when using interference alignment as a transmitting technique,
and zero-forcing as the receiving technique.

In dense networks, white spaces might not be enough persistent to guarantee the qual-
ity of service (QoS) of the secondary users. In this scenario, secondary users are unable to
transmit without harming the primary users by means of interference. To circumvent this
problem, a possible line of investigation would consists of proposing interference align-
ment techniques to operate in the primary signal noise subspace and reveal how the de-
grees of freedom behave within the cognitive radio parameters, i.e.,

d ≤ f(K,κ0, κ, ...). (8.4)

8.2.5 Noncoherent Communication and Grassmann Manifolds

In the last part of this thesis, the concepts of primary signal subspace and noise subspace
have been used in several problems. Grassmann manifolds are mathematical tools ob-
tained by identifying orthogonal matrices whose columns span the same subspace. In
other words, a point in the Grassmann manifold is a representative of the signal subspace
or the noise subspace, which represents the available subspaces for underlay communi-
cation. Since a point in the Grassmann manifold is a linear subspace, the choice of this
matrix is not unique, and understanding the geometry of Grassmann manifolds allows
the formulation of important mathematical instruments in optimization problems (such
as detection and estimation) such as the geodesics distance, parallel translation, gradients
and Hessians in Grassmann manifolds.

In many communication systems, the receiver or both the receiver and the transmit-
ter make use of some a priori knowledge on the CSI to achieve reliable communication.
However, accurate CSI can only be acquired through a sufficient amount of training or pi-
lot data. Generally, data-aided schemes show suitable performance in slow time-varying
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channels, and have become no longer efficient under fast time-varying channels of cur-
rent wireless communication systems. In other words, with shorter coherence times, CSI
acquisition means larger overheads and significant estimation errors. To improve the spec-
tral efficiency in such scenarios, noncoherent communications including both noncoherent
data detection and blind channel estimation have gained recent attention. Noncoherent
communication is appealing as only a few pilot data or no pilot is used for data detec-
tion and channel estimation, and therefore have a big promise for deployment under fast
time-varying channels.

As a result of the two aforementioned tools, a future line of investigation would con-
sist of applying the Grassmann manifolds theory to noncoherent communication in the
primary noise subspace, i.e., the design of secondary waveforms to maximize the distance
between the signal and noise subspaces, e.g.,

y1, . . . ,yK = arg max d(Us,Uw), (8.5)

where d(Us,Uw) evaluates the (geodesic) distance between the signal and noise subspaces.
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AppendixA
Proofs of Chapter 3

A.1 Proof of (3.10) and (3.11)

Noting the convexity of the problem (3.8), the derivative is taken with respect to the signal
level and set it to zero, which leads to the equation

1

M

M∑
m=1

tr
[(

xmxHm −Ψm

(
PR0 + σ2IN

)
ΨH
m

)
ΨmR0Ψ

H
m

]
= 0. (A.1)

Similarly, after taking the derivative with respect to the noise power level and equal it to
zero, it is obtained that

1

M

M∑
m=1

tr
[(

xmxHm −Ψm

(
PR0 + σ2IN

)
ΨH
m

)
IK
]

= 0, (A.2)

where the property ΨmΨH
m = IK has been used. Clearly, the derivatives outline the cou-

pling between the signal and noise statistics, which is based on the projection of the local
observations onto the normalized correlation matrices. Defining the matrices B, R0 , and
R2

0 as

B
.
=

1

M

M∑
m=1

ΨH
mxmxHmΨm, (A.3)

R0
.
=

1

M

M∑
m=1

ΨmR0Ψ
H
m, (A.4)
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and

R2
0
.
=

1

M

M∑
m=1

(
ΨmR0Ψ

H
m

)2
, (A.5)

the derivatives can be written as tr(BR0)−P tr(R2
0)−σ2tr(R0) = 0, and tr(B)−P tr(R0)−

σ2K = 0, respectively. Finally, after some mathematical manipulations, it follows that the
correlation-matching estimates P̂ and σ̂2 are given, respectively, by (3.10) and (3.11), as
wanted to show.
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AppendixB
Proofs of Chapter 4

B.1 Low Signal-to-Noise Ratio Approximation

(
Rs + σ2I

)−1 ≈ 1

σ2

(
I− 1

σ2
Rs

)
. (B.1)

For any stationary signal, the correlation matrix can be expressed as the product of the
signal variance by a normalized correlation matrix, i.e., Rs

.
= PR0, where P ≥ 0 and

diag(R0) = N1. By taking σ2 as a common factor,
(
Rs + σ2I

)−1 can be expressed as

(
Rs + σ2I

)−1
=

1

σ2
(I + SNRR0)−1 .

= R(SNR), (B.2)

where the parameter SNR .
= P

σ2 reflects the signal-to-noise ratio (SNR) of the problem.
For asymptotic SNR → 0, the following matrix Taylor expansion R(SNR0) = R(SNR0) +
∂

∂SNRR(SNR0)(SNR − SNR0) + O(SNR2), as SNR0 → 0, is considered. The low SNR ap-
proximation is formally defined as the truncation of the Taylor series at the squared order
of the SNR and higher. By making use of the matrix derivation properties, it is obtained
that ∂

∂SNRR(SNR0) = − 1
σ2 (I + SNR0)−1 R0 (I + SNR0)−1 = − 1

σ2 R0 as SNR0 → 0. Then,
as R(SNR0) = 1

σ2 , it follows that R(SNR0) ≈ 1
σ2 I − 1

σ2 R0SNR, which after some simple
manipulations concludes the proof.
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B.2 Proof of Theorem 4.1

It is first proved that, for asymptotically SNR → 0, the generalized likelihood ratio test
(GLRT) (4.5) is of the form T (X,Θ) = tr(KR̂). Consider the GLRT (4.5) for the spectrum
sensing problem (4.3) under the Gaussian assumption, i.e.,

L(X) =
p(X|R̂s, σ̂

2
1,H1)

p(X|σ̂2
0,H0)

=
det(σ̂2

0I)M

det(R̂s + σ̂2
1I)M

× exp tr(−XH(R̂s + σ̂2
1I)−1X)

exp tr(−XH(σ̂2
0I)−1X)

. (B.3)

Taking the logarithm and defining R̂
.
= 1

MXXH , after grouping terms it is obtained

1

M
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1
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On the one hand, the approximations σ̂2
0 ≈ σ̂2

1 and log det
(
I + 1

σ̂2
1
R̂s

)
≈ SNRtr(R̂s) ≈ 0

are considered asymptotically as SNR → 0. On the other hand, by recalling the matrix
inversion lemma (A + BCD)−1 = A−1−A−1B(DA−1B + C−1)−1DA−1 and setting A =

σ̂2
1I, B = R̂s and C = D = I in (R̂s + σ̂2
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1I)−1. Applying this last result to (B.4),

1

M
logL(X) ≈ tr

(
1

σ̂2
1

R̂s(σ̂
2
1I + R̂s)

−1R̂

)
.
= tr

(
KR̂

)
. (B.5)

For the second part of the proof, it is recalled that for large data records (i.e., asN →∞)
in (4.3), it is established in [Kay98a, Ch. 5, Sec. 5] though approximating the probability
density function (PDF) of X that log-likelihood decision statistic(B.5) can be approximated
as (4.8), where K(ω,Θ) is the asymptotic continuous-frequency transform of the second-
order statistic K given by (4.9), and P (ω) is the continuous-frequency periodogram of X.

B.3 Proof of (4.13)

The ML estimate of P under H1 for the spectrum sensing problem (4.3) is given by P̂ =

arg minP log det(PR0 + σ2I) + tr
(

(PR0 + σ2I)−1R̂
)

subject to P ≥ 0. By making use of

the following properties ∂
∂xA−1 = −A−1 ∂

∂xAA−1 and ∂
∂x log det(A) = tr

(
A−1 ∂

∂xA
)
, the

derivative with respect to P is taken and set to zero. This provides that the maximum
likelihood (ML) estimate of P is the solution to the equation

tr
(
(PR0 + σ2I)−1R0

)
− tr

(
(PR0 + σ2I)−1R0(PR0 + σ2I)−1R̂

)
= 0, (B.6)
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which has no closed-form solution. Yet, by further making use of Approximation (B.1), it
follows that tr

(
(PR0 + σ2I)−1R0

)
≈ N

σ2 − P
σ4 tr(R2

0), and

tr
(

(PR0 + σ2I)−1R0(PR0 + σ2I)−1R̂
)
≈ 1

σ4
tr(R0R̂)− 2P

σ6
tr(R2

0R̂), (B.7)

as the ratio P
σ2 → 0. Applying the former approximations, it is obtained that the derivative

is equivalent to the equation P
(

2
σ6 tr(R2

0R̂)− P
σ4 tr(R2

0)
)

= 1
σ4 tr(R0R̂) − N

σ2 . After noting

that tr(2R̂ − σ2I) ≈ σ2I and multiplying both sides of the equation by σ4, it is obtained
that the ML estimate of P reads

P̂ =
tr(R0R̂)− σ2N

tr(R2
0)

. (B.8)

After applying the non-negativity restriction on P̂ , (P̂ )+, it is obtained (4.14). The expres-
sion of the GLRT spectrum sensing detectors (4.5) with known noise variance is given by
(B.5) with σ̂2

1 = σ2. For the particular case of unknown signal level, the optimal GLRT
spectrum sensing detector obtained by further substituting R̂s = P̂R0, which concludes
the proof.

B.4 Proof of (4.16)

Let Rs[β] be the decomposition of Rs given by (4.15). The ML estimate of the coefficients
β
.
= (β̂0, . . . , β̂N−1) onto T is given by

β̂ = arg min
β

log det
(
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)
+ tr

((
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)−1
R̂
)
, (B.9)

with the additional constraint β0 ∈ R+. By making use of the derivative properties,
the derivative of the objective with respect to β∗n′ is taken, which leads to the equation
tr
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= 0, for 0 ≤ n ≤
N − 1. Solving for β requires the use of iterative algorithms which do not provide inter-
pretation insight on the solution. However, in the wideband regime, the use of Approx-
imation (B.1) allows to to approximate the following terms tr
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as βn
σ2 → 0. Applying the former approximations, it is obtained that the ML estimate of

Rs accomplishes 2
σ6 tr

(
Rs[β]Tn′R̂

)
− 1

σ4 tr (Rs[β]Tn′) = 1
σ4 tr(Tn′R̂) − 1

σ2 tr(Tn′). Noting

that tr(2R̂ − σ2I) ≈ σ2I, it reduces, after multiplying both sides by σ2, to tr(Rs[β]Tn′) =

tr(Tn′R̂)− σ2tr(Tn′). Now, making use of the orthogonality of T , it is noted that the term
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tr(Rs[β]Tn′), using the decomposition (4.15), equals to βntr(TT
nTn), i.e., only the term

n = n′ survives. Finally, βntr(TT
nTn) = tr(TnR̂) − σ2tr(Tn), which for n = 0 as T0 = I

gives β0 in (4.17a), and for n ≥ 1 as tr(Tn) = 0 gives βn in (4.17b). Finally, taking (B.5) with
σ̂2

1 = σ2 and R̂s = Rs[β̂], proves (4.16).

B.5 Proof of (4.23)

The ML estimates of P and σ2 are given by the convex optimization problem

P̂ , σ̂2
1 = arg min

P,σ2
log det(PR0 + σ2I) + tr

(
(PR0 + σ2I)−1R̂

)
. (B.11)

The solution for P is given by (B.8) for σ2 = σ̂2
1 . On the other hand, similarly the derivative

with respect to σ2 are taken and set it zero, which gives

tr
(
(PR0 + σ2I)−1

)
− tr

(
(PR0 + σ2I)−2R̂

)
= 0. (B.12)

To solve for the noise variance, the Approximation (B.1) leads to tr
(
(PR0 + σ2I)−1

)
≈

N
σ2 − P

σ4N , and tr
(

(PR0 + σ2I)−2R̂
)
≈ 1

σ4 tr(R̂) − 2P
σ6 tr(R0R̂). As a result, the deriva-

tive becomes equivalent to P
(

2
σ6 tr(R0R̂)− N

σ4

)
= 1

σ4 tr(R̂) − N
σ2 . After applying the low

SNR approximation tr(2R̂ − σ2I) ≈ σ2I and rearranging (B.8), it is obtained a system of
equations formed by P tr(R2

0) + σ2N = tr(R0R̂), and PN + σ2N = tr(R̂). After some
mathematical manipulations, it is obtained that the solutions are given by (4.24). Finally,
taking (B.5) and placing R̂s = P̂R0, it proves (4.23).

B.6 Proof of (4.26)

The ML estimate of the coefficients β .
= (β0, . . . , βN−1) and the noise variance are given by

the optimization problem

β̂, σ̂2
1 = arg min

β,σ2
log det

(
Rs[β] + σ2I

)
+ tr

((
Rs[β] + σ2I

)−1
R̂
)
, (B.13)

with the additional constraint β0 ∈ R+. As the problem is convex on β and σ2, the deriva-
tive of the objective with respect to β∗n and σ2 is taken. On the one hand, the derivative
with respect to β∗n has been derived in Appendix B.4 and, after some mathematical ma-
nipulations and making use of Approximation (B.1) and the orthogonality of T , reduces
to βntr(TT

nTn) + σ2tr(Tn) = tr(TnR̂), for 0 ≤ n ≤ N − 1. Hence, for n ≥ 1, (4.27b) is
proved because tr(Tn) = 0. For n = 0, β0 + σ2 = 1

N tr(R̂), together with the derivative
with respect to σ2, i.e., tr

((
Rs[β] + σ2I

)−1
)
− tr

((
Rs[β] + σ2I

)−2
R̂
)

= 0. After applying

Approximation (B.1), it is obtained the following approximations tr
((

Rs[β] + σ2I
)−1
)
≈
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1
σ2N − 1

σ4 tr (Rs[β]), and

tr
((

Rs[β] + σ2I
)−1

Tn′
(
Rs[β] + σ2I

)−1
R̂
)
≈ 1

σ4
tr(R̂)− 2

σ6
tr
(
Rs[β]R̂

)
. (B.14)

Finally, noting that at the low SNR regime tr(2R̂ − σ2I) ≈ σ2I, it is obtained tr(Rs[β]) +

σ2N = tr(R̂). As tr(Rs[β]) = β0N , it is obtained, again, β0 + σ2 = 1
N tr(R̂). Hence,

employing the matrix decomposition T , it is noted that both β0 and σ2 account for the
white component of the received observations, and the ML estimates cannot be found
further than β̂0 + σ̂2

1 = 1
N tr(R̂), proving (4.27b). Finally, (B.5) is taken with Rs = Rs[β̂]

to compute the GLRT. As the white component of the signal, β0, cannot be recovered in a
white noise environment, it is considered as noise, and systematically add it to σ̂2

1 . Then,
by defining β1

.
= (0, β1, . . . , βN−1), it proves (4.26).

B.7 Proof of (4.31)

The ML estimate of the power levels P
.
= (P1, . . . , PQ) for the multi-frequency model (4.29)

reads

P̂ = arg min
P

log det

 Q∑
q=1

PqRq + σ2I

+ tr

 Q∑
q=1

PqRq + σ2I

−1

R̂

 , (B.15)

with the additional constraint P � 0. The problem is convex on P and the derivative of
the objective with respect to Pl is taken and equaled to zero, which gives the following
equation

tr
((

Rs[P] + σ2I
)−1

Rq

)
− tr

((
Rs[P] + σ2I

)−1
Rl

(
Rs[P] + σ2I

)−1
R̂
)

= 0. (B.16)

With analogous developments as Appendix B.4 with Rs[β], the Approximation (B.1) is
used to approximate the former equation by tr(Rs[P]Rl) = tr(RlR̂)−σ2tr(Rl). By placing
the Q equations in a matrix form, this proves (4.32). The expression of the multi-frequency
nuisance GLRT (4.30) with known noise variance is given by (B.5) with the following mod-
ification. By letting

∑
l 6=q PlRl be a nuisance parameter, it behaves as known part of the

noise when sensing at the q-th channel. By defining Ξq
.
=
∑

l 6=q P̂lRl+σ2I, it proves (4.31).
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B.8 Proof of (4.34)

Consider the multi-frequency model (4.29). The ML estimates of the power levels P and
the noise variance underH1, σ̂2

1 , are given by the optimization problem

P̂, σ̂2
1 = arg min

P
log det

 Q∑
q=1

PqRq + σ2I

+ tr

 Q∑
q=1

PqRq + σ2I

−1

R̂

 . (B.17)

Under the low SNR assumption, the derivative with respect to the power levels is given,
similarly to Appendix B.7, by the set of equations tr(Rs[P]Rl) + σ2tr(Rl) = tr(RlR̂). To
the K former equations, the derivative with respect to the noise variance is added, which
after analogous manipulations, leads to tr(Rs[P]) + σ2N = tr(R̂). The Q+ 1 equations in
vectorial notation is then given by (4.35). The expression of the multi-frequency nuisance
GLRT (4.30) with unknown noise variance is given by (B.5) with following straightforward
modifications. By letting

∑
l 6=q PlRl be a nuisance parameter, it systematically behaves as

known part of the noise when sensing at the q-th channel. By defining Ξq
.
=
∑

l 6=q P̂lRl +

σ̂2
1I, this concludes the proof.

B.9 Proof of (4.41)

Consider the correlation model R(P, σ2)
.
= PR0 + σ2IN . The signal and noise power lev-

els that minimize the nonuniform correlation-matching (4.40) with nonuniformly sampled
observations X are the solution of the optimization problem

(P̂ , σ̂2) = arg min
P,σ2
M
[
X,R(P, σ2)

]
. (B.18)

Noting the convexity of the problem, the derivative with respect to the signal level is taken
and set to zero, which leads to the equation

tr

[(
XXH −

∑
m

Ψm

(
PR0 + σ2IN

)
ΨH
m

)∑
m

ΨmR0Ψ
H
m

]
= 0. (B.19)

Similarly, after taking the derivative with respect to the noise power level and equal it to
zero, it is obtained that

tr

[(
XXH −

∑
m

Ψm

(
PR0 + σ2IN

)
ΨH
m

)∑
m

ΨmINΨH
m

]
= 0. (B.20)

Clearly, the derivatives outline the coupling between the signal and noise statistics, which
is based on the projection of the local observations onto the normalized correlation matri-
ces. By dividing each term in both equations by M , the following matrices R̂

.
= 1

MXXH
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and R0
.
= 1

M

∑
m ΨmR0Ψ

H
m are defined. The derivatives can be then written as tr(R̂R0)−

P tr(R
2
0)−σ2tr(R0) = 0, and tr(R̂)−P tr(R0)−σ2K = 0, respectively, where the property

ΨmΨH
m = IK was employed. After some mathematical manipulations, it can be shown

that the system of equations formed by the former derivatives has as solution (4.41).

B.10 Proof of (4.48)

Consider the multi-frequency correlation model given byR(P1, . . . , PQ, σ
2)

.
=
∑Q

q=1 PqRq+

σ2IN . The multi-frequency signal and noise power levels that minimize the nonuniform
correlation-matching (4.40) with nonuniformly sampled observations X are the solution to
the optimization problem

(P̂1, . . . , P̂Q, σ̂
2) = arg min

P1,...,PQ,σ2
M
[
X,R(P1, . . . , PQ, σ

2)
]
. (B.21)

It is noticed that the problem is convex on the multi-frequency signal power levels. By
taking the derivative of M

[
X,R(P1, . . . , PQ, σ

2)
]

with respect to the signal level at the
l-th band and set it to zero, it leads to the equation

tr

[(
XXH −

∑
m

Ψm

(∑
q

PRq + σ2IN

)
ΨH
m

)∑
m

ΨmRlΨ
H
m

]
= 0. (B.22)

Similarly, by the derivative with respect to the noise power level and equal it to zero, it
leads to the equation

tr

[(
XXH −

∑
m

Ψm

(∑
q

PRq + σ2IN

)
ΨH
m

)∑
m

ΨmINΨH
m

]
= 0. (B.23)

It is noted that now the derivatives also outline the coupling among the statistics of the
remaining bands and the noise. By dividing each term of both equations by M and fur-
ther defining the matrices R̂

.
= 1

MXXH and Rl
.
= 1

M

∑
m ΨmRlΨ

H
m for 1 ≤ l ≤ Q,

the derivatives can be written as tr(R̂Rl) −
∑

q Pqtr(RqRl) − σ2tr(Rl) = 0, and tr(R̂) −∑Q
q=1 Pqtr(Rq) − σ2K = 0, respectively, where the property ΨmΨH

m = IK has been used.
After some mathematical manipulations, the Q + 1 equations are placed in a system of
equations, which proves (4.48).
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AppendixC
Proofs of Chapter 5

C.1 Proof of (5.44)

LetW .
= {n : SNRn > 0} be the support of the SNR. Then, clearly,

∑
n∈W SNRn = N ·SNRa.

On the other hand, from (5.39) it is seen that the error exponent for the false-alarm proba-
bility depends on the squared value of the signal-to-noise ratio (SNR) matrix as tr(SNR2).
Hence,

tr(SNR2) =
N∑
n=1

SNR2
n =

∑
n∈W

SNR2
n ≥

1

|W|

(∑
n∈W

SNRn

)2

=
1

Q
(N ·SNRa)2 =

1

κ0
tr2(SNR),

(C.1)
as wanted to show.

C.2 Proof of (5.52)

By modeling the channel gains as independent complex Gaussian variables with unit gain,
i.e., hl ∼ CN (0, 1), it follows that the squared norm of the channel vector h is the sum
of squares of 2L independent real Gaussian variables, as each term |hl|2 is the sum of
the squares of the real and imaginary parts of hl. Therefore, ξ .

= ‖h‖2 is Chi-squared
distributed with 2L degrees of freedom, i.e.,

f(ξ) =
1

(L− 1)!
ξL−1e−ξ, (C.2)

189



for ξ ≥ 0. The former results permits to obtain the average error exponent (5.51) in
Rayleigh fading with explicit calculations given by

Eξ[D(H1‖H0)] =

∫ ∞
0

D(H1‖H0)f(ξ)dξ (C.3a)

= N · SNR
∫ ∞

0
ξ · 1

(L− 1)!
ξL−1e−ξdξ (C.3b)

=
N · SNR
(L− 1)!

∫ ∞
0

ξLe−ξdξ (C.3c)

=
N · SNR
(L− 1)!

L! (C.3d)

= LN · SNR, (C.3e)

which concludes the proof.

C.3 Proof of (5.60)

Being ξ = ‖h‖2 Chi-squared distributed with 2L degrees of freedom, the average error
exponent with respect to fading can be found as

Eξ[D(H1‖H0)] =

∫ ∞
0

D(H1‖H0)f(ξ)dξ (C.4a)

=
1

2
· SNR2

∫ ∞
0

ξ2 · 1

(L− 1)!
ξL−1e−ξdξ (C.4b)

=
SNR2

2(L− 1)!

∫ ∞
0

ξL+1e−ξdξ (C.4c)

=
SNR2

2(L− 1)!
(L+ 1)! (C.4d)

=
1

2
(L+ 1) · L · SNR2, (C.4e)

as wanted to show.
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C.4 Proof of (5.66)

By considering Rayleigh channel with unit gain, it rapidly follows that in average the
missed-detection probability is given by

Eξ[PMD] =

∫ ∞
0

PMDf(ξ)dξ (C.5a)

=
1

SNR

∫ ∞
0

1

ξ
· 1

(L− 1)!
ξL−1e−ξdξ (C.5b)

=
1

SNR(L− 1)!

∫ ∞
0

ξL−2e−ξdξ (C.5c)

=
1

SNR(L− 1)!
(L− 2)! (C.5d)

=
1

(L− 1)SNR
. (C.5e)

C.5 Gaussian Fitting as Worst Case Scenario

This Appendix proves the claim that the Gaussian distribution acts as a worst case scenario
in signal detection. This affirmation is supported by the Stein’s lemma [CT91], which states
that the error exponents in signal detection are proportional to the Kullback-Leibler diver-
gence (KLD) between the probability density function (PDF) of the observations underH0

andH1, i.e., D(g1||g0). The KLD is related to the entropy as

D(g1||g0) = H(g1, g0)−H(g1), (C.6)

where H(g1, g0) is the cross entropy between g1 and g0, and H(g1) is the entropy of g1. Let p1

be an arbitrary non Gaussian distribution with the same variance as g1. Then, the following
inequalities on the entropy H(g1) ≥ H(p1), and cross entropy H(p1, g0) ≥ H(g1, g0) hold.
Therefore, the KLD between an arbitrary equal power signal distribution p1 and g0 is lower
bounded by the KLD between g1 and g0, i.e.,

D(p1||g0) ≥ D(g1||g0). (C.7)

As a result, the performance of the signal detectors derived in this thesis are provided in
the worst case scenario with respect to any other real distribution of the primary signal.

C.6 Proof of (5.76)

The maximum likelihood (ML) estimate of the signal power is given by the convex opti-
mization problem

P̂ = arg max
P
CN (0,R1), (C.8)
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where R1 = σ2IN +PΣκ. By equaling the derivative with respect to P to zero, and making
use of the matrix derivatives properties

∂/∂xA−1 = −A−1(∂/∂xA)A−1, (C.9)

and
∂/∂x log det(A) = tr(A−1∂/∂xA), (C.10)

it follows that the derivative is equivalent to the equation tr
(
R−1

1 Σκ

)
= xHR−1

1 ΣκR
−1
1 x.

The solution of P has unfortunately no closed form expression, and numerical algorithms
must be used. However, as W � 1, SNR � 1, and the following low SNR approximation
holds (IN + SNRA)−1 ≈ IN − SNRA. Applying this result into R1 and neglecting all the
terms containing O(σ2p) with p > 2, it follows that P tr(Σ2

κ) = xHΣκx − σ2tr(IN ). From
the former expression, obtaining (5.76) is straightforward.

C.7 Proof of (5.78)

Consider the log likelihood ratio test

l(x)
.
= logL(x), (C.11)

which is equivalent as far as the logarithm is a monotonically increasing function. From
(5.77), it follows that the log likelihood ratio test is given by the expression

l(x) = xH
(

1

σ2
IN −R−1

1

)
x− log det

(
IN +

P

σ2
Σκ

)
. (C.12)

For consistency with the derivation of the ML estimate of the signal power, in the sequel
the following low SNR approximation will be considered by neglecting all the terms con-
taining O(σ2p) with p > 2: (IN + SNRA)−1 ≈ IN − SNRA and log det(IN + SNRA) ≈
SNRtr(A). Therefore, l(x) can be simplified and rearranged to

l(x) =
P

σ2

(
xHΣκx− σ2N

)
≥ τ, (C.13)

where τ = log γ. Interestingly, l(x) is proportional to the product between an estimate of
the SNR and a term which is equal to the numerator of the signal power estimate (5.76). As
a consequence, l(x) is nonnegative. By plugging (5.76) into l(x), taking the squared root
and moving all the data independent terms into the threshold, the generalized likelihood
ratio test (GLRT) signal detector is finally given by (5.78), where its associated threshold is
given by (5.79).
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C.8 Proof of (5.82)

From the statistically equivalent test (5.80) and (5.81), it follows that the means and vari-
ances of T (x) underH0 andH1 are given, respectively, by

E0 [T (x)] = Nσ2 (C.14a)

E1 [T (x)] = Nσ2 + P
r∑

n=1

λ2
n(Σκ), (C.14b)

V0 [T (x)] = 2σ4
r∑

n=1

λ2
n(Σκ), (C.14c)

V1 [T (x)] = 2

r∑
n=1

λ2
n(Σκ)

[
σ2 + Pλn(Σκ)

]2
. (C.14d)

By noting that
∑r

n=1 λ
p
n(Σκ) = tr(Σp

κ) for any power p ≥ 1, it follows that the means and
variances are finally given by

E0 [T (x)] = Nσ2, (C.15a)

E1 [T (x)] = Nσ2 +NPρ, (C.15b)

V0 [T (x)] = 2Nσ4ρ, (C.15c)

V1 [T (x)] = 2tr(Σ2
κ(σ2IN + PΣκ)2) (C.15d)

By taking N and σ2 as common factors, the asymptotic PDF of T (x) are hence given by
(5.82), underH0 andH1.

C.9 Spectrum Flatness as Worst Case Scenario

This Appendix proves the claim that any signal with non-flat spectrum will exhibit a
squared correlation coefficient larger than that of a flat spectrum signal, in the same con-
ditions of power and occupancy. For sake of simplicity, a sampling density of κ = 1 is
considered, as the following results hold for any κ. Let φ(ω) be the normalized spectrum
of the primary signal S(t), accomplishing the normalization

1

2π

∫ π

−π
φ(ω)dω = 1 (C.16)

such that the power is normalized. If the occupancy of S(t) is κ0, the spectral support
of φ(ω), denoted as Ws, has cardinality |Ws| = 2πκ0. Let ν(ω) be the spectral mask of
occupancy κ0 given by

ν(ω) =

1 if ω ∈ Ws

0 elsewhere.
(C.17)
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Therefore, because φ(ω) = φ(ω)ν(ω) it follows that

1 =

(∫ π

−π
φ(ω) · ν(ω)

2π
dω

)2

(C.18a)

≤
∫ π

−π
φ2(ω)dω ·

∫ π

−π

(
ν(ω)

2π

)2

dω (C.18b)

=
1

2π

∫ π

−π
φ2(ω)dω︸ ︷︷ ︸
ρ

· 1

2π

∫ π

−π
ν2(ω)dω︸ ︷︷ ︸
.
=Wν

(C.18c)

where the Cauchy-Schwarz inequality was employed, andWν is the equivalent bandwidth
of the spectral mask ν(ω). Therefore, the squared correlation coefficient is lower bounded
by the inverse of the equivalent bandwidth, i.e.,

ρ ≥ 1

Wν
. (C.19)

The lower bound is achieved with equality if and only if φ(ω) ∝ ν(ω), i.e., if S(t) has flat
spectrum. Therefore, any other spectrum shape will exhibit a larger squared correlation
coefficient, as claimed.

C.10 Proof of (5.90)

Consider the PDF of T (x) given in (5.82). Firstly, the false-alarm probability is evaluated
by means of the right tail probability of a Gaussian distribution, i.e.,

PFA = Q

(
τ/σ2 −N√

2Nρ

)
, (C.20)

where Q(x) = 1/
√

2π
∫∞
x exp(−t2/2)dt. From the former expression, the threshold τ is set

to satisfy the target false-alarm probability constraint PFA = ε0 as

τ = σ2
[
N +

√
2NρQ−1(ε0)

]
. (C.21)

Further, the missed-detection probability is given, employing the former expression of the
threshold, by

PMD = Q

(
NSNRρ−√2NρQ−1(ε0)√

2tr[Σ2
κ(IN + SNRΣκ)2]

)
. (C.22)

Solving for the minimum SNR that achieves the missed-detection probability constraint
is a difficult task from (C.22). However, for small SNR the approximation tr[Σ2

κ(IN +

SNRΣκ)2] ≈ tr(Σ2
κ) = Nρ holds. Hence, applying PMD = ε1 with the former approxima-
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tion, it follows that the minimum SNR is given by the expression

SNRmin =

√
2
[
Q−1(ε0) +Q−1(ε1)

]
√
Nρ

. (C.23)

As the numerator of SNRmin is a constant which depends on the design parameters (ε0, ε1),
it is straightforward to see that the minimum SNR scales as (5.90).

C.11 Proof of (5.95)

Consider σ̂2 as a realization of the prior information on the noise variance. From the ex-
pression of the false-alarm probability (C.20), it is seen that the noise variance and the
threshold affect in proportion τ/σ2. Therefore, the uncertainty on the noise variance trans-
lates to a wrong setting of the threshold (C.21). By adopting the ε-outage probability on
the false-alarm probability P[PFA ≥ ε0] < ε, the threshold is given, after some mathe-
matical manipulations, as τ̂ = σ̂2

1/δ+ε(δ−1/δ)

[
N +

√
2NρQ−1(ε0)

]
. Also, because Q(x) is

a monotonically decreasing function in its argument, the value of σ̂2 that evaluates the
ε-outage probability on the missed-detection probability P[PMD ≥ ε1] < ε is given by
σ̂2 = [δ − ε(δ − 1/δ)]σ2. Therefore, the threshold in the ε-outage uncertainty model is
given, after some mathematical manipulations, by

τ̂ = Uτ, (C.24)

where U has been defined as in (5.96) and τ is given in (C.21). From (C.24), it follows that
the missed-detection probability is now given by

PMD = Q

(
N(1− U) +NSNRρ−√2NρUQ−1(ε0)√

2tr[Σ2
κ(IN + SNRΣκ)2]

)
. (C.25)

Finally, from the condition PMD = ε1 and making the analogous developments as in Ap-
pendix C.10, the minimum SNR solves for

SNRmin =

√
2
[
UQ−1(ε0) +Q−1(ε1)

]
+
√
N/ρ(U − 1)√

Nρ
, (C.26)

which proves the scaling (5.95).
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AppendixD
Proofs of Chapter 6

D.1 Proof of (6.6)

The optimality is proved in the correlation-matching sense of the blind detector for time-
varying frequency-selective channels (6.6). Specifically, the negative correlation-matching
between the normalized autocorrelation of the data and a scaled version of the desired
signal autocorrelation is adopted, i.e.,

T (x) = max
Rx∈Ω
0<γ<1

−
∥∥∥∥xxH

xHx
− γRx

∥∥∥∥2

η

, (D.1)

where γ is the coherence factor defined as

γ ≈ SNR
SNR + 1

(D.2)

and it conveniently scales the signal autocorrelation matrix Rx of the signal samples (6.2),
i.e.,

Rx = AHAH
H. (D.3)

In (D.1), the maximization of the autocorrelation matrix is done over the space of all Her-
mitian matrices Ω, and the correlation-matching is implemented through a quadratic norm
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η. Expanding the norm in (D.1) it follows that

−
∥∥∥∥xxH

xHx
− γRx

∥∥∥∥2

η

= −1 + 2γ
xHRxx

xHx
− γ2 ‖Rx‖2η . (D.4)

The maximization with respect to the coherence factor γ leads to the following expression

γ̂ =
xHRxx

(xHx) ‖Rx‖2η
. (D.5)

By substituting (D.5) into (D.4), (D.1) simplifies to

−
∥∥∥∥xxH

xHx
− γ̂Rx

∥∥∥∥2

η

= −1 +

(
xHRxx

)2
(xHx)2 ‖Rx‖2η

. (D.6)

Finally, removing the additive constants and taking the squared root it follows that the
maximization problem (D.1) is equivalent to

T (x) =
1

xHx
max
Rx∈Ω

xHRxx

‖Rx‖η
. (D.7)

To this point, an optimal test from a correlation-matching perspective general for any
received signal model x has been derived. For fading channels, the received signal is given
by (6.2), and its autocorrelation matrix as (D.3). Therefore, the numerator of (D.7) can be
expressed as

xHRxx =
K−1∑
k=0

hHk xkx
H
k hk, (D.8)

where hk and xk have been previously defined in (6.5) and (6.8). The structure of (D.8)
makes the optimization with respect to the channel coefficients a difficult problem. To
simplify it, the study resorts to large data records. Reformulating (D.8) with the trace
operator and dividing it by K it is obtained

tr

(
1

K

K−1∑
k=0

hkh
H
k xkx

H
k

)
. (D.9)

If K is large, in virtue of the law of large numbers, or equivalently the ergodicity property,
the sample mean approaches to the statistical mean. In addition, as the channel realization
are statistically independent on the signal plus noise realizations, the statistical mean can
be further factorized. As a result of both assessments,

tr

(
1

K

K−1∑
k=0

hkh
H
k xkx

H
k

)
' tr

(
1

K

K−1∑
k=0

hkh
H
k ×

1

K

K−1∑
k=0

xkx
H
k

)
. (D.10)
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Hence, removing constants the numerator yields to

xHRxx ' tr(HHHR̂), (D.11)

where R̂ is defined from (D.10) as in (6.7). On the other hand, the denominator norm is
adopted as the following:

‖Rx‖η = ‖HHH‖F , (D.12)

where ‖·‖F is the Frobenius norm, which preserves the invariance property of the detector.
Finally, as both (D.11) and (D.12) strictly depend on the channel matrix H, the maximiza-
tion with respect to Rx is equivalent to the maximization with respect to H. As a result,
the test (D.7) rewrites

T (x) =
1

xHx
max

H

tr(HHHR̂)

‖HHH‖F
, (D.13)

as wanted to show.

D.2 Proof of (6.9)

From the invariant detector (D.13), the Hermitian matrix HHH is expressed as the linear
combination

HHH =

L∑
i=1

µi · vivHi , (D.14)

where µi and vi denote the corresponding eigenvalues and eigenvectors, respectively.
Therefore, the optimization problem (D.7) can be equivalently reformulated as maximizing
the numerator

T (x) =
1

xHx
max
{µi,vi}

L∑
i=1

µiv
H
i R̂vi, (D.15)

subject to the denominator constraint ‖HHH‖F =
∑L

i=1 µ
2
i = 1, and vHi vj = δij for i, j =

1, . . . , L. First, the developments solve for the eigenvectors from the Lagrangian

L(v1, . . . ,vL) =
L∑
i=1

µiv
H
i R̂vi +

L∑
i=1

ρi(1− vHi vi), (D.16)

where ρ1, . . . , ρL are the Lagrange multipliers. By computing the derivative and setting it
to zero, it yields to R̂vi = (ρi/µi)vi. That is, the eigenvectors of HHH are given by

vi = ui, (D.17)

where ui denote the eigenvectors of R̂, and ρi/µi are the eigenvalues of R̂, denoted by
λi. Notice that the orthonormality constraint on the vectors v1, . . . ,vL is automatically
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fulfilled as the eigenvectors of R̂ are orthonormal. Next, solving for the eigenvalues as
L(µ1, . . . , µL) =

∑L
i=1 µiλi+µ(1−∑L

i=1 µ
2
i ) involves computing the derivative and setting

it to zero. This leads to
µi =

λi√∑L
j=1 λ

2
j

. (D.18)

Finally, asymptotically for large K, the xHx term can be approximated by

xHx ' N

L
tr(R̂) =

N

L

L∑
i=1

λi. (D.19)

Using (D.17), (D.18) and (D.19) into (D.15) and removing constants, (6.9) is obtained.

D.3 Proof of (6.28)

The derivation of (6.28) involves the maximum likelihood (ML) estimation of the nuisance
parameters, i.e., the maximization of ln GLR(x)

.
= L(x|H1)−L(x|H0) with respect to (6.27).

Splitting the integral of the likelihood function in sub-intervals, it reads

L(x|H1) = −|Ws|
K

∑
k

lnNk −
∑
k

1

Nk
P̂k − |Wn| lnN0 −

1

N0

∑
k

σ̂2
k, (D.20)

where the signal and power estimates are given as

P̂k =

∫
Wk

∣∣hHk (υ)x(υ)
∣∣2 dυ = hHk B̂khk (D.21a)

σ̂2
k =

∫
Wk

∣∣∣u⊥Hk (υ)x(υ)
∣∣∣2 dυ. (D.21b)

UnderH0, the ML estimate of the noise floor is given by

N̂0
0 =

1

|Ws|+ |Wn|
(
P̂ + σ̂2

)
(D.22a)

=
1

B

∫ B/2

−B/2
|X(f)|2df (D.22b)

.
=

1

B
P̂x, (D.22c)

where
P̂ =

∑
k

P̂k, (D.23)

and
σ̂2 =

∑
k

σ̂2
k. (D.24)
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ConcerningH1, the ML estimates of {Nk} and N0 are given as

N̂k =
1

|Ws|/K
P̂k (D.25)

and

N̂1
0 =

1

|Wn|
σ̂2 =

(1 + α)N̂0
0 − 1

K

∑
k N̂k

α
(D.26)

Substituting these estimates to the likelihood function and forming the generalized likeli-
hood ratio test (GLRT) yields

max
{hk}

1(∏K
k=1 λk

)1/K (
1−∑K

k=1 λk

)α ≥ τ, (D.27)

with

λk =
hHk Bkhk

P̂x
(D.28)

Maximizing with respect to the hk for k = 1, . . . ,K, under the constraint ‖hk‖2 = 1 also
for k = 1, . . . ,K0 [φs(ω), φν(ω)], yields (6.28).
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AppendixE
Proofs of Chapter 7

E.1 Proof of (7.19)

Given (7.14), the components involved in the deflection are as follows. Under H0, the
expected value of the test is given by only the noise component due to the orthogonality
gH⊥ (ν)g(ν) = 0, i.e.,

E0[TNS] = N0. (E.1)

Under H1, the expected value of the test will include the part of the noncongitive signal
that remains after the orthogonal filtering:

E1[TNS] = N0 +
1

|W|

∫
W

gH⊥ (ν)Φs(ν)g⊥(ν)dν. (E.2)

Finally underH0, by making use of the following asymptotic property [RVV10]:

1

MT
E [S(ν1)S∗(ν2)] = φν1−ν2s

(
ν1 + ν2

2

)
, (E.3)

the variance of the test is given by

V0[TNS] =
1

|W|2
∫
ν

∫
η
E0

[
gH⊥ (ν)ox(ν)oHx (ν)g⊥(ν)gH⊥ (η)ox(η)oHx (η)g⊥(η)

]
dνdη − E2

0[TNS]

(E.4)
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Expanding terms,

V0[TNS] =
1

|W|2
∫
ν

∫
η
gH⊥ (ν) [Φy(ν) + Φw(ν)] g⊥(ν)× (E.5a)

gH⊥ (η) [Φy(η) + Φw(η)] g⊥(η)dνdη + (E.5b)
1

|W|2
∫
ν

∫
η
gH⊥ (ν) [Φy(ν, η) + Φw(ν, η)] g⊥(η)× (E.5c)

gH⊥ (η) [Φy(η, ν) + Φw(η, ν)] g⊥(ν)dνdη −N2
0 (E.5d)

=
1

|W|2
∫
ν

∫
η
gH⊥ (ν) [Φy(ν, η) + Φw(ν, η)] g⊥(η)× (E.5e)

gH⊥ (η) [Φy(η, ν) + Φw(η, ν)] g⊥(ν)dνdη, (E.5f)

where the cross-spectral coherence matrix is given by

Φy(ν, η) =

 φν−ηy

(
ν+η+1/T

2

)
φ
ν−η+1/T
y

(ν+η
2

)
φ
ν−η−1/T
y

(ν+η
2

)
φν−ηy

(
ν+η−1/T

2

)  . (E.6)

Since y(t) is wide-sense cyclostationary with cycle frequencies that are multiples of the
symbol rate, φβy (f) is different from zero only for values of β of −1/T , 0, and 1/T . Because
the range of the integration is restricted to W , the double integration is nonzero only if
ν = η. In such a case, Φy(ν, η) = Φy(ν)δ(ν − η), and Φw(ν, η) = Φw(ν)δ(ν − η), where
δ(ν− η) is the Dirac delta. Because gH⊥ (ν)Φy(ν)g⊥(ν) = 0, the computation of the variance
reduces to the following integral

V0[TNS] =
N2

0

|W|2
∫
ν∈W

∫
η∈W
‖g⊥(ν)‖4δ(ν − η)dνdη (E.7)

Because ‖g⊥(ν)‖2 = 1, the variance underH0 rapidly reduces to

V0 [TNS] =
N2

0

|W| . (E.8)

As a consequence, it is observed that the proposed detector shows consistency within the
integration interval under hypothesis H0. Finally, plugging the derived statistics (E.1),
(E.2), and (E.8) into (7.18), it is obtained that the deflection is given by (7.19).

E.2 Proof of (7.20)

In this Appendix, an upper bound on the deflection (7.19) will be obtained in order to
learn how the deflection of the noise subspace detector scales with the problem parame-
ters. Firstly, it is noted that the deflection is implementing an inner product map in the
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Hermitian matrix space M defined as

〈·, ·〉 : M×M 7→ R+ (E.9a)

〈X1(ν),X2(ν)〉 7→
∫
W

tr (X1(ν) ·X2(ν)) dν, (E.9b)

it follows from the Cauchy-Schwarz inequality over this inner product, i.e.,

|〈X1(ν),X2(ν)〉|2 ≤ ‖X1(ν)‖ · ‖X2(ν)‖, (E.10)

that

D(TNS)=
1

N2
0 |W|

(∫
W

gH⊥ (ν)Φs(ν)g⊥(ν)dν

)2

(E.11a)

=
1

N2
0 |W|

(∫
W

tr
(
Φs(ν)g⊥(ν)gH⊥ (ν)

)
dν

)2

(E.11b)

≤ 1

N2
0 |W|

∫
W

tr
(
Φ2
s(ν)

)
dν ·

∫
W
‖g⊥(ν)‖4dν (E.11c)

=
1

N2
0

∫
W

tr
(
Φ2
s(ν)

)
dν, (E.11d)

as wanted to show.

E.3 Proof of (7.36) and (7.37)

In this Appendix, the expected value of the MDL(n) statistic (7.28) is addressed. In partic-
ular, as

2 log GLR(n) ∼ X 2
rn(µn), (E.12)

the following relationship
µn + rn

2
= E [log GLR(n)] (E.13)

is employed to compute µn under HN . For sake of simplicity, a white primary signal
is considered, whose power is uniformly distributed in the N dimensions of the signal
subspace, i.e., the expected eigenvalues of the sample covariance matrix (7.29) are

E[λn] = P + σ2 for 1 ≤ n ≤ N (E.14a)

E[λn] = σ2 for N + 1 ≤ n ≤M, (E.14b)

where P and σ2 are related by the average signal-to-noise ratio (SNR) through

SNR =
NP

σ2
. (E.15)
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If n ≥ N , it then follows that the second term of MDL(n) can be approximated by

E

[
L(M − n) log

∏M
m=n+1 λ

1/(M−n)
m

1
M−n

∑M
m=n+1 λm

]
≈ L(M − n) logE

[∏M
m=n+1 λ

1/(M−n)
m

1
M−n

∑M
m=n+1 λm

]
= 0, (E.16)

whereas the first term reads

E

[
LM log

∏M
m=1 λ

1/M
m

1
M

∑M
m=1 λm

]
≈ LM logE

[ ∏M
m=1 λ

1/M
m

1
M

∑M
m=1 λm

]
, (E.17)

which employing E[λn] it proves (7.36).
If n < N , then the second term of the MDL(n) is non-zero. Hence, after some mathe-

matical manipulations on (E.16) and together with (E.17), (7.37) is obtained.

E.4 Proof of (7.39)

The auxiliary random variable Dmn is defined as the difference between the following
GLRs

Dmn
.
= log GLR(m)− log GLR(n). (E.18)

Employing (7.26),

Dmn = (m− n)M log(L)−MDL(m) + MDL(n). (E.19)

By noting that

Pn =
∏
m6=n

P [MDL(n) < MDL(m)] (E.20a)

=
∏
m6=n

P [MDL(n)−MDL(m) < 0] (E.20b)

the probability Pn is related to Dmn as

Pn =
∏
m 6=n

P [Dmn < (m− n)M log(L)] . (E.21)

Further, as the generalized likelihood ratio (GLR) statistic is asymptotically non-central
Chi-squared distributed, the difference is also non-central Chi-squared distributed as

2Dmn ∼ X 2
rm−rn(µm − µn), (E.22)

if m > n and
−2Dmn ∼ X 2

rm−rn(µm − µn), (E.23)
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if m < n. As a consequence, the probability Pn can be computed by means of the cumula-
tive density function (CDF) of Dmn as

Pn =
∏
m<n

CDFDmn ((m− n)M log(L)) (E.24)

which further employing (E.22), and (E.22) proves (7.39). Note that the fact that the CDF
of the random variables D = 2X and X are related through CDFD(d) = CDFX(x/2).

Note that the CDF of a non-central Chi-squared distribution is given by

CDFX 2
r (µ)(x) = e−µ/2

∞∑
j=0

(µ/2)j

j!
Q(x, r + 2j), (E.25)

where Q(x, r) is the CDF of a central Chi-squared distribution with r degrees of freedom.
The CDF of the negative non-central Chi-squared distribution is given by symmetry as

CDF−X 2
r (µ)(x) = 1− CDFX 2

r (µ)(x). (E.26)

E.5 Proof of (7.43)

For the minimum description length (MDL) with known noise variance, the maximum
likelihood (ML) estimation of the eigenvalues and eigenvectors of Rs are given as

ûm(Rs + σ2I) = um(R̂), (E.27)

and
λ̂m(Rs + σ2I) = λm(R̂) (E.28)

respectively, form = 1, . . . , n. Therefore, the denominator and numerator of the GLR (7.41)
reads

log p(x|H0) = −ML log π −ML log σ2 − L

σ2

M∑
m=1

λm, (E.29)

and

log p(x|Hn) = −ML log π−ML
n∏

m=1

λ1/M
m −ML log σ2(M−n)/M−Ln− L

σ2

M∑
m=n+1

λm, (E.30)

respectively. Joining both terms,

log GLR(n, σ2) =
L

σ2

n∑
m=1

λm −ML log
n∏

m=1

λ1/M
m + Ln log σ2 − Ln. (E.31)

After rearranging terms, the MDL with known noise variance is given as in (7.43).
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E.6 Proof of (7.44) and (7.45)

Employing the relationships (E.13) and (E.14) of Appendix E.3, if n ≤ N it is noted that

E

(
LM

(
1

M

n∑
m=1

(
λm
σ2
− 1

)))
= LM

(
1

M

n∑
m=1

P

σ2

)
, (E.32)

and

E

(
LM log

(
n∏

m=1

(
λm
σ2

)1/M
))
≈ LM log

(
n∏

m=1

(
1 +

P

σ2

)1/M
)
. (E.33)

Employing the SNR definition (E.15) and joining terms, it proves (7.44). For n > N , it
rapidly follows that the terms for m > N are zero in the summation (E.32), whereas the
terms for m > N in the product (E.33) are one (hence zero in the logarithm). Therefore, for
n > N ,

E

(
LM

(
1

M

n∑
m=1

(
λm
σ2
− 1

)))
= LM

(
1

M

N∑
m=1

P

σ2

)
, (E.34)

and

E

(
LM log

(
n∏

m=1

(
λm
σ2

)1/M
))
≈ LM log

(
N∏
m=1

(
1 +

P

σ2

)1/M
)
, (E.35)

which employing (E.15) proves (7.45).

E.7 Proof of (7.56)

Consider the optimization problem (7.55) for k = 1. The Lagrangian associated to this
problem is given by

L(a1) = aH1 Ra1 + λ(1− aH1 e1), (E.36)

where λ is the Lagrange multiplier for the nontriviality constraint. By taking the derivative
of (E.36) with respect to aH1 and equating to zero, i.e.,

∂

∂aH1
L(a1) = Ra1 − λe1 = 0 (E.37)

it follows that a1 obeys
Ra1 = λe1. (E.38)

Because R is rank deficient, the inverse is implemented by means of the following limit

a1 = lim
δ→0

λ (R + δI)−1 e1. (E.39)
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Applying the nontriviality constraint aH1 e1 = 1 to solve for λ and plugging the result into
(E.39), it reads

a1 =
limδ→0 (R + δI)−1 e1

eT1 limδ→0 (R + δI)−1 e1

(E.40a)

=

(
I−UUH

)
e1

eT1
(
I−UUH

)︸ ︷︷ ︸
.
=P⊥U

e1

, (E.40b)

where the inversion lemma1 on the term (R + δI) has been applied, i.e.,

(R + δI)−1 =
(
UΛUH + δI

)−1
(E.41a)

=
1

δ
− 1

δ2
U

(
Λ−1 +

1

δ
UHU

)−1

UH (E.41b)

=
1

δ

(
I−U

(
δΛ−1 + I

)−1
UH

)
. (E.41c)

From (E.40), it is observed that a1 depends on the orthogonal projector defined in (7.57) for
k = 1. In order to obtain the subsequent waveforms, each waveform must be normalized
to unit-norm. Therefore,

a1 =
P⊥Ue1√
eT1 P⊥Ue1︸ ︷︷ ︸
.
=
√
α1

, (E.42)

where α1 is the corresponding scaling factor.
On the other hand, the subsequent waveforms can be derived by incorporating the

previous waveforms into the Gram matrix, i.e., as

Rk+1 = Rk + aka
H
k . (E.43)

By doing so, it rapidly follows that

Uk+1 = [Uk ak] . (E.44)

Therefore, the solution the subsequent waveforms in (7.55) becomes

ak =
P⊥Uk

ek√
eTkP⊥Uk

ek︸ ︷︷ ︸
.
=
√
αk

, (E.45)

where αk are the corresponding scaling factors, as wanted to show.

1(A + UCV)−1 = A−1 −A−1U
(
C−1 + VA−1U

)−1
VA−1
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E.8 Equivalence between (7.55) and (7.59)

In order to show the equivalence between the minimum interference problem (7.55) and
the minimum norm with orthogonality constraint problem (7.59), this Appendix proves
that the solution to (7.59) equals the solution (7.56).

The Lagrangian associated to the first waveform of (7.59) is

L(a1) = aH1 a1 + λ0(1− aH1 e1) + (0T − aH1 U)λ, (E.46)

where λ0 and λ are the scalar and vector Lagrange multipliers for the nontriviality and
orthogonality constraints, respectively. Taking the derivative with respect to aH1 leads to

∂

∂aH1
L(a1) = a1 − λ0e1 −Uλ = 0, (E.47)

which leads to
a1 = λ0e1 + Uλ. (E.48)

Applying the second constraint of (7.59) leads to

λ = −λ0U
He1, (E.49)

which combined with (E.48) leads to

a1 = λ0

(
I−UUH

)
e1, (E.50)

which becomes equivalent to (7.56) as wanted to show.

E.9 Proof of (7.66)

In order to address the optimization problem (7.65), the eigenvalue decomposition (EVD)
of the semi-definite positive mismatching matrix is defined as

∆ =
D∑
i=1

λi(∆)ui(∆)uHi (∆). (E.51)

Hence, (7.65) is now given as

max
∆

D∑
i=1

λi(∆)uHi (∆)ãk · ãHk ui(∆), (E.52)
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subject to λ1(∆) ≤ ε, where λ1 is the maximum eigenvalue. Clearly, the maximization
requires that ∆ takes the eigenvalues of the quadratic form ãkã

H
k , i.e.,

u1(∆) = ak. (E.53)

As a result, the maximum is achieved for λ1(∆) = ε, and hence it proves (7.66).

E.10 Proof of (7.69)

The Lagrangian associated to (7.68) for k = 1 is given by

L(ã1) = ãH1

(
R̂ + εI

)
ã1 + λ(1− ãH1 e1), (E.54)

where λ is the Lagrange multiplier for the nontriviality constraint. Taking the derivative
of (E.54) with respect to ãH1 and equating to zero, i.e.,

∂

∂ãH1
L(ã1) =

(
R̂ + εI

)
ã1 − λe1 = 0, (E.55)

it follows that

a1 =

(
R̂ + εI

)−1
e1

eT1

(
R̂ + εI

)−1
e1

(E.56a)

=

(
I− ÛΦ1Û

H
)

e1

eT1

(
I− ÛΦ1ÛH

)
e1

. (E.56b)

To obtain (E.56), the inversion lemma on the
(
R̂ + εI

)
term has been applied, i.e.,

(
R̂ + εI

)−1
=

(
ÛΛ̂ÛH + εI

)−1
(E.57a)

=
1

ε
− 1

ε2
Û

(
Λ̂−1 +

1

ε
ÛHÛ

)−1

ÛH (E.57b)

=
1

ε

I− Û
(
εΛ̂−1 + I

)−1

︸ ︷︷ ︸
.
=Φ1

Û

 , (E.57c)
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where the diagonal matrix Φ1 has been defined as

Φ1 =


λ̂1
λ̂1+ε

0

. . .

0 λ̂N
λ̂N+ε

 . (E.58)

Hence, after normalization, the first robust waveform reads

ã1 =

(
I− ÛΦ1Û

H
)

e1√
eT1

(
I− ÛΦ1ÛH

)2
e1︸ ︷︷ ︸

.
=
√
α̃1

, (E.59)

where α̃1 is the corresponding scaling factor.
By mimicking the iterative procedure proposed in (E.43), i.e.,

R̂k+1 = R̂k + âkâ
H
k , (E.60a)

Ûk+1 =
[
Ûk âk

]
, (E.60b)

and

Φk+1 =

[
Φk 0

0 1

]
, (E.61)

it follows that the k-th robust waveform is given by

ãk =

(
I− ÛkΦkÛ

H
k

)
ek√

eTk

(
I− ÛkΦkÛ

H
k

)2
ek︸ ︷︷ ︸

.
=
√
α̃k

(E.62)

as wanted to show.
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E.11 Proof of (7.91)

Noticing that the first robust waveform admits the structure (E.56), the individual interfer-
ence associated to the first robust waveform is given by

ξ(ã1) =
eT1

(
R̂ + εI

)−1
∆
(
R̂ + εI

)−1
e1

eT1

(
R̂ + εI

)−2
e1

(E.63a)

≤
eT1

(
R̂ + εI

)−1
e1

eT1

(
R̂ + εI

)−2
e1

(E.63b)

= ε · eT1
(
I−UΦ1U

H
)
e1

eT1 (I−UΦ1UH)2 e1

, (E.63c)

where to obtain (E.63) the worst-case performance scenario has been considered, and to
obtain (E.63) the inversion lemma has been applied. Expanding using (7.81) and (7.82), it
leads to (7.91).
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