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Abstract

Cognitive radio exhibits a tremendous promise for increasing the spectral efficiency for future wire-
less communication systems. Due to the proliferation of wireless services, the radio spectrum has be-
come severely limited and underutilized in some geographical areas. In cognitive radio networks, new
users can opportunistically communicate over the available resources without degrading the licensed
primary systems. Two important tasks in cognitive radio are spectrum sensing and dynamic access.
On the one hand, spectrum sensing aims at detecting part of the spectrum unused by the primary
systems. On the other hand, dynamic access focuses on the methods through which the cognitive
users access the resources by employing the information provided by the spectrum sensing detector.
Cognitive radio becomes attractive and especially challenging in the wideband regime. As the amount
of sensed spectrum increases, the overall occupation by the primary services is low; enabling the re-
cent theory of compressed-sampling to reduce the required sampling rate for detection and dynamic
access. This Ph.D. thesis proposal identifies open challenges in wideband cognitive radio research on
spectrum sensing and dynamic access, presents a state of the art review on the current literature, and
introduces the preliminary results and publications on the field. Based on the state of the art reviews
and obtained results, the pending and future research objectives are defined and planned.

Resum

Els sistemes de ràdio cognitiva (cognitive radio) ha esdevingut una tecnologia prometedora per
augmentar l’eficiència espectral per als sistemes de comunicacions sense fils del futur. A causa de la
proliferació dels serveis sense fils, l’espectre està actualment limitat i desaprofitat in algunes regions.
En les xarxes de cognitive radio, els usuaris poden establir comunicació de forma oportuna a través
de l’espectre disponible sense degradar les prestacions dels sistemes primaris amb llicència. Hi ha
dues tasques primordials en cognitive radio: el sondeig espectral (spectrum sensing) i l’accés dinàmic
(dynamic access). Per una banda, spectrum sensing està orientat a detectar les parts de l’espectre que
no estan utilitzades pels sistemes primaris. D’altra banda, dynamic access es focalitza en els mètodes
d’accés múltiple mitjançant els quals els usuaris cognitius accedeixen a l’espectre, fent servir la infor-
mació proporcionada pels detectors d’spectrum sensing. Cognitive radio és especialment atractiva i
exigent en amples de banda molt grans (wideband regimes). A mesura que l’ampla de banda a moni-
toritzar augmenta, l’ocupació per part dels sistemes primaris és baixa, la qual cosa facilita l’aplicació
de la teoria de mostreig comprimit (compressed-sampling) per tal de reduir la freqüència de mostreig
necessària per a la detecció i l’accés múltiple. Aquesta proposta de tesis identifica varis camps de
recerca oberts en spectrum sensing i dynamic access, presenta l’estat de l’art actual, i introdueix els
resultats i publicacions obtinguts a la data. Els objectius de recerca pendents i futurs a desenvolupar
són definits i planificats a partir de la recerca bibliogràfica i els resultats obtinguts en la temàtica.
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1 Introduction

In the recent years, wireless services have experimented a tremendous growth, and the demand for
wireless access in both voice and high rate data multimedia application has been increasing. New
generation wireless communication systems are aimed at accommodating this demand though better
resource management and improved transmission technologies.

Cognitive ratio is an attractive, state-of-the-art technology able to cope with this demand which has
been motivated by complexity and economy. One the one hand, in wireless networks there has been
a trend toward increasingly complex, heterogeneous and dynamic environments. On the other hand,
almost all the spectrum resources have been assigned and there is a little new, expensive bandwidth for
emerging wireless services and products. In the new paradigm of cognitive radio, the wireless devices
employ advanced signal processing techniques together with novel dynamic access methods to support
new wireless users who are able to communicate in an opportunistic fashion in the existing crowded
spectrum while keeping the existing users from performance degradation.

Most of the traditional communication systems are protected against interferences by means of li-
censed spectrum allocation for exclusive use. However, with such approach, spectrum resources be-
come underutilized for various reasons. First, the failure of any deployed disruptive technology may
lead to unused spectrum. Second, public safety and military radio systems require spectrum for occa-
sional operation, leading to an additional amount of unused spectrum. And third, the technological
advances on existing licensed communications diminish the amount of spectrum required for the ser-
vice. In view of all these observable trends, cognitive radio becomes the solution to a time-varying,
flexible use of the spectrum.

The cognitive radio technology is inspired by the Defense Advanced Research Projects Agency
(DARPA) Next Generation Communication program, and has been emerged in many other industry
and academia research. For example, cognitive radio has already been adopted as core platform in the
new standard IEEE 802.22, which is a modification of the IEEE 802.16 and will enable what is referred to
as Wireless Regional Area Networks (WRANs), i.e., operating in rural regions in the unused VHF/UHF
bands and provide services with performance comparable to that of existing broadband access in urban
areas.

This Ph.D. thesis proposal focuses on two main functionalities of the cognitive radio technology:
spectrum sensing and dynamic access. The primary function of a cognitive device is to reliably iden-
tify available spectrum resources temporally unused by the primary systems in a geographical area
—spectrum sensing. Employing this spectral mask, the nodes in a cognitive radio network access the
available resources for opportunistic communication (dynamic access). Cognitive radio becomes valu-
able and especially challenging when the amount of operating spectrum is large —wideband. Wide-
band regimes are characterized by very low signal-to-noise ratios (SNRs), and very sampling rates are
required to enable spectrum sensing and medium access. However, as the sensed spectrum amount
increases, it is recognized that the observable signal is scarce in frequency, i.e., the overall spectral oc-
cupation is low. The sampling rate of sparse signals can be then dramatically reduced using a novel
theory —compressed-sampling. The compressed-sampling theory presumes of sparse signal recon-
struction from a compressed set of observations, and has gain recent attention in many fields of the
engineering, among them detection.
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As a result of the aforementioned premises, the main objective of the present Ph.D. thesis proposal is
the design, analysis, and comparison of optimal, efficient signal processing techniques for the problems
of spectrum sensing and dynamic access in wideband cognitive radio communications. For this goal,
three lines of investigation are identified: optimal spectrum sensing detection based on compressed-
sampling second-order statistics, multiple-access techniques for dynamic access, and underlying wide-
band cognitive radio communication strategies. The first line of investigation aims at deriving the
optimal spectrum sensing algorithms for primary users’ activity detection in compressed wideband
regimes, and uncovers the main factors that determine the final performance of the spectrum sensing
algorithm in realistic scenarios. The second line of investigation focuses on designing multiple-access
strategies in wideband cognitive radio networks by making use of the spectral information provided
by the spectrum sensing algorithms to perform opportunistic communication without degrading the
primary systems. Finally, the third line of investigation merges spectrum sensing and dynamic access
in order to conceive efficient and practical communication schemes for cognitive radio in the wideband
regime.

The rest of the proposal is organized as follows. Section 2 gives a brief introduction and motivation
to the cognitive radio technology, identifies the main open research challenges in the fields of spectrum
sensing and dynamic access, and establishes the main objectives of the Ph.D. thesis. The bibliography
review on compressed-sampling, spectrum sensing, and dynamic access is provided in Section 3. The
preliminary results are introduced in Section 4, as well as the publications in the field. Section 5 identi-
fies the pending and future lines of investigation, and gives the main methodology through which the
objectives of the Ph.D. thesis will be achieved..

2 Cognitive Radio

Today’s wireless networks are regulated by a fixed spectrum resource assignment, i.e., the spectrum
is regulated by governmental agencies and is assigned to license holders or services on a long term
basis for large geographical regions. However, a large portion of this assigned spectrum is used only
sporadically by the primary services, who concentrate the communication over certain portions of the
spectrum while a significant amount of the spectrum remains underutilized. According to recent stud-
ies by the U.S. Federal Communications Commission (FCC) [1], the utilization of the available spectrum
can be as low as 15% in determined geographical areas.

Specifically out of this premise was born the new paradigm of cognitive radio. Cognitive radios utilize
advanced signal processing along with novel dynamic spectrum access policies to support new wire-
less users who opportunistically communicate in the existing congested spectrum without degrading
established users. For that purpose, a cognitive radio is an adaptive wireless communications system
that takes advantage of all type of side information on the network, e.g., users’ activity, channel condi-
tions, modulations and codes format, or even the information message sent by other users who share
the spectrum [2]. Depending on the degree of knowledge on this side information, cognitive radio sys-
tems are based on underlying, overlaying or interweaving the new users’ signals with those of existing
users [3].

The underlay cognitive radios operate only if the interference caused to the non-cognitive services
is below a given threshold. This approach assumes that the secondary users have perfect knowledge
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of the interference caused by their transmitters to the primary services. One possible approach for
transmitting signals causing little interference is to use a large bandwidth over which the cognitive radio
signal is spread below the noise level. This is the basis idea of spread spectrum and ultra wideband
(UWB) communications. Underlay cognitive radio is the most common scheme when coexisting with
licensed primary services, e.g., UWB underlays many licensed bands.

In overlay cognitive radio, the secondary users can transmit at any power and simultaneously with
the primary users by using sophisticated techniques like dirty paper coding (DPC) or relays. For this
to be possible, the cognitive transmitters need to know the primary users’ codebooks and messages,
which may be impractical in many situations.

Thirdly, the idea of opportunistic communication is exploited in interweave cognitive radios, which
indeed is the original motivation of cognitive radio [4]. The spectrum gaps or holes can be used sporad-
ically by secondary users for their communication in given time and geographical location conditions.
The primal requirement of interweave cognitive radio is that the secondary users must be aware of the
spectral activity of the primary systems.

In this Ph.D. thesis proposal, we focus on the interweave concept of cognitive radio and its signal
processing and communications challenges. Specifically, we will investigate two of the main function-
alities indispensable for the cognitive radio technology to proliferate: spectrum sensing and dynamic
access. On the one hand, spectrum sensing refers to the signal processing detection techniques that re-
liably identify the radio resources unused by the primary systems in order to cause little interference.
On the other hand, dynamic access consists of the enabling communication strategies that capture the
best multiple access technique in order to meet the user communications requirements. The envisioned
open fields on spectrum sensing and dynamic access are discussed in the sequel.

2.1 Open Challenges in Spectrum Sensing and Dynamic Access

For the last decade, cognitive radio has been one of the major focus of academic research, e.g., [5],
as well as application initiatives such as the IEEE 802.22 standard on wireless regional area network
(WRAN) [6, 7]. Yet, there are many open research challenges which we identify in the following for
both spectrum sensing and dynamic access.

2.1.1 Wideband Spectrum Sensing

Spectrum sensing is an important prerequisite in the envisioned applications of wireless cognitive radio
networks. Creating an interference map of the operational spatial region plays a fundamental role in
enabling spatial frequency reuse and allowing dynamic spectrum access. Designing fast and reliable
spectrum sensing techniques based on cognitive radios local observations is a challenging task with
many open research topics.

1. Sensing duration and sensing rate.

The time needed by the spectrum sensing algorithm to detect the presence of primary user activity
is probably the most primordial requirement of cognitive radio communications, especially when
transmitting because the primary users can claim their spectrum resources at any time. In order to
avoid interference from and to the primary users, the secondary users must identify the presence
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of primary activity as fast as possible and immediately vacate the used band. The main factor
that determines a trade-off between sensing time and detection performance is the selection of the
parameters to be sensed.

On the other hand, the sensing rate, i.e., how often the cognitive radios perform spectrum sens-
ing, is another important design parameter. The optimum value of the sensing rate depends
on the technical capabilities of the cognitive radio and the statistical properties of the primary
services [8]. For instance, if the status of the primary users is known to change slowly in time,
spectrum sensing can be performed in a more relaxed manner, whereas a more constant spec-
trum sensing is required in public safety bands to immediately vacate the band to prevent any
interference. Selecting the optimum sensing rate is a novel research problem, and the goal is to
maximize the cognitive radio channel capacity while maintain the interference to primary users
constraint. Many approaches can be proposed to solve these problems. For instance, one could
use the guard interval in OFDM systems to perform sensing, or focusing only in the changing
parts of the spectrum.

Another problem associated to sensing time is that spectrum sensing cannot be performed on
spectrum resources over which the cognitive radio users are communicating. To mitigate this
problem, Frequency-Hopping has arisen as a practical solution, as reported in [9].

2. Detection of spread-spreading primary users.

Typically, primary system either consists of a fixed narrowband or spread spectrum services. The
two major approaches of spread spectrum communications are the frequency-hopping spread-
spectrum (FSSS) and direct-sequence spread-spectrum (DSSS). In both situations, detecting such
systems is difficult as the power of the primary users is distributed over a wide frequency range,
even though the actual information bandwidth is much narrower [10]. One possible solution is to
uncover the hopping pattern or achieve perfect synchronization with the primary users, however
such detection in the code-domain is not straightforward.

3. Wideband sensing.

Very high sampling rates are required by conventional spectral estimation methods which have to
operate at or above the Nyquist rate when the frequency range to be sensed is very large. Mean-
while, the stringent timing requirements for monitoring the dynamically changing spectrum only
allow for a limited number of measurements to be collected for sensing, which makes it challeng-
ing to reliably perform high-resolution signal reconstruction. Furthermore, the wideband regime
is characterized by close to zero spectral efficiency and SNRs close the minimum required for reli-
able communication [11]. Therefore, spectrum sensing becomes indeed especially challenging in
the wideband regime.

In this Ph.D. thesis proposal, we discuss the application of the novel theory of compressed-
sampling [c.f. 4.1.1] for wideband spectrum sensing. Due to the low overall occupancy of active
primary users in large frequency ranges, we recognize that the signals are sparse in the spectrum
domain. The sampling rate of sparse signals can be then reduced by a large margin and operate
below the Nyquist rate. Although there have been many studies on wideband sensing algorithms
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[c.f. Section 3.1], more researches are still needed especially when the statistical parameters of the
primary users’ signals are unknown within the frequency range of interest.

4. Cooperative sensing.

Cooperative sensing becomes a practical methodology for increasing the reliability of the cogni-
tive radio network spectrum sensing performance and addresses some problems of individual
spectrum sensing such as the hidden primary user problem or punctual deep fading. However,
sharing the information among cognitive radios and combining the measurements is a challeng-
ing task.

On the one hand, the shared information can be based on soft-decisions or hard-decisions. Soft-
decisions outperform hard-decisions in terms of probability of missed-detection; however they
require a larger overhead for transmitting such information.

On the other hand, there are many approaches for making the final decision. In a distributed net-
work, each node can base its decision on the local measurements of the neighborhood and pass
the information in an intelligent manner (e.g., belief propagation). In a centralized network, a
decision center collects all the measurements/decisions from the cognitive radios and performs
the final decision employing optimal combination (e.g., the likelihood ratio test), or alternatively
simpler techniques such as equal gain-combining, selection combining, or switch and stay com-
bining.

5. Complexity.

Finally, complexity is one of the major factors affecting the implementation of practical sensing
methods. To detect a signal at very low-SNR and in a harsh environment is not a simple task.

The research objectives of this Ph.D. thesis proposal focus on statistical-based detection methods.
The major advantage of such spectrum sensing detectors is their little dependence on signal and
channel knowledge, as well as relatively low complexity. A promising research line is then the
design of statistical-based spectrum sensing algorithms that exploit the signal features. At last,
detecting the presence of a primary user signal is only the basic task of sensing. For a radio
with high level of cognition, further information such as the modulation format employed by the
primary service may be exploited. Therefore, signal identification turns to be an advanced task of
sensing.

2.1.2 Dynamic Wideband Access

All the cognitive nodes willing to transmit or receive information perform spectrum sensing to acquire
a map on the situation of the available spectrum prior to opportunistic communication. Recent theoret-
ical work (see [12] and the references therein for an information-theory formulation of cognitive radio
channels) recognizes that the spectral environment is distributed and dynamic. The distributed access
occurs due to the fact that the primary activity detected by a cognitive radio differs from that detected
around the other cognitive radios.

Multiple-Access Techniques (MATs) are in charge of regulating the access of different users to a
common access radio resource, which usually consists of a dedicated frequency bandwidth, but not
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limited to other natures such as time, code, or space [13]. The common resource in which a set of M
users which to communicate is referred as multiple-access channel (MAC) [14]. By its nature, the MAC
is interference limited in dense networks. This fact, though, becomes a challenge for cognitive radio
MATs, when contrasted to the dedicated MATs, i.e., classical techniques where each user or service has
a dedicated (not shared) radio resource. A typical example for such techniques is the time-division
multiple-access (TDMA) employed in the GSM mobile network. When considering the MAC, many
information-theoretical network issues arise. How do the various senders cooperate with each other to
send information to the receivers? What rates of communication are simultaneously achievable? What
limitations does interference among the senders and to the primary services put on the total rate of
communications?

There are still many open lines of investigation in order to answer all these questions. In the field of
dynamic spectrum access [15], the following open challenges are identified.

1. Sharing dimension.

In general, spectrum sharing can be done at any dimension of the spectrum space, i.e., frequency,
code, space, and time. Selecting the sharing dimension in cognitive radios is a design parameter
that depends on the primary user activity.

In frequency and code division multiple-access, the main challenge is to perform efficient channel
allocation. More advanced signal processing techniques are required in space multiple-access as
power control is necessary to avoid interference to the primary systems. Finally, time access is
based on the concept of time leases.

2. Opportunistic Access.

Contrary to open spectrum access, i.e., a cognitive radio accessing unlicensed bands, opportunistic
dynamic spectrum access is regulated by the priority established between primary and secondary
users.

The primary task in opportunistic access is channel selection. The choice of the frequency bands
that can be used for opportunistic communication depends on the amount of primary systems
occupancy information available at the cognitive radio receiver. We further distinguish

(a) Narrowband Spectrum Access.

In Narrowband dynamic spectrum access, the cognitive radios can transmit and receive
the information on a predetermined or dynamically chosen frequency band, depending on
the primary user occupancy. This gives rise to two techniques: frequency-hopping and
frequency-tracking. On the one hand, in frequency-hopping spectrum access, the cognitive
transmitter and receiver simultaneously hop across multiple frequencies according to a pre-
determined sequence. The primal challenge of the frequency-hopping approach is that the
transmitter and the receiver need always to be synchronized. On the other hand, frequency-
tracking consists of choosing one of the free frequency bands for communication. In this
setting, the receiver chooses the expected frequency band based on local observations so as
to maximize the probability of coincidence with the transmitter.

(b) Wideband Spectrum Access
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In a wideband cognitive radio system, the transmitter and receiver can scan the spectral
activity in all the frequency bands. Then, the cognitive radios can span the information using
a spanning code over multiple frequency slots that are potentially unused by the primary
systems. Unlike the narrowband spectrum access schemes, the secondary users need to have
information of all the bands prior to every transmission. The basic challenge in this scheme
then goes to the spectrum sensing [c.f. Section 2.1.1].

3. Centralized or Distributed Spectrum Access.

An important aspect of a dynamic spectrum access is whether decisions on the access are taken
based on complete or partial information about the current utilization of the spectrum. We then
distinguish between the centralized and distributed schemes. In centralized cognitive radio net-
works, a central device is responsible for gathering the spectrum utilization from all the cognitive
radios and performing spectrum allocation and controlling based on the global information on
the network. Although the performance of centralized spectrum access is optimal due to the
acquisition of network information, reporting to a central device may not be practical in many
situations due to communication overhead. Alternatively, in distributed approaches (e.g. [16])
the spectrum access is controlled by each individual cognitive radio based on its own or common
policies imposed by the MAT, and neighborhood information. Distributed spectrum access re-
duces the reporting overhead, but achieves suboptimal performance due to the lack of complete
information on the network.

2.2 Research Objectives

Figure 1 presents the framework that encompasses the present Ph.D. thesis proposal goals and work
plan. In view on the open research challenges uncovered in Sections 2.1.1 and 2.1.2, the main goal of
the Ph.D. thesis entitled ”Wideband Cognitive Radio: Spectrum Sensing and Dynamic Access” is the
design, analysis and comparison of optimal, efficient signal processing techniques for the problems of
spectrum sensing and dynamic medium access in wideband cognitive radio communications. Recog-
nizing that in wideband communications, the overall combination of the primary systems activity in a
given location and time is, by nature, a sparse signal, the research objectives are structured as follows.

1. Optimal spectrum sensing framework for cognitive radio.

2. Information-theoretical analysis of compressed and nonuniform sampling.

3. Spectral analysis of sparse wideband signals.

4. Second-order statistics reconstruction from compressed observations.

5. Compressed spectrum sensing algorithms for wideband cognitive radio.

6. Cooperative spectrum sensing of sparse signals.

7. Traffic capacity asymptotic performance in wideband cognitive radios.

8. Multiple-access techniques for cognitive radio.
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9. Communication approaches for underlying cognitive radios.

Objective 1 aims at determining which statistics of the primary users’ signal and thermal noise have a
more significant implication on the spectrum sensing detection, and which are the sufficient statistics
of the observations. In order to introduce the compressed-sampling paradigm in wideband spectrum
sensing, Objectives 2 and 3 pretend to analyze from an information-theory and spectral analysis per-
spective which are the most adequate strategies of compressed-sampling in realistic sparse wideband
scenarios. Preliminary results show that the second-order statistics of the observations are a sufficient
statistic for spectrum sensing detection based on the generalized likelihood ratio test (GLRT). Hence,
the reconstruction of second-order statistics from compressed observations is to be studied in Objec-
tive 4. The final performance of optimal spectrum sensing with compressed-sampling will be analyzed
in Objective 5, and the use of side information from neighbor cognitive radios will be investigated in
Objective 6.

In the field of dynamic medium access, Objective 7 is intended to apply the recent theory of traffic
capacity to analyze the fundamental and asymptotic limits in wideband cognitive radio opportunistic
access. The design of multiple-access techniques for cognitive radio that exploit the spectrum infor-
mation provided by the spectrum sensing detection is to be studied in Objective 8. Finally, Objective
9 aims at solving the challenging problem of communication in underlying cognitive radio, i.e., which
technology offers reliable data links for the secondary users while keeping the primary systems with
little service degradation.

Next, we give a critical review on the recent literature on the fields encompassed by the former
objectives, and the preliminary results obtained within some objectives. A more technical, detailed
description on the Ph.D. thesis objectives is given in the work plan in Section 5.

3 State of the Art

Based on the identified open challenges in cognitive radio signal processing and communications, the
research objectives of this Ph.D. proposal encompass three main issues. These are the compressed-
sampling theory, the spectrum sensing, and the dynamic medium access for wideband cognitive radio
networks. Within these fields, there have been several recent research efforts which inter-relate the
fields in a progressive manner, from compressed-sampling to dynamic spectrum access with gradual
overlay among them.

For this purpose, this Section provides a general overview of the fundamentals and new advances
on compressed-sampling, a survey on up-to-date spectrum sensing techniques, and an introduction to
possible approaches for medium access in wideband cognitive radios.

3.1 Compressed and Non-Uniform Sampling

Conventional approaches to sampling signals follow the well-known Nyquist theorem, in which the
sampling rate must be at least twice the maximum frequency present in the information signal. How-
ever, the new theory of compressed-sampling asserts that we can recover certain signals from few sam-
ples than the Nyquist rate. Compressed-sampling has arisen from the mathematical society and has
been applied to many engineering fields. It relays on two fundamental characteristics: the sparsity of
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Figure 1: Framework for cross-layer compressed spectrum sensing and access for cognitive radio.
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the signal to be sampled, and the incoherence between the sampling method and the underlying do-
main in which the signal is sparse. The concept of sparsity expresses the idea that the information rate
behind a signal can be much smaller than the one suggested by its bandwidth (less degrees of freedom
compared to its length).

In the following, we provide the mathematical fundamentals of the classical compressed-sampling
theory, and discuss state-of-the-art works which are based or relate to compressed-sampling.

3.1.1 Classical Compressed-Sampling Theory

The compressed-sampling theory has been motivated by E. J. Candès in the last years [17–20]. Consider
a continuous-time random processX(t), and an arbitraryN -size sampled vector x

.
= (X(t1), . . . , X(tN ))T ,

where the sampling intervals tn accomplish the Nyquist theorem. It is said that x is sparse in the Φ

domain, if its representation onto the basis Φ has only S non-zero coefficients, with S � N . The
compressed-sampling theory claims that x can be perfectly recovered from the compressed signal
y = Ψ(x + w), where w is the additive Gaussian noise with double-sided spectral density N0/2, and Ψ

is aK×N compression matrix with enough incoherence with Φ. The sparsest solution of the coefficients
of x onto Φ is given by the `0-norm constrained minimization problem

α̂ = arg min
α
‖α‖`0 (1)

subject to y = ΨΦα, where ‖α‖`0 denotes the `0-norm of α, which is equal to the number of non-
zero elements in α, i.e., ‖α‖`0

.
= limd→0

∑N
n=1 |αn|d. Solving (1) is a NP-hard problem [17] and very

sensitive to the noise. Hence, several alternatives to (1) have been proposed in the literature. Basis
pursuit [18] is one of the most used algorithms as replaces the `0-norm in (1) by the `1-norm, with a
relaxed second-order constraint

α̂ = arg min
α
‖α‖`1 , (2)

subject to ‖y − ΨΦα‖2 ≥ ε. The main advantage of basis pursuit is that it leads to linear program-
ming, so (2) can efficiently solved in polynomial time. However, due to the performance degradation
in noisy environments, several improvements on the basis pursuit algorithm have been considered,
e.g., employing the gradient projection [21], or the interior-point [22] techniques. Alternative options
encompass greedy versions of basis pursuit, like the matching pursuit variants [23], which improve
the rapidness in solving (2), but may lead to poor estimation performance. Despite the noise sensi-
tivity of the original `0-norm minimization, it has been shown that it gives the highest possibility of
sparse recovery with very few measurements, which motivates the use of approximations to the `0-
norm function to directly solve (1). Among them, the smoothed `0 cost function [24] approximation is a
fast algorithm, and gives significantly improved performance in scenarios with low-SNR regimes. The
main idea behind this approach is to approximate the nonlinear function (1) by a suitable continuous
function, and take advantage of linearity.

The main drawback of the aforementioned works is that they focus on solving the compressed-
sampling problem in a very general fashion, without reaching engineering-like solutions. In the sequel,
we discuss novel advances on research related or based on compressed-sampling.
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3.1.2 Advances on Compressed-Sampling

Parallel to the Candès work, M. Vetterli et al. [25] presented the concept of rate of innovation of signals as
a generalization to the concept of bandwidth. The rate of innovation, defined as ρ .

= limτ→∞
1
τRX(τ),

where RX(τ) counts the number of degrees of freedom of X in an interval τ , expresses the level of
innovation per unit of time. The idea behind it is that if a signal has a finite rate of innovation ρ, one
hopes to be able to measure and reconstruct the signal by taking only ρ samples per unit of time. There
is a clear analogy to compressed-sampling, as ρ may measure the sparsity level of X . However, this
generalization allows to consider signals which, even though they are not band limited, they can be
sampled uniformly at or above the rate of innovation using appropriate kernels.

From a spectral analysis view point, P. Stoica et al. provide a non-uniform sampling approach in
[26] and show that non-uniform sampling does not suffer from tome drawbacks present in traditional
uniform sampling. The connection to compressed-sampling is feasible due the non-uniformity of the
compression (sampling) matrix Ψ.

A third line of investigation related to compressed-sampling has been pursued by G. Eldar et al.
[27–30]. The work presented in [27,29] establishes a framework related to compressed-sampling, called
multi-coset sampling for multi-band signals with sparse support over the sensed band, that establishes
the general conditions for perfect reconstruction. This theory is based on universal sampling patters
which are a particularization of the compression matrix Ψ and obey a predetermined structure so that
the uniqueness of the solution is preserved. Under some circumstances, if the universal multi-coset
pattern takes p samples out of L, it is shown that

1

TS
=

p

LT
≥ nNB,

where TS is the average sampling rate, 1/T is the Nyquist rate, and NB is the Landau rate for N bands
whose width do not exceed B. If the spectrum support is known, n = 1, and the sampling rate must
be above the Landau rate. On the other hand, if the spectrum support is known, there is a penalty of
n = 2 in the minimum required sampling rate. Even the authors provide a reconstruction algorithm
based on finite-size observations, numerical algorithms are needed as the reconstruction is based on the
classical compressed-sampling theory (1). The theory presented in [27] is applied to wideband analog
signals with unknown spectral support in [29]. The idea of multi-coset sampling implementation with
filter banks has been further reported in [31, 32] for the problem of analog-to-digital conversion.

Sparsity can be naturally found in many signals, and the reconstruction of a compressed sparse
signal relies on the incoherence between the compression method and the domain of sparsity. In [30],
the authors claim that reconstruction is possible even when the sparsity base is not known, i.e., blind
compressed-sampling of sparke signals. Uniqueness is ensured for a constrained family of sparsity basis,
whose restrictions and reconstruction algorithms are discussed in the work by [30].

Another problem of interest is that of detecting the activity of primary systems employing burst
transmissions. Settled in the time-domain, the sparsity does not occur symbol-by-symbol, rather in a
block-sparsity fashion. The work in [28] conditions the compressed-sampling problem setting for block-
sparse signals, and show that block-sparsity can yield to better reconstruction results than treating the
signal as being sparse in the conventional sense.

Finally, a connection to random coding has been established in the recent work by [33]. Random
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coding [34] is an underlying theory developed by R. G. Gallager [35] for the classical and non-classical,
i.e., quantum, channel coding theorem, which presumes of a known a priori distribution of the input
alphabet to provide an upper bound on the error probability. The authors in [33] assume that there is
some prior distribution on the location of the zero elements of the sparse signal, e.g., which frequency
bands are more likely to be empty, and derive information-theoretical bounds on the entropy of the
non-zero elements of the sparse signal to show that the compression rate can be further increased.

3.2 Spectrum Sensing

The primary function of a cognitive radio receiver is to reliably identify available spectrum resources
temporally unused by primary users in a geographical area. This awareness can be obtained through
a database, by using beacons, or by local spectrum sensing at the cognitive radios [36]. In this work,
we will focus on spectrum sensing performed at the cognitive radio receivers as it constitutes a broader
solution and has less infrastructure requirements. In the sequel, we assume that the cognitive radio
receiver has a dataset of N samples of the wideband signal X(t), X

.
= (x1, . . . ,xN ), and has to decide

between hypotheses H0 and H1 whether a primary signal is present in the sensed resource or not,
respectively.

3.2.1 Spectrum Sensing Methods for Cognitive Radio

The energy detector [37] is the most common way of spectrum sensing because of its low computational
and implementation complexities. In addition, it is the most generic detector as the cognitive radio
receivers do not need to know any further properties on the primary user signals. The primary user
signal is detected by comparing the output of the energy detector, T =

∑
n ‖xn‖2 ≥ λ with a threshold

λ that depends on the noise floor. The main challenges behind the energy detector are the threshold
computation with inaccurate noise variance, and its poor performance in low-SNR regimes [38]. How-
ever, the simplicity of the detector makes its theoretical analysis very clear, and its performance can be
accurately characterized.

A second method of spectrum sensing for cognitive radio are the waveform-based detectors. Known
patterns are commonly employed in wireless systems for synchronization purposes. In the presence of
a known pattern pilot signal in the primary services transmission, the cognitive radio can correlate the
detected signal with a known copy of itself [38], i.e., T =

∑
n xHn rn ≥ λ, where rn is the pilot sequence.

It is shown that the waveform-based detector outperforms the energy detector in both reliability and
convergence time. However, including pattern preambles may not be feasible in some primary services,
or it might derive to storage problems when sensing a very wide band.

Cyclostationarity feature detection has been applied in the works by [39, 40] for cognitive radio spec-
trum sensing. This method exploits the cyclostationarity of the primary users’ signals, as periodicity
occurs in the signal or in its statistics like the mean of autocorrelation. Even in low-SNR regimes,
the cyclostationarity-based detectors can differentiate the primary users’ signal from the noise. This
is a result of the fact that the thermal noise is a wide-sense stationary with no correlation, while the
modulated signals show correlation. The detection is then performed by detecting periodic peaks
on the cyclic spectral density function, defined as the Fourier transform of the cyclic autocorrelation
RX(τ)

.
= E[X(t + τ)X∗(t − τ)e2πft]. Cyclic frequencies can be assumed to be known or they can be
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extracted from the actual observations, but inaccurate values on them may cause severe degradation on
the performance of the detector.

Finally, match-filtering is known as the optimum method for detecting the primary users’ signal
when the transmitted signal is perfectly known [13]. The main advantage of match-filters is that com-
pared to the aforementioned methods, it achieves high probability of detectingH1 in a very short time.
However, matched-filtering requires the cognitive radios to demodulate the received signals. In other
words, it requires perfect knowledge on the primary users’ signal deterministic characteristics such as
the bandwidth, operating frequency, or modulation type and order. Moreover, its complexity increases
as it needs radio-frequency receivers for each signal types. Alternatively, data-independent filter-banks
detectors have been recently applied to cognitive radio [41] as they provide an integrated tool for wire-
less communications with less complexity than match-filtering. However, these detectors are not robust
to interference. A generalization of filter-banks design has been deployed in [42] in the framework of
correlation-matching [43]. The correlation-matching scheme presented in [42] provides power level
estimation and frequency location for a candidate correlation matrix to be suited with the sample co-
variance matrix. If the proper candidate matrix is selected, the resulting detector becomes robust to
interferences and significantly outperforms other feature-based detectors.

3.2.2 GLRT-based Spectrum Sensing

The detectors discussed in Section 3.2.1 relay on the fact that the cognitive radio receiver has perfect
knowledge on some deterministic parameters of the noise and primary users’ signal, such as the noise
variance or the signal features, e.g., the cyclic frequency.

In this Ph.D. proposal, we investigate the generalized likelihood ratio test (GLRT) based spectrum
sensing detectors for cognitive radio for two reasons. Firstly, the GLRT is the optimal detector in the
Neyman-Pearson sense [44] because it maximizes the probability of detection, P(H1|H1) in front of a
fixed false alarm probability P(H1|H0). And secondly, GLRT detectors become a solution to inaccurate
parameter models because they natively incorporate a joint parameter estimation framework:

L(X)
.
=
π(Θ̂1)p(X|Θ̂1,H1)

π(Θ̂0)p(X|Θ̂0,H0)
≥, λ (3)

where Θ̂1 and Θ̂0 are the maximum a posteriori (MAP) estimates of the unknown model parameters,
i.e., Θ̂1 = arg maxΘ π(Θ)p(X|Θ,H1), and Θ̂0 = arg maxΘ π(Θ)p(X|Θ,H0), respectively. If the prior
distribution of the unknowns, π(Θ1) and π(Θ0) is not available, the GLRT (3) reduces to the classical
LRT, and Θ̂1 and Θ̂0 becomes the maximum likelihood estimates. GLRT-based cognitive radio detectors
have been recently presented [45–47].

A probability-based spectrum sensing scheme for cognitive radio is derived in [45], which discuss a
weighted energy detector scheme where each sample is weighted by the probability of the presence of
the primary user signal. The main motivation lies in the fact that the primary user signal may appear at
any time in between the sensing block, whereas most of the existing literature always assume that the
primary user signal appears at the beginning of the block. The probability model establishes that the
idle duration of the licensed spectrum band is exponentially distributed.

The authors in [46] derive the optimal GLRT tests for Gaussian signal and noise when all the sta-
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tistical parameters are unknown, and when the cognitive radio has knowledge on the noise covariance
matrix. The main disadvantage of this latter is that an inaccurate value of the noise variance may result
in a degradation in performance. The preliminary results in this Ph.D. thesis proposal extend the results
in [46] for the wideband low-SNR regime and for unknown noise covariance matrix. We also provide
a novel test that predicts the primary user signal level and the noise variance when the cognitive radio
has knowledge on the normalized signal covariance matrix, rather than its true value.

The work done in [47] studies the effect of side information on the noise, channel and signal statis-
tics over the performance of the GLRT. The authors also provide extensions to multiple-input multiple-
output (MIMO) channels, fast and slow-fading Rayleigh channels, and orthogonal frequency-division
multiple-access (OFDMA) schemes. The work concludes that under the white-noise assumption, esti-
mating the noise variance incurs notable performance gain if the true value is inaccurate. This result
suggests that the second-order statistics of the noise and signal are a sufficient statistic for the detec-
tion problem. GLRT-based spectrum sensing algorithms are also developed in [48] for OFDM cognitive
radio networks.

3.2.3 Compressed Spectrum Sensing

A few work has been done in relation to the conjunction of compressed-sampling and spectrum sensing
for wideband cognitive radio networks.

Tian et. al. [49] study the problem of collaborative distributed spectrum sensing in wideband com-
munications, and provide an extension to spectrum estimation in [50]. The common factor of these
works is that the authors employ compressed-sampling and spectrum sensing independently. On the
one hand, each cognitive radio reconstructs the received wideband signal from the compressed local
observations using the basis-pursiot method, and on the other hand, an energy detector with majority
vote decision is performed in the fusion center of the cooperative cognitive radio network. Similarly,
the authors in [51] and [52] address the problem of spectrum sensing in wideband cognitive radio sce-
narios in a two-step approach. Firstly, the basis-pusuit on the Fourier transform of the observations is
employed to recover the received spectrum. Secondly, the band location estimation problem is solved
using a wavelet-based edge detector.

Alternatively, the work done by Leus et. al. [53, 54] on compressed spectrum sensing is focused on
the reconstruction of the signal PSD of the primary user signals motivated by the sparsity present on
the auto-correlation signal. The authors solve the distributed collaborative sensing problem by con-
sidering a fusion center which, after collecting the auto-correlation signals from the cognitive radios,
employs the simultaneous orthogonal matching pursuit (SOMP) algorithm to recover the observations
PSD. Also, the authors in [55] investigate the problem of cooperative spectrum sensing in cognitive ra-
dio networks that show sparsity in two domains: frequency and space. Based on local energy detectors,
the cooperative scheme aims to determine the locations of the cognitive transmitters as well as the fre-
quency bands unused by the users for opportunistic frequency reuse. Obtaining an interference map in
space and frequency is enforced by statistical models for the location of the cognitive transmitters [56].

All of the aforementioned strategies suffer from distinct drawbacks. First, some establish that the
sparsity basis is the Fourier domain in the signal level, rather than the correlation level, which leads to
poor performance in communication schemes. Second, the compressed-sampling solution is based on
basis-pursuit algorithms, lacking of physical insight interpretation. And third, most of the approaches
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consist of a two-step effort: once the observations are recovered from the compressed samples, the
simple energy detector is applied for detection. In this Ph.D. thesis proposal, we formulate the prob-
lem as a joint compressed-sampling and spectrum sensing problem based on second-order statistics
(correlation-matching) because while preserving the optimality in the wideband regime, it provides
closed-form solutions of statistics estimation which uncovers the fundamental factors that determine
the compressed spectrum sensing detector performance.

3.3 Dynamic Spectrum Access

The second primary issue in cognitive radio networks after spectrum sensing is the access strategy that
integrates the opportunity exploitation. The main challenge behind multiple-access techniques (MATs)
for cognitive radio is the established hierarchical structure in which the secondary system is designed
such that no or only insignificant interference is generated toward the primary system.

3.3.1 Multiple-Access Techniques

As a wideband wireless system, the cognitive radio MAT must optimize the utilization of the available
spectrum, and guarantee the maximum number of reliable links. Conversely, wideband communica-
tions are characterized by arbitrarily large delays, low SNRs, and close to zero spectral efficiency [11].
The spectrum efficiency in classical point-to-point communication channels, defined as the information
rate that can be transmitted over a given bandwidth [57], is a suitable metric for benchmarking among
different MATs. The spectrum efficiency in wireless networks has recently been casted as the transmis-
sion capacity [58, 59]. The transmission capacity is defined as the number of successful transmissions
taking place in the network per geographical unit area, subject to a constraint on outage probability.
The outage capacity was first presented for both the broadcast channel and the multiple-access channel
(MAC) in 1999 [60,61]. The importance of this novel concept lies largely in that it can be exactly derived
in some important cases, or tightly bounded in many others, hence providing a useful tool of compar-
ison. In general, we distinguish between the following fundamental multiple-access schemes: time-
division multiple-access (TDMA), frequency-division multiple-access (FDMA), code-division multiple-
access (CDMA), space-division multiple-access (SDMA), and random access. Spread-spectrum tech-
niques [62] have been adopted in many interference-challenged wireless communication systems be-
cause of its efficiency in which several terminals transmit over the same frequency bandwidth, without
requiring planned infrastructure (ad hoc). Consequently, CDMA in frequency-hopping (FH-CDMA)
and direct-sequence (DS-CDMA) forms are potential dynamic access strategies for cognitive radios.

3.3.2 Transmission Capacity

With no delay constraint, the classical information-theoretical MAC capacity is the relevant perfor-
mance indicator. This applies, for example, to variable-rate systems. On the other hand, most of today’s
communication systems carry services for which constant-rate and delay-limited transmission should
be considered. In this case, the outage probability is the appropriate capacity metric as it is able to pro-
vide the probability that any QoS performance metric such as mutual information, SNR, transmitted
power, or bit-error-rate (BER) are bellow or above the resource limit, that is, target transmission rate,
target SNR, maximum power or target BER [63–67].
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The transmission capacity framework focuses on the statistics of the received signal-to-interference
plus noise ratio (SINR) in the MAC. They key underlying this mathematical concept is the use of spatial
models for the location of the M terminals on a plane, whose channel response is a function of their rel-
ative distances. Spatial models have been used in wireless communications since the late 1970’s [68,69],
in which the received SINR determines the conditions of transmission success. Moreover, mathematical
formulation for spatial models consisting of stochastic geometry has been shown to be well suited for a
wide range of problems within wireless communications [70].

The transmission capacity metric was first introduced by the authors in [58]. It is defined as the
spatial intensity of attempted transmissions associated to an outage probability of the SINR. The trans-
mission capacity metric has been employed in a wide variety of wireless network design and per-
formance analysis problems, including direct-sequence and frequency-hopping spread spectrum [71],
interference-cancellation [72], spectrum sharing of unlicensed, overlaid, and cognitive radio networks
[73,74], scheduling and power control [75,76], and the use of multiple antennas for beamforming or or-
thogonal space-time block coding (OSTBC) [77]. One of the most relevant conclusions of the transmis-
sion capacity work is that for CDMA MATs, the ratio between the transmission capacity of FH-CDMA
and DS-CDMA only depends on the spreading factor K and the path-loss parameter n by [78]

cFH
cDS

= K1−2/n.

In other words, if n > 2, FH-CMDA outperforms DS-CDMA for fixed system conditions by a factor of,
e.g.
√
K in indoor environment with n = 4.

Lastly, the work by Menon et al. [79], also based on the outage probability and exponential mod-
els [80], addresses an assessment on the performance on interference avoidance and interference av-
eraging MATs. The authors show that the interference-avoidance techniques dramatically reduce the
interference seen at the primary services. Therefore, underlay schemes such as FH-CDMA should also
incorporate interference-avoidance. Moreover, interference-avoidance underlay cognitive radios result
in lower outage probabilities as compared to interference-avoidance overlay cognitive radios, with pro-
nounced benefits as the transmission bandwidth is increased.

3.3.3 Practical Opportunistic Spectrum Access Implementations

Not surprisingly, FH-CDMA has already been adopted in many research lines in the field of cognitive
radio dynamic spectrum access by L. Tong et al. in [81]. In this work, the authors investigate spectrum
access policies of cognitive radios in a wireless local area network (WLAN) scenario. The main idea is
to sense and predict interference patterns so as to adapt the spectrum access accordingly.

In the line of primary user activity prediction, recent work by L. Tong [82–84] discusses the cogni-
tive medium access problem via stochastic modeling of the primary service. Recognizing the apparent
spectrum sensing constraints, it is feasible to assume that a secondary user may not be able to perform
full-spectrum sensing or may not be willing to monitor the spectrum when it has no data to transmit.
Contrarily, a secondary user can choose to sense a subset of the possible channels. The work in [82]
integrates spectrum sensing and spectrum access by adopting a decision-theoretic approach that casts
the design of the spectrum access in the framework of Partially Observable Markov Decision Process
(POMD) [85]. This formulation leads to optimal policies for spectrum sensing and access, and a sys-
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tematic trade-off between performance and complexity. Specifically, the traffic statistics of the primary
network follow a discrete-time Markov process with 2K states, being K the number of channels, each
state of the type (S1(t), . . . , SK(t)) ∈ BK . The hardware and energy limitation on the spectrum sensing
capabilities of the secondary users is translated to a maximum number of K1 sensing and access K2

channels. The protocol is designed under this constraints, and the spectrum and access decisions are
made to maximize the throughput of the secondary user while limiting the interference to the primary
network. The authors in [83] further discuss the spectrum access problem in cognitive radio networks
with partial and fully-observable radio resources (K1 = K2 = K). The opportunistic spectrum access
via periodic channel sensing is discussed in [84].

Finally, the possibility of spatial reuse in addition to frequency reuse has also received recent grow-
ing attention. It was noticed that even if a frequency band is occupied, there could be locations where
the transmitted power is low enough so that these frequencies can be reused without suffering from or
causing harmful interference to the primary services. These opportunities were investigated in [86] and
several statistical models for the location of the transmitters is advocated in [87].

4 Preliminary Results

This Section presents the preliminary results obtained on the topics focused by this Ph.D. thesis pro-
posal. This research includes a novel approach for compressed wideband spectral analysis based on
minimum power reconstruction criterion [c.f. Section 4.1], the derivation of optimal GLRT spectrum
sensing detectors by exploiting second-order statistics of the primary users’ signal and noise [c.f. Sec-
tion 4.2], the derivation of optimal second-order statistics estimates using compressed observations
under a correlation-matching criterion [c.f. Section 4.3], an information-theoretical perspective analysis
on the compression matrix [c.f. Section 4.4], and an assessment on multiple-access techniques for cog-
nitive radio networks based on classical information-theory and the novel theory of traffic capacity [c.f.
4.5].

The research efforts performed within this Ph.D. proposal have led to the generation of the following
paper list, to which we include former work related to spectrum sensing:

• J. Font-Segura and X. Wang, ”GLRT-Based Spectrum Sensing for Cognitive Radio with Prior In-
formation”, accepted for publication in IEEE Transactions on Communications.

• J. Font-Segura and X. Wang, ”Robust Nonlinear Precoding for MU-MIMO-OFDM Systems with
Limited Feedback”, submitted to IEEE Transactions on Wireless Communications.

• J. Font-Segura, G. Vazquez and J. Riba, ”A Unified Framework for GLRT Spectrum Sensing in
Wideband Cognitive Radio”, in preparation for submission to IEEE Transactions on Communica-
tions.

• J. Font-Segura, G. Vazquez and J. Riba, ”A Compressed Correlation-Matching Approach for Spec-
tral Analysis”, in preparation for submission to IEEE Transactions on Signal Processing.
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4.1 Compressed Spectral Analysis

As noted in the bibliography review, one of the main problems of the compressed-sampling approaches
for wideband spectrum sensing is that the reconstruction algorithms do not give rise to closed-form so-
lutions, hence interpretation insights cannot be easily uncovered. In this work, given the positivity
nature of the power spectral density function, we show that sparse spectrum reconstruction is equiv-
alent to a minimum power reconstruction criterion. We derive traditional spectral analysis methods
based on the second-order statistics of the compressed observations, rather than on the reconstruction
of the data at signal level, which is in general nor guaranteed because the sparsity domain is the spectra.
Even this fact, we show that the second-order statistics of the reconstructed signal are equivalent to the
reconstructed second-order statistics, i.e., the same estimate on the correlation matrix is achieved.

4.1.1 Sparse Wideband Spectrum Sensing

We consider a wideband signal X(t) which may represent the primary user signal in a cognitive radio
network, or the detected signal in an array of sensors. Any sampled realization of the random process
X of length N is denoted by the vector xm

.
= [X(tm1 ) . . . X(tmN )], where the sampling instants tmn ac-

complish the Nyquist rate, i.e., tmn − tmn−1 ≤ 1
2W , where W is the sensed bandwidth, for 1 ≤ n ≤ N

and 1 ≤ m ≤ M . Clearly, in the wideband regime, as W → ∞, in order to recover all the spectral
information in the sensed band, we would require an infinite number of samples.

As a stationary random process, the spectrum of X is given as SX(f)
.
= F [RX(τ)], where RX(τ)

.
=

E[X(t)X∗(t − τ)] is the signal auto-correlation function. In the sequel, we will state that the random
process X has a sparse spectrum if the support of SX(f), i.e., the frequencies such that SX(f) > 0, is
small compared to the sensed bandwidth. If X has a spectrum with enough sparsity, we discuss the
problem of reconstructing the power spectral density function SX(f) from a small number of samples,
obtained as the linear compression

ym = Ψmx̃m = Ψ(xm + zm), (4)

where zm is the additive Gaussian noise with double-sided spectral density N0/2, x̃m denotes the noisy
observation, and Ψ is the K × N compression matrix with compression rate N/K ≥ 1. In this work,
the compression matrices Ψm are built by randomly selecting K rows of the N ×N identity matrix IN .
We will then denote Ψm as a pinning matrix as it randomly selects K samples from the observation x̃m.
Note that any pinning matrix has the property ΨmΨH

m = IK .
Spectrum sensing is aimed at detecting the activity of the primary users over the sensed bandwidth

based on the local noisy observations, x̃m, for 1 ≤ m ≤M . In a wideband sparse spectrum, the problem
is then casted at locating the spectral support of X based on the compressed observations ym = Ψmx̃m,
for 1 ≤ m ≤M . According to the compressed-sampling theory [19,20], the reconstruction of the power
spectral density of X is equivalent to solving the following `1-norm minimization problem

ŜX(f) = arg min
SX(f)

‖SX(f)‖`1 (5)

with the additional constraint ym = Ψmxm in the noise-free case, or ‖ym −Ψmx̃m‖2 ≤ ε in the noisy
case, both for 1 ≤ m ≤ M . However, note that by the positivity nature of the problem, the `1-norm in
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(5) is given by

‖SX(f)‖`1 =

∫
W

SX(f)df
.
= PX =

1

N
tr(RX), (6)

that is, the power of the signal X inside the sensed band of width W , where RX
.
= E[xxH ]. In other

words, we have shown that recovering the sparse spectrum of X obeys a minimum power reconstruc-
tion (MRP) criterion. We highlight that Equation (6) makes possible the application of many classical
spectrum estimators to the compressed version, admitting closed-form solutions for the second-order
statistics of X , i.e., RX and SX(f).

4.1.2 Data Reconstruction

We first consider the spectrum analysis problem in the noise-free case, which consists of recover SX(f)

based on the compressed observations ym as in (4) with x̃m = xm. This approach requires the recon-
struction of the data, which is not guaranteed as X is not sparse at signal-level. However, since we are
not interested in reconstructing the signal, we will show that the correlation of the decompressed signal
can be indeed reconstructed.

The periodogram or Blackman-Tuckey spectral estimate is given by [88]

ŜX(f)
.
=

1

N2
sH(f)RXs(f), (7)

where s(f) is the N -points steering vector s(f)
.
= [1 e−j2π/N . . . e−j2(N−1)π/N ], and the signal sample

covariance matrix is computed as RX
.
= 1

M

∑
m xmxHm. The methodology behind data reconstruction

consists of computing an estimate of xm from the compressed observations ym, and further determine
the sample covariance matrix and the spectrum of X through (7). Using (6), the uncompressed estimate
of (x1, . . . ,xM ) is given by the optimization problem

(x̂1, . . . , x̂M ) = arg min
xm

M∑
m=1

tr
(
xmxHm

)
s.t. ym = Ψmxm, 1 ≤ m ≤M. (8)

The optimization problem (8) is convex on each observation xm and the solution is obtained by taking
the derivative of the Lagrangian L(x1, . . . ,xM )

.
=
∑M
m=1 tr

(
xmxHm

)
+
∑M
m=1(ym − Ψmxm)Hρm with

respect to xm. This gives that x̂m = ΨH
mρm, where the Lagrange multiplier ρm is selected to satisfy

the constraint in (8), i.e., ρm = (ΨmΨH
m)−1ym = ym, and x̂m = ΨH

mym. As a result, an estimate of the
power spectral density employing the Blackman-Tuckey estimator is given by

ŜX(f) =
1

N2
sH(f)Bs(f), (9a)

B
.
=

1

M

M∑
m=1

ΨH
mymyHmΨm. (9b)

This indirect method provides an estimate for the sample covariance matrix of the form (9b), i.e., R̂X =

B, which is sparse by construction. We indicate that for a fixed sampling pattern, i.e., Ψ1 = . . . = ΨM =

Ψ, the estimate of the sample covariance matrix becomes B = ΨHRY Ψ, where RY denotes the sample
covariance matrix of the compressed observations, RY

.
= 1

M

∑
m ymyHm. In such a case, we observe
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that for large data-records the sampling pattern defined by the pinning compression matrix will only
recover a fixed subset of K signal modes. Conversely, a variable pinning matrix will randomly select
distinct signal modes and hence provide an improved estimate as M increases.

We indicate that in the case of no compression, B = RX and ŜX(f) become the original sample
covariance matrix and the Blackman-Tuckey estimators, respectively.

We next discuss the recovery of the signal power levels according to the traditional Blackman-
Tuckey and Capon estimates based on second-order level fitting of the compressed observations. The
main motivation is founded by the fact that signal level reconstruction is not guaranteed.

4.1.3 Spectral Amplitude Level Estimate

Recovering the amplitude spectrum of a complex discrete-time signal is important to many applica-
tions, such as target feature extraction or radar detection. Consider the following formulation for the
original uncompressed data, xm = α(f)s(f), for 1 ≤ m ≤ M , where α(f) denotes the complex am-
plitude of the sinusoidal component with discrete frequency f , and s(f) is the steering vector. The
problem of interest is to recover the power density of X , i.e., γ(f)

.
= |α(f)|2, from the compressed data

(y1, . . . ,yM ) in (4).
This issue has been addressed in [26] for non-uniformly data sampling, and we further extend this

idea for random pinning matrices. In order to recover the spectral power contribution at discrete fre-
quency f , we require the energy fitting from the compressed observations, which is given by the mini-
mization problem

γ̂(f) = arg min
γ(f)

M∑
m=1

‖ymyHm − γ(f)Ψms(f)sH(f)ΨH
m‖2, (10)

for 1 ≤ m ≤ M . The problem (10) is convex on γ(f) and is solved by taking the derivative, which
is given by

∑
m tr(ymyHmΨms(f)sH(f)ΨH

m) − γ(f)
∑
m tr((Ψms(f)sH(f)ΨH

m)2). After equaling it to
zero and noting that tr((Ψms(f)sH(f)ΨH

m)2) = K2, we obtain that an estimate of the power spectral
contribution γ(f) is given by

γ̂(f) =
1

K2
sH(f)Bs(f), (11)

where B is expressed as in (9b). According to (11), the spectral power level estimate is of the form
of the Blackman-Tuckey spectral estimate where the input correlation matrix is B. By comparing (11)
to (9), we observe that the correlation-level fitting optimized in (10) resolves the scaling-factor K2 in
the Blackman-Tuckey estimator, rather than N2 as the data fitting problem (8). This motivates that the
reconstruction of the spectrum ofX is possible up to a scaling factor which depends on the compression
ratio. In other words, in a compression scenario with normalized compression matrices tr(ΨmΨH

m) =

K, the energy of the observations is not preserved after compression and the adjustment in (11) is
required to (9).

We also note that in the case of no compression, (11) reduces to (7).

4.1.4 Capon Power Level Estimate

The main drawback of the power level estimate discussed in Section 4.1.3 is that the information that
the signal X is sparse is not incorporated in the formulation.



4 PRELIMINARY RESULTS 21

The Capon power level estimate [89] generalizes the concept of the Blackman-Tuckey estimate by
substituting the steering vector by a frequency template w(f). The design of the frequency template
may depend on the purpose of the estimation. According to the MPR criterion deployed in Section 4.1.1,
we set the compressed version of the frequency template to minimize the power of the uncompressed
observations. The Capon power estimate problem is then given by

ŵ(f) = arg min
w(f)

γ̂(f) (12a)

γ̂(f) = arg min
γ(f)

M∑
m=1

‖ymyHm − γ(f)Ψmw(f)wH(f)ΨH
m‖2, (12b)

subject to the normalization constraint wH(f)s(f) = N . The problem (12b) is convex on γ(f) and is
solved by taking the derivative with respect to γ(f) and setting it to zero. Analogously to Section 4.1.3,
we then obtain that an estimate of γ(f) based on the compressed observations is

γ̂(f) =
wH(f)Bw(f)

1
M

∑
m tr((Ψmw(f)wH(f)ΨH

m)2)
. (13)

Contrarily to (11), the denominator of the Capon version of γ̂(f) is not constant because it depends on
the design template w(f), which at its turn depends on the available data and the analysis frequency
f . As X is sparse, when the spectral analysis is focused on sparse bands, the Capon template will be
more conservative rather than in areas with signal presence, where the Capon template will relax the
second-lobes on sparse areas and provide a more accurate estimate of the actual power. As a result, the
Capon spectral estimate is convenient for detectors aimed at finding the spectral edges.

Solving for the optimal template from (13) is not feasible due to the presence of the template in
the denominator. Here, we provide a simplification consisting the following asymptotic result. If the
dataset is large enough, by making M →∞, the denominator in (13) obeys the ergodicity property

lim
M→∞

1

M

∑
m

tr((Ψmw(f)wH(f)ΨH
m)2) −→ tr

(
(w(f)wH(f)E[ΨHΨ])2

)
,

where Ψ is theK×N random process from which the compression matrices are drawn. For the pseudo-
random pinning matrices, it is shown that E[ΨHΨ] = K

N I. As a result, as ‖w(f)‖2 = N , the denominator
results in

(
K
N

)2 ‖w(f)‖2 = K2, and then (13) becomes

γ̂(f) =
1

K2
w(f)BwH(f),

analogous to the Blackman-Tuckey (15) for w(f) the steering vector.
Furthermore, the design of the template becomes equivalent to optimize the numerator of the spec-

tral estimate, i.e.,

ŵ(f) = arg min
w(f)

wH(f)Bw(f) (14a)

s.t. wH(f)s(f) = N. (14b)
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Figure 2: Blackman-Tuckey and Capon power level estimates in a noisy environment with compressed-
sampling at 1/16 of the Nyquist rate (N = 16K).

The optimal expression of the Capon filter, i.e., the solution of the former constraint convex optimization
problem, is obtained by taking the derivative of the Lagrangian L(w(f)) = wH(f)Bw(f) + λ(N −
wH(f)s(f)) and setting it to zero. This gives ŵ(f) = λB†s(f), where the Lagrange multiplier λ is
set to satisfy the constraint in (14b), i.e., λ−1 = Ns(f)HB†s(f), and B† denotes the Moore-Penrose
pseudoinverse of the rank-deficient matrix B. Finally, after some mathematical manipulations, we
obtain that the Capon spectral estimate for compressed sampling is given by

γ̂(f) =
N2

K2

1

s(f)HB†s(f)
(15)

It is straightforward to check that under the case of no compression, (15) becomes the traditional Capon
filter [89], i.e., ŜX(f) = (s(f)HR−1

X s(f))−1.
Figure 2 illustrates a toy example on spectral analysis of a complex signal composed by a pure tone

at discrete frequency ω = 5π/4 with additive Gaussian noise. The comparison between the spectral
analysis based on uncompressed or compressed observations with a compression rate of 1/16 shows
the accuracy degradation incurred by the compression. Furthermore, the noise enhancement produced by
the compression is an important effect to highlight. The reason for such phenomenon is that the white
noise before compression is spectrally folded and what is seen at the output of the compression block
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is another white noise with increased level. To overcome this effect, a denoising process is required,
which is discussed in more detail in Section 4.3.

4.2 Wideband Spectrum Sensing

4.2.1 System Description

We consider the spectrum sensing problem with M independent observations of N -size samples, X
.
=

(x1, . . . ,xM ), which consists of only noise samples when the primary user is not transmitting on the
sensed channel, denoted by hypothesis H0, and of noise and signal samples when the channel is used
by the primary service, denoted by hypothesis H1. The spectrum sensing problem is then cast as a
multiple hypothesis testing, given by

H0 : xm = wm

H1 : xm = sm + wm,
(16)

for 1 ≤ m ≤ M , where w is the zero-mean complex Gaussian noise with covariance matrix CW
.
=

E[wwH ], and s denotes the primary user signal present and the cognitive ratio receiver, which is mod-
eled as a zero-mean complex Gaussian variable with covariance matrix CS

.
= E[ssH ]. We will also

consider the white noise or white signal assumption; in such a case CW = σ2
W I and CS = σ2

SI, where
σ2
W and σ2

S are the noise and signal variances, and I is the identity matrix. In the problem in hand, if the
number of observations is sufficiently large, it is a valid assumption that both noise and signal are nor-
mally distributed. Moreover, while facilitating the analysis, it is also reasonable because usually there
is no line-of-sight (LOS) path between the cognitive radio receiver and the primary user transmitter. As
a result, the resulting signal is the superposition of no-LOS signals and approximates Gaussian distri-
bution as the number of observations is sufficienty large according to the central limit theorem [90].

We are interested in detecting the presence of the signal sn at a given wide band based on the avail-
able observations at the cognitive radio receiver. It is known that the GLRT is asymptotically optimal
in the Neyman-Pearson criterion, i.e., to maximize the probability of detection, P(H1|H1), for a given
probability of false alarm level, P(H1|H0) ≤ α, when the number of observations tends to infinity [44].
Recently, the following result establishes the finite-sample optimality of GLRT [91].

Proposition 1. For an observation X and unknown set of parameters Θ0 and Θ1 with priors Θ0 ∼ π(Θ0) and
Θ1 ∼ π(Θ1), respectively, the optimal test under the Neyman-Pearson criterion for deciding between hypotheses
H0 andH1 is given by the GLRT

L(X)
.
=
π(Θ̂1)p(X|H1, Θ̂1)

π(Θ̂0)p(X|H0, Θ̂0)
R
H1

H0
γ, (17)

where the estimates of the unknown parameters are given by

Θ̂0 = arg maxΘ0
π(Θ0)p(X|H0,Θ0)

Θ̂1 = arg maxΘ1
π(Θ1)p(X|H1,Θ1),

(18)
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and the threshold γ is such that the probability of false alarm satisfies

P(H1|H0) = P(L(X) ≥ γ|H0) = α. (19)

We next discuss the derivation of the optimal GLRT detectors in wideband cognitive radio. We
define the sample covariance matrix of the observations as the N ×N Hermitian matrix RX

.
= 1

MXXH .

4.2.2 Generalized Likelihood Ratio Tests for Wideband Spectrum Sensing

All Parameters Known. Let the cognitive radio receiver have perfect knowledge on the covariance
matrices of the signal and noise, and no prior information on the hypotheses. In this case, the estimates
(18) are substituted by their exact value and the test (17) becomes the classical likelihood ratio test (LRT)
for Gaussian variables.

Proposition 2. The optimal test for Gaussian noise and signal with known covariance matrices is the estimator-
correlator, given by [44, Equation (5.16)]

T1(X|CS ,CW ) = tr
(
C−1
W CS(CS + CW )−1RX

)
R
H1

H0
γ1. (20)

Proof. A remark on the proof is given in Appendix A.

Proposition 2 is a classical detection result, which states that the optimal detector is obtained by
correlating the observation data with the output of the Wiener filter or MMSE estimate of the signal,
the term CS(CS + CW )−1xm, with a whitener term for the noise. Equation (20) can be particular-
ized for white noise, i.e., CW = σ2

W I, deriving the equivalent test [44, Equation (5.5)] T (X|CS , σ
2
W ) =

tr(CS(CS + σ2
W I)−1RX).

Theorem 1. The optimal LRT for the hypothesis problem (16) when asymptotically approaching to low-SNR is
given by

T1(X|CS ,CW )→ tr(C−1
W CSC−1

W RX)R
H1

H0
γ′1, (21)

Proof. The outline of the proof is given in Appendix B.

The low-SNR regime test (21) also accounts for the correlation between the received data and the
signal statistics. However, the test (20) is consistent with the SNR, reflected in by the term (CS+CW )−1,
which takes into consideration both signal thermal noise, being the latter predominant at low-SNR, and
the signal leakage predominant at high-SNR. A case of interest is when the noise is white, for which
Equation (21) is particularized to the test

T1(X|CS , σ
2
W ) = T1(X|CS)→ tr(CSRX)R

H1

H0
γ′′1

which does not depend on the noise variance. In this case, the detector simply correlates CS with
the sample correlation matrix of the observations, namely, computes the norm of the projection of the
sample covariance matrix over the signal space.

For the tests T1 derived in this Section with known CS and CW , the family of thresholds γ1 is set to
satisfy the false alarm level α in (19).
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Unknown Signal Covariance Matrix, Known Noise Covariance Matrix. The knowledge of CW is
a general assumption in cognitive radio networks, as a period of no transmission by the primary or
secondary users is regularly preset so that each receiver is able to calibrate the noise present at the
receiver. In this work, we assume that the cognitive users have knowledge on CW , and not focus on
how this information is obtained. This information aids the test (17) as a prior information to estimate
the signal covariance matrix according to (18). A general ML estimate for CS is hereby obtained, and
simpler detectors are only derived under the white-noise assumption, or for large data records.

Theorem 2. The optimal test for the cognitive radio detection problem (16) when the noise covariance matrix is
known and the signal covariance matrix is unknown is given by

T2(X|CW ) = tr
(
C−1
W ĈS(ĈS + CW )−1RX

)
− ln det(ĈS + CW )R

H1

H0
γ2, (22)

where the ML estimate of the signal covariance matrix, when the noise covariance matrix is known by the cogni-
tive radio, is given by ĈS = UAΛ+

AUH
A , with UAΛAUH

A being the eigenvalue decomposition of the correlation
matrix A

.
= RX −CW , and the superscript in Λ+

B denoting the diagonal-wise operation max(λn(A), 0). Fur-
thermore, the GLRT (17) can be simplified for the following two specific cases. On the one hand, for large data
records, the optimal test (22) becomes

T2(X|CW ) =
∑
n∈A+

(
ln
λn(RX)

λn(CW )
− λn(RX)

λn(CW )

)
R
H1

H0
γ′2 (23)

whereas, on the other hand, under the white-noise assumption, the optimal test becomes

T2(X|CW ) =
∑
n∈A+

(
ln
λn(RX)

σ2
W

− λn(RX)

σ2
W

)
R
H1

H0
γ′′2 , (24)

where in (23) and (24), the indexes set A+ is defined as A+
.
= {n : λn(RX) > λn(CW ) > 0}.

Proof. The proof of results (22), (23) and (24) is given in Appendix D.

We note that test (22) is a modified version of the estimator-correlator (20), by placing the ML esti-
mate of CS instead of its known value and subtracting the norm ĈS onto the inverted noise covariance
matrix. On the other hand, the simpler tests (23) and (24) implement an SNR comparison which takes
into account solely the part of the received signal that carries energy above the noise level, i.e., those
modes associated to eigenvalue larger noise level.

The GLRT with unknown signal covariance matrix can be further simplified for the low-SNR regime.

Theorem 3. The optimal test for the cognitive radio problem (16) when asymptotically approaching to low-SNR
when the noise covariance matrix and the signal covariance matrix is unknown is given by

T2(X|CW )→ tr(C−1
W ĈSC−1

W RX)− tr(C−1
W ĈS)R

H1

H0
γ′′′2 , (25)

where the ML estimate of the signal covariance matrix is given as in Theorem 2. On the other hand, for large data
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records the optimal test when approaching to low-SNR becomes

T2(X|CW )→ −
∑
n∈A+

(
λn(RX)

λn(CW )
− 1

)2

R
H1

H0
γ∗2 , (26)

which is equivalent for the white noise assumption with λn(CW ) = σ2
W .

Proof. The proof is outlined in Appendix E.

Note that the test (25) is also a modified versions of the low-SNR estimator-correlator (21), respec-
tively, by placing the ML estimate of CS instead of its known value. Similarly, the test given in (26)
asymptotically computes the sum of the squared SNRs at each observation mode.

We see from (23), (24) and (26) that the eigenvalue decomposition of the sample and noise covariance
matrices is required, which is usually a high-demanding operation. For large data records and Toeplitz
stationary correlation matrices, this can be relaxed by computing λn(RX) = SX(fn), where SX(f) is the
spectral density of the observations and fn

.
= n/N ; and similarly for λn(CW ). Contrarily, in the general

form of test T2, namely tests (22) and (25) it is unavoidable the eigenvalue decomposition operation
when estimating CS .

For the tests T2 derived in this Section with known CW and unknown CS , the family of thresholds
γ2 is set to satisfy the false alarm level α in (19).

Unknown Noise Covariance Matrix, Known Signal Covariance Matrix. We next consider the alter-
native perspective in which the cognitive radio receiver has knowledge on the signal covariance matrix,
i.e., the statistics of the potential primary service that transmits over the sensed band. For a narrow band
spectrum sensing, we will assume that CS represents a single channel or service. According to the test
(17), the noise covariance matrix CW is to be ML estimated under both hypothesis, which we denote by
ĈW0

and ĈW1
.

Theorem 4. The optimal test for the cognitive radio detection problem (16) when the signal covariance matrix is
known and the noise covariance matrix is unknown is given by

T3(X|CS) = − ln det(CS + ĈW1
) + ln det(ĈW0

)− tr
(

(CS + ĈW1
)−1RX

)
R
H1

H0
γ3, (27)

where the ML estimates of the noise covariance matrix under hypotheses H0 and H1 are given by ĈW0
=

RX ,ĈW1
= UBΛ+

BUH
B , respectively. Here, UBΛBUH

B is the eigenvalue decomposition of the correlation ma-
trix B

.
= RX −CS and the superscript in Λ+

B denotes the diagonal-wise operation max(λn(B), 0). Similarly to
Section 4.2.2, the detector can be simplified for large data records, for which the GLRT is then given by

T3(X|CS) =
∑
n∈B+

(
ln
λn(RX)

λn(CS)
− λn(RX)

λn(CS)

)
R
H1

H0
γ3, (28)

the set of indexes B+ is defined as B+
.
= {n : λn(RX) > λn(CS) > 0}.

Proof. The proof is outlined in Appendix F.
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Although considering the low-SNR regime, the test (27) does not allow further simplification be-
cause two different estimators for the noise variance are provided. However, for large data records, we
state the following Theorem.

Theorem 5. The optimal test for the cognitive radio problem (16) when the noise covariance matrix is unknown
at the low-SNR regime is givem by

T3(X|CS)→ −
∑
n∈B+

(
λn(RX)

λn(CS)
− 1

)2

R
H1

H0
γ′3. (29)

Proof. The proof has been omitted, and is analogous to the proof of Theorem 3.

Note that the tests derived in Section 4.2.2 and 4.2.2 are very similar, as it compares the information
on the structure of the observations to the structure of the known part of the observations, in terms of
the eigenvalues. In both cases, the larger the eigenvalues of the sample covariance matrix are relatively
to the noise level or to the signal level, the larger the probability of a primary user occupying the sensed
band. Here, for large data records, the eigenvalue decomposition calculation can also be relaxed by
computing λn(RX) = SX(fm), where SX(f) is the spectral density of the observations and fn

.
= n/N ;

and similarly for λn(CS).
We now consider the prior knowledge that the noise is white.

Theorem 6. Under the white noise assumption, the optimal test for the cognitive radio detection problem (16) is
given by

T3(X|CS) = M ln σ̂2
W0
− ln det(CS + σ̂2

W1
I)− tr

(
(σ̂2
W1

I + CS)−1RX

)
+ σ̂−2

W0
trRXR

H1

H0
γ′′3 , (30)

where the ML estimates of the noise variances under hypotheses H0 and H1 for the cognitive radio problem (16)
when the signal covariance matrix is known are given by [44] σ̂2

W0
= 1

N tr(RX), σ̂2
W1

= 1
N (tr(RX)− tr(CS))

+,
respectively. A simple detector is not obtained as the sample covariance matrix and the signal covariance matrix
could not share eigenvectors. However, a simplification is considered at the low-SNR regime. The optimal test for
the cognitive radio problem (16) when the white noise covariance is unknown at the low-SNR regime is simplified
to

T3(X|CS)→ ln
σ̂2
W0

σ̂2
W1

−
σ̂2
W0

σ̂2
W1

R
H1

H0
γ′′′3 . (31)

Proof. An outline of the proof is given in Appendix G.

Again, the test (31) is proportional to the sensed SNR incorporating the knowledge on the signal
covariance matrix. However, notice that the restriction of white noise extracts less information from
CS , as only the trace operator is involved in the ML estimate σ̂2

W1
.

For the tests T3 derived in this Section with known CS and unknown CW , the family of thresholds
γ3 is set to satisfy the false alarm level α in (19).

Unknown Signal and Noise Covariance Matrices. We now discuss the situation in which the cogni-
tive radio receiver needs to estimate both CS and CW . A totally blind detection is not possible when
both signals are Gaussian, as it is easily seen that both ML estimates ĈW in H0, and ĈW + ĈS in H1
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become the same [47]. In other words, some prior information on the statistics or structure of the co-
variance matrices is to be known by the cognitive radio receivers in order to successfully perform blind
detection from the observations X.

The following result estates the GLRT with unknown signal and noise covariance matrices when the
noise is white.

Proposition 3. The optimal test for the cognitive radio problem (16) when the colored signal covariance matrix
and the white noise variance are unknown is given by [46]

T4(X) =
1
N tr(RX)

det(RX)1/N
R
H1

H0
γ4. (32)

Proof. The proof is outlined in Appendix H.

The test (32) can be regarded as the arithmetic-mean to geometric-mean of the eigenvalues of the
correlation matrix. We note that this test is a good measure of the spread of the set of eigenvalues. The
more unequal the values, the larger the value of the test. For white signal and white noise, both means
are equal and (32) is not informative.

We now discuss an additional test which implements (32) in an alternative fashion.

Theorem 7. The test that computes the dispersion of the eigenvalues of the sample covariance matrix is given by

T4(X) ≈ 1

2p2N

N∑
n=1

(λn(RX)− p)2R
H1

H0
γ′4, (33)

where p .
= 1

N tr(RX) is the estimated average power level.

Proof. The outline of the proof is given in Appendix J.

Note that both (32) and (33) are a dispersion measure, which is equal to zero in the case the sample
covariance matrix shows no dispersion in terms of eigenvalues, and positive value if there exists disper-
sion. The advantage of (32) is that the eigenvalue decomposition of RX is not required. For stationary
processes, though, the computation of λn(RX) for (33) can be done spectrally, i.e., λn(RX) = SX(fn),
where SX(f) is the spectral density of the observations and fn

.
= n/N .

For the tests T4 derived in this Section with unknown CS and CW , the family of thresholds γ4 is set
to satisfy the false alarm level α in (19).

4.2.3 A Correlation-Matching Approach

The method of ML, despite its theoretical appeal, is often difficult to implement [92]. Analytic solu-
tions to the maximization problem are available only in a few circumstances. Numerical solutions are
possible in many cases, but may be difficult to program, computationally intensive, or both. We show
that the sample covariance matrix of the received observations is a sufficient statistic for the detection
problem, and propose the application of the correlation-matching technique as alternative to the ML
estimation for the GLRT. The correlation-matching is a least-squares fitting in terms of second-order
statistics which behaves as an approximation to ML at the low-SNR regime with asymptotic large num-
ber of observations. When the noise level is high, second-order statistics in ML preserve the smallest
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estimation noise, resulting to an ML function practically insensible to the statistics of higher order in
the low-SNR regime [43]. Hence, we will investigate the correlation-matching approach for spectrum
sensing as it provides closed-form and low-complex solutions.

We now discuss a correlation-matching detector which relaxes the knowledge on the signal covari-
ance matrix up to a scaling factor. Correlation-matching based techniques gained attention for param-
eter estimation as an alternative to ML and subspace methods [43].

Theorem 8. Assume that CS = σ2
SC0, where C0 is the normalized signal covariance matrix, diag(C0) = N ,

and perfectly known to the cognitive radio. The correlation-matching estimates of the signal and noise variances
underH1 are given by

σ̂2
S =

(
tr((C0 − I)RX)

tr(C2
0)−N

)+

(34)

σ̂2
W1

=

(
tr(RX)

N
− σ̂2

S ,

)+

(35)

whereas the correlation-matching estimate of the noise variance under H0 is equivalent to the ML estimate of
Theorem 6. The estimates can be placed to the GLRT (17) to derive the test

T3(X|CS) = M ln σ̂2
W0
− ln det(σ̂2

SC0 + σ̂2
W1

I)− tr
(
(σ̂2
W1

I + σ̂2
SC0)−1RX

)
+ σ̂−2

W0
trRXR

H1

H0
γ∗∗3 . (36)

Proof. An outline of the proof is given in Appendix I.

4.2.4 Multi-Frequency Systems

We now consider an orthogonal multi-frequency system with K equally spaced subcarriers ωk, 1 ≤
k ≤ K. The signal in (16) is then the composition of the K frequency signals, i.e., sm =

∑K
k=1 σksk,m,

where σk ≤ 0 denotes the amplitude of the k-th signal. From the above definition, the signal covariance
matrix under the Gaussian assumption reads CS =

∑K
k=1 σ

2
kCk, where Ck

.
= E[sks

H
k ]. In the following,

we further assume that the multi-frequency system employs a known modulation format, the same for
all the carriers, so that without loss of generality, Ck = C0 � Fk, where C0 is the signal covariance
matrix of the baseband modulation format, and Fk is the correlation version of the Fourier matrix, i.e.,
[Fk]m,n = eke

H
k , with [ek]m = e−ωkm. Thus, the covariance matrix of the composite signal is given by

CS = C0 �
K∑
k=1

σ2
kFk. (37)

Equation (37) can be particularized for various frequency systems, such as an OFDM-based model
with pilot signals available at a known given frequency positions. In such a case, we have that CS

is as in (37) but with P out of K frequencies are used to transmit known pilots, that is, CS = C0 �∑
k∈K σ

2
kFk + CP �

∑
p∈P σ

2
pFp, where the frequency sets K and P denote the carrier indexes of data

and pilot signals, respectively, and usually CP is a rank-1 pilot covariance matrix, whose frequency
amplitudes σ2

p are fully known. This model can be exploited in real systems where the knowledge on
the pilots is available by nature of the primary user service, hence improving the performance of the
testing technique without any extra modification on the primary users’ parameters.
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Multiple-Hypotheses Testing GLRT. The cognitive radio detection problem (16) when the covari-
ance matrix of the signal has the structure (37) consists of determining which of the K subcarriers are
occupied by the primary users. We distinguish the two following approaches.

1. Joint Multiple-Hypothesis Testing. We consider the finite-sample optimal GLRT for multiple-
hypothesis testing without prior information on the occupancy. That is [91]

L(X) =
maxl p(X|H1l, σ̂

2
l )

p(X|H0)
R
H1

H0
γ,

where l denotes the index for the 2K−1 possible subhypothesis inH1, andσ2
l represents the subset

of σ2 that are activated, to be estimated. The complexity of the system increases exponentially
with the number of subcarriers, and the ML estimate problem becomes NP-hard.

2. Carrier-Independent Hypotheses Testing. A more efficient detection is considered by performing
individual tests at each subcarrier, while assuming that the K − 1 resting subcarriers are nuisance
parameters. Then, we have the following tests

Lk(X) =
p(X|H1k, σ̂

2)

p(X|H0k, σ̂
2
k̄)

R
H1

H0
γk, (38)

for 1 ≤ k ≤ K, and where σ̂2
k̄ denotes σ̂2

k̄
.
= [σ2

1 , . . . , σ
2
k−1, 0, σ

2
k+1, . . . , σ

2
K ]. In this case, K thresh-

olds γk must be determined to satisfy the false alarm levels, which can be different at each subcar-
rier.

We see from the former tests that ML estimates of σ2 or subsets of it must be determined in order
to perform the detection. The following Theorem states a fundamental result for the former multiple-
hypotheses testing problems and derives a normal equation for the ML estimate of vector σ2 at the
low-SNR regime.

Theorem 9. The ML estimate of σ2 at the low-SNR regime is given by the solution to the set of equations

K∑
l=1

σ2
l βkl = δk, (39)

for 1 ≤ k ≤ K, and where the coefficients are given by

βkl = 2tr(C−1
W CkC

−1
W ClC

−1
W RX)− tr(C−1

W CkC
−1
W Cl) (40)

δk = tr(C−1
W CkC

−1
W RX)− tr(C−1

W Ck). (41)

The optimal GLRT for the cognitive radio problem (16) employing the multi-frequency model (37) is then given



4 PRELIMINARY RESULTS 31

by

Tk(X|CW ,C0) = ln det

CW +
∑
l 6=k

σ̂2
l Cl


tr


(CW +

∑
l 6=k

σ̂2
l Cl

−1

RX


− ln det

(
CW +

K∑
k=1

σ̂2
kCk

)

−tr

((CW +

K∑
k=1

σ̂2
kCk

)−1

RX


R
H1

H0
γk (42)

where the set σ̂2
l 6=k is the solution to (K − 1)× (K − 1) system (39) by setting σ2

k = 0, whereas the estimates σ̂2
k

are the solution to the K ×K system (39). The set of thresholds γk are chosen to satisfy the false alarm level α,
which we assume is fixed for all the carriers.

Proof. See Appendix K.

In the appendix, we show that the exact MLE for the power levels σ2
k are given by the solution of

the nonlinear equation

tr

(CW +

K∑
l=1

σ2
l Cl

)−1

Ck

 = tr

(CW +

K∑
l=1

σ2
l Cl

)−1

Ck

(
CW +

K∑
l=1

σ2
l Cl

)−1

RX

 , (43)

for 1 ≤ k ≤ K. We first observe that Equation (43) forces the ML estimate of σ2 to be the set of frequency
powers that better shape the signal covariance matrix and the sample covariance matrix across all the
frequencies. Let CX = ĈS +CW be the observations covariance matrix where the estimate of the signal
covariance matrix is defined from the estimate of the frequency powers as ĈS =

∑K
l=1 σ̂

2
l Cl. Then,

Equation (43) can be read as tr
(
x̃kx̃

H
k

)
= 1

N tr
(
x̃kx̃

H
k X̃X̃H

)
, where x̃k

.
= C

1/2
X xk, and X̃

.
= C

1/2
X X. In

other words, the ML estimate of σ2 performs an optimal signal-level fitting of CX to RX by whitening
the data with C

1/2
X .

In the low-SNR regime, we further see that βkl computes the whitened cross-correlation between the
data format at the k-th and l-th subcarriers with the sample covariance matrix, whereas δk determines
the part of the k-th subcarrier signal present in the observations. Equation (39) can be efficiently solved
in a matrix manner exploiting the properties of the coefficients βkl and δk given the model (37). That is
σ̂2 = β−1δ, where [β]kl = βkl and [δ]k = δk.

Asymptotic Performance. We now discuss the performance of the ML estimator (39) in the asymptotic
case withN →∞, i.e., for large data records at the low-SNR regime. Since the ML estimate of the signal
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frequency powers is the implicit solution to a system of equations, the computation of the bias is not
treatable. Alternatively, the following statement establishes an asymptotic result.

Proposition 4. The asymptotic set of equations (39) for N → ∞ are consistent at the low-SNR regime when
σ̂2 → σ2.

Proof. The full discussion is given in Appendix M.

It is well known that the carrier-independent GLRT tests Lk(X) are asymptotically distributed ac-
cording toLk(X) ∼ X 2

r , where r denotes the size of the unknowns. That is, as the otherK−1 subcarriers
are regarded as nuisance parameters, r = 1. Hence, the K thresholds γk are determined to satisfy the
false alarm level P(H1k|H0k) = P(Lk(X) ≥ γk|H0k) = αk. For the multiple-hypothesis testing, the same
result applies with r = K, i.e., L(X) ∼ X 2

K . We note that the asymptotic statistics of the GLRT are
independent on the observation size M and the SNR regime.

Correlation Matching with Known Noise Covariance Matrix. We see that in order to analytically
solve the ML estimate of σ2, a low-SNR approximation is required. The optimality of ML, hence, will
only hold at the low-SNR regime.

On the other hand, we now consider the correlation matching technique. From (39) we observe that
second-order statistics are involved in the computation of the discrete spectrum in terms of the sample
correlation matrix, i.e., RX .

Theorem 10. The solution to the correlation matching problem is given by the following normal equation:

K∑
l=1

σ2
l β̃kl = δ̃k, (44)

for 1 ≤ k ≤ K, and where the coefficients are given by

β̃kl = tr(CkCl) (45)

δ̃k = tr(CkRX)− tr(CWCk). (46)

Proof. The proof is given in Appendix L.

We note that correlation matching and optimal ML estimate for GLRT involve solving very similar
equations. In the second case, Equations (45)–(46) can be simplified for white noise, to the following
expressions β̃kl = M‖c0[0]‖2+2

∑N−1
n=1 (N−n) cos ((ωi − ωk)n) ‖c0[n]‖2, and δ̃k = tr(CkRX)−σ2

WNc0[0].
The MLE provided in (40)–(41) are equivalent to those in (45)–(46) under the white noise assumption,

i.e. CW = σ2
W I and further considering that at the low-SNR regime RX/σ

2
W → I. By doing so, we see

that βkl = σ4
W β̃kl and δkl = σ4

W β̃kl, becoming equivalent. The main advantage of correlation-matching
is that matrix β̃ can be computed offline, because it is independent on the received observations. There-
fore, solving σ̂ = β̃

−1
δ̃ reduces to the MLE

σ̂2
k = β̃

−1

k δ̃, (47)
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where β̃
−1

k denotes the k-th row of the inverse of β̃. The structure of the signal model can be further
exploited according to (37) and compress the ML function to derive the following GLRT

Tk(X|C0, σ
2
W ) = + ln det(σ2

W I +
∑
l 6=k

σ̂2
l Cl) + tr

(σ2
W I +

∑
l 6=k

σ̂2
l Cl)

−1RX


− ln det(σ2

W I +

K∑
k=1

σ̂2
kCk)− tr

[
(σ2
W I +

K∑
k=1

σ̂2
kCk)−1RX

]
R
H1

H0
γ′k, (48)

where the set σ̂2
l 6=k is the solution to the (K−1)× (K−1) system (44) by setting σ2

k = 0, and the set σ̂2 is
the solution to the complete system (44). In (48), the thresholds γk are chosen to satisfy the false alarm
level α.

Correlation-Matching with Unknown White Noise Variance. We first consider the correlation-matching
technique under the white noise assumption with unknown noise variance σ2

W for the detection of the
multi-frequency signal given in (37). The solution to the correlation-matching problem when sensing
the k-th frequency results in

H0k : σ̂2
W0
, σ̂2

k̄ = arg min ‖σ2
W I + Ck̄ −RX‖2

H1k : σ̂2
W1
, σ̂2 = arg min ‖σ2

W I + CS −RX‖2,

where Ck̄
.
=
∑
l 6=k σ

2
l Cl. By taking the derivative with respect all the variables under both hypotheses,

we obtain the following correlation-matching estimates for the noise variances:

σ̂2
W0

=
tr(RX)

M
−
∑
l 6=k

σ̂2
l (49a)

σ̂2
W1

=
tr(RX)

M
−

K∑
l=1

σ̂2
l , (49b)

where the estimates of the frequency powers is given by the system of equations

H0k :
∑
l 6=k

σ2
l [tr(CkCl)−N ] = tr((Ck − I)RX) (50a)

H1k :

K∑
l=1

σ2
l [tr(CkCl)−N ] = tr((Ck − I)RX), (50b)

which clearly are a generalization to the narrowband detector. In this particular case, the solution can
be written in the form (47) as the coefficients of the unknowns are independent of the observations,
namely the elements of the inverse matrix β−1 can be computed offline.
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In conclusion, the optimal test employing the correlation-matching estimates is given by

Tk(X|C0) = + ln det(σ̂2
W0

I +
∑
l 6=k

σ̂2
l Cl) + tr

(σ̂2
W0

I +
∑
l 6=k

σ̂2
l Cl)

−1RX


− ln det(σ̂2

W1
I +

K∑
k=1

σ̂2
kCk)− tr

[
(σ̂2
W1

I +

K∑
k=1

σ̂2
kCk)−1RX

]
R
H1

H0
γ′′k , (51)

where the noise variances under hypotheses H0 and H1 are given by (49a) and (49b), respectively; the
set σ̂2

l 6=k is given by the solution of (50a), and σ̂2
k, 1 ≤ k ≤ K, (50b). The K thresholds γk in Tk(X|C0) are

chosen to satisfy the false alarm level α.

Wald and Rao Tests. The GLRT derived in Sections 4.2.4, 4.2.4, and 4.2.4 involve complex expressions
due to the nuisance parameters, and the power level estimates involve solving a set of equations of
high dimensionality. The Wald and Rao test [44] are asymptotically equivalent to the GLRT and, in
practice, may be easier to compute. They both involve the Fisher information matrix, whose entries at
the low-SNR regime are given by

[I(σ2)]kl =
∂2 ln p(X|σ2)

∂σ2
k∂σ

2
l

= βkl. (52)

The former expression allows simple computation and interpretation of the information matrix. From
Equation (40) we observe that those frequency channels with large cross-correlation will have smaller
Cramér-Rao bound (CRB). We also note that the information matrix is independent on σ2. The follow-
ing Theorem states the Wald and Rao tests in cognitive radio detection schemes that modeled with the
signal covariance structure given by (37).

Theorem 11. The Wald and Rao tests for the cognitive radio testing problem (16) with multi-frequency signal
structure (37) at the low-SNR regime are given by

TWk (X|CW ,C0) =

(
σ̂2
k

)2[
I−1

]
kk

, (53)

TRk (X|CW ,C0) =

(
K∑
l=1

σ̂2
k̄lβkl − δk

)2 [
I−1

]
kk
, (54)

respectively. In (53), σ̂2 is the ML estimate of σ2, i.e., the solution to (39), and in (54) σ2
k̄

is defined as in Section
4.2.4, i.e., the ML estimate of the nuisance parameters underH0 by setting σ2

k = 0.

Proof. The proof is given in Appendix N.

It can be observed that both the Wald and Rao tests compute statistics of order fourth on the signal
level. The Wald test simply evaluates the squared value of the estimated power level at the k-th band,
weighted by the k-th element in the diagonal of the inverse of the Fisher information matrix, i.e., by the
CRB of the estimate. On the other hand, the Rao test evaluates the mismatch between hypothesis H1k

and H0k in estimating the power at the independent K − 1 frequencies distinct from the k-th band. In
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Figure 3: Receiver operating characteristics at the low-SNR regime (SNR = -15 dB), with M = 32 and
S = 8.

other words, σ2
k̄

is the solution to the (K − 1) × (K − 1) system of equations resulting from removing
the k-th equation in (39), hence the Rao tests computes the portion of signal that the ML estimate puts
into σ2

k inH1k (...). Furthermore, the test also weights the comparison by the inverse Fisher information
matrix in the inversely proportional fashion than the Wald test.

4.2.5 Simulation Results

This section provides up-to-date simulation results of the algorithms discussed throughout the paper
for the wideband regime. The SNR of detection is defined as the ratio SNR .

= σ2
S/σ

2
W , following the

normalization presented in the low-SNR approximation given in Appendix C for CS and CW .
Figure 3 depicts the receiver operating characteristics (ROC) in terms of probability of detection

versus probability of false in the low-SNR regime. For SNR = -15 dB, we can identify three groups of
detectors with similar performance. The first group of high-performance detectors is composed by the
estimator-correlator tests, unknown white noise and unknown white noise and signal variance. This
justifies the fact that a correct knowledge on the statistics of the cognitive radio detection problem (16)
has an important benefit in terms of gain. The statistics involved in this tests are the exact covariance
matrices (estimator-correlator), exact signal covariance and white noise assumption, and normalized
exact signal covariance with white noise assumption. Interestingly, the detectors with exact signal co-
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Figure 4: Probability of detection versus average SNR for false alarm level α = 0.1, M = 32 and S = 8.

variance matrix but unknown noise covariance matrix without white noise assumption are located in a
ROC performance comparable to the test with all statistics unknown. This is because the information
of the noise contained in the observations is white, and this detectors try to erroneously discover some
structure on CW . This last result gives strength to the white noise assumption, as any colored noise can
be potentially considered as a primary user signal. The last group of detectors, with performance in be-
tween the two above mentioned groups, consists of the detectors with unknown signal covariance, and
the low-SNR approximation of the exact signal covariance with unknown white noise. The main con-
clusion is that the knowledge of the normalized CS , i.e., C0, together with the white noise assumption
is the optimal set of known statistics for the wideband cognitive radio detection problem (16).

The performance of the detectors versus SNR is depicted in Figure 4 in terms of probability of de-
tection for an observation size of M = 32, signal covariance matrix rank S = 8, and false alarm level
α = 0.1. As it can be observed, the performance of the tests is according to the ROC depicted in Figure
3.

Finally, the trade-off between the rank of the covariance matrix and the size of the observations is
simulated in Figure 5. It shows the probability of detection at SNR = -15 dB versus the S/M ratio for
a false alarm level α = 0.1. We can derive some conclusions from the Figure. Firstly, we can identify
a set of detectors which are insensitive to the relative rank of the signal covariance matrix. These are,
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Figure 5: Probability of detection versus S/M ratio at the low-SNR regime (SNR = -15 dB), for false
alarm level α = 0.1.
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Figure 6: Average receiver operating characteristics at the low-SNR regime (SNR = -15 dB), with M =
32, S = 8, in a K = 8 multi-frequency system.

as expected, the tests with unknown signal covariance —and unknown S—, as well as the test with
unknown white noise variance at the low-SNR regime as it simply computes the power of the detected
signal. The majority of the detectors show a performance penalty when increasing S/M , because a
rank-deficient signal relaxes the detection problem when the noise is white, i.e., full-rank. Notably, the
detection of pilot tons, i.e. rank 1, provides the best performance scheme. The two remaining tests,
which are the detectors that compares the information of the structure of the covariance matrix in terms
of eigenvalues show a performance gain for S/M → 1, as far as the distribution of the eigenvalues of
CS is enough heterogeneously.

We also provide simulation results on the algorithms derived in Section 4.2.4 for multi-frequency
systems. Specefically, we compare the receiver operating characteristics (ROC) curves for the estimator-
correlator detector (20), the GLRT (42), and the correlation-matching approaches (48) and (51). In Figure
6 the probability of detection of an arbitrary frequency is evaluated versus the false alarm level α, for a
system with K = 8 frequencies, observation size of M = 32, and S = rank(C0) = 8. The performance
of the optimal GLRT (42) and the correlation-matching (48) are comparable for the wide range of ROC
simulated in the low-SNR regime. We conclude that the knowledge on the noise variance in a wideband
system plays a role in the sensing algorithm, and hence the correlation-matching with unknown noise
variance (51) incurs performance loss.

4.3 Compressed Correlation-Matching

4.3.1 Power Level-Based Correlation-Matching

In this Section, we propose a correlation-matching approach for detecting the signal power level of the
primary user services. Due the compression process and the thermal noise present at the uncompressed
observations, the phenomenon of noise enhancement is observed at the output of the reconstruction,
as reported in Figure 2. For this reason, we include a denoising process in the formulation in order to
diminish the effect of noise enhancement.

Particularly, we are interested in estimating the signal and noise power levels in a correlation-
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matching approach based on the compressed observations, ym. On the one hand, we let the signal
covariance matrix to be expressed as RX

.
= γR, where γ denotes the signal power level associated to

the normalized correlation matrix R, with diag(R) = N . On the other hand, let σ2 be the noise power
level present before compression, i.e., RZ = σ2Σ, with diag(Σ) = N . The compressed correlation-
matching technique for spectrum sensing is then given by the optimization problem

γ̂, σ̂2 = arg min
γ,σ2

M∑
m=1

∥∥ymyHm −Ψm(γR + σ2Σ)ΨH
m

∥∥2
. (55)

The problem (55) is convex on both γ and σ2, and the solution is obtained by taking the derivative
with respect to the signal and noise power levels and setting it to zero. [The positivity on the variables
should be included at first, but here we omit the constraint for the problem in hand and apply the ()+

operator at the end.] By taking the derivative with respect to the signal power level γ we obtain

M∑
m=1

tr(ymyHmΨmRΨH
m)− γtr((ΨmRΨH

m)2)− σ2tr(ΨmΣΨH
mΨmRΨH

m) = 0.

Similarly, after taking the derivative with respect to the noise power level σ2, we obtain

M∑
m=1

tr(ymyHmΨmΣΨH
m)− σ2tr((ΨmΣΨH

m)2)− γtr(ΨmRΨH
mΨmΣΨH

m) = 0.

Clearly, both equations are coupled and have very similar structure. Hence, the detection on γ and σ2 is
based on the projection of the local compressed observations onto the normalized correlation matrices
R and Σ, respectively. After some mathematical manipulations, it can be shown that the optimal signal
and noise levels are given by

γ̂ =
tr(BR)tr(Σ2)− tr(BΣ)tr(ΣR)

tr(R2)tr(Σ2)− tr2(RΣ)
(56a)

σ̂2 =
tr(BΣ)tr(R2)− tr(BR)tr(RΣ)

tr(Σ2)tr(R2)− tr2(ΣR)
, (56b)
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where we have defined the following matrices

B
.
=

1

M

M∑
m=1

ΨH
mymyHmΨm (57a)

R
.
=

1

M

M∑
m=1

ΨmRΨH
m (57b)

Σ
.
=

1

M

M∑
m=1

ΨmΣΨH
m (57c)

R2 .
=

1

M

M∑
m=1

(ΨmRΨH
m)2 (57d)

Σ2 .
=

1

M

M∑
m=1

(ΨmΣΨH
m)2 (57e)

RΣ
.
=

1

M

M∑
m=1

ΨmRΨH
mΨmΣΨH

m (57f)

ΣR
.
=

1

M

M∑
m=1

ΨmΣΨH
mΨmRΨH

m. (57g)

The physical interpretation of (56) can be explained as follows. On the one hand, after dividing the
numerator and the denominator of γ̂ by tr(Σ2, we can see that the detector of the signal power level
is of the form γ̂ = (tr(BR) − C1)/C2, where the term tr(BR) computes the projection of the recon-
structed correlation matrix B onto the normalized signal correlation matrix. To this term, the detector
subtracts the term C1, which accounts for the part of the reconstructed observations that are considered
as noise, with a weighting factor that depends on the cross-correlation between R and Σ. The same
interpretation can be followed for σ̂2 but exchanging the roles of R and Σ.

On the other hand, the common denominator C2 in (56) is accounting for distinctness of the second-
order statistics of the signal and the noise in terms of the Schwartz inequality, since tr(Σ2)tr(R2) ≥
tr2(ΣR), with equality when the statistics of the noise and the signal are orthogonal. In such a case, the
estimates in (56) become inaccurate because it becomes difficult to distinguish between the noise and
the signal contribution in the compressed observations. Conversely, the more distinct are R and Σ.

A modest simplification occurs under the white noise assumption. The white noise assumption is a
robust principle in cognitive radio detection, as any colored spectrum is potentially regarded as primary
user activity. [...] In such a case, we particularize Equation (56) with Σ = I, which leads to the following
optimal estimates

γ̂ =
tr(B(R− I))

tr(R2)−K
(58a)

σ̂2 =
tr(B)tr(R2)− tr(BR)tr(R)

tr(R2)−K
. (58b)

Now, we can observe the effect of diagonal off-loading. The detector (58a) is of the type tr(B(R− I)) >

λ′, which it can be written alternatively as tr(B(RX −N−1tr(RX)I)). By defining the diagonal off-loaded
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correlation matrix as ROFF
X

.
= RX − tr(RX)I. The detector can be now interpreted as follows:

M∑
m=1

yHmΨmROFF
X ΨH

mym.

If X(t) is a stationary process, the correlation-matching approach is an energy detector that takes into
account only the part that is not affected by the noise, i.e., the presence of non-zero correlation lags. Con-
versely, if X(t) is cyclo-stationary, the main diagonal of RX is not uniform and the detector evaluates
its variability around the mean. Therefore, the detector is a lineal combination between the energetic
variability and the correlation in the non-zero lags.

4.3.2 Multi-Frequency Correlation-Matching

We now extend the former formulation for a multi-frequency model in which the primary user signal
is a lineal superposition of frequency-orthogonal signals. The signal correlation matrix is then of the
type RX =

∑L
l=1 γlRl, where each Rl stands for the normalized correlation matrix at the l-th frequency

(channel).
The correlation-matching problem is then formulated as follows. We are interested in detecting the

presence of signal from the primary users at each frequency. Let γ .
= (γ1, . . . , γL), and σ2 denote the the

noise level prior to compression. Then, the correlation-matching problem is given by

γ̂, σ̂2 = arg min
γ,σ2

M∑
m=1

∥∥∥∥∥ymyHm −Ψm

(
L∑
l=1

γlRl + σ2Σ

)
ΨH
m

∥∥∥∥∥
2

.

The former problem is also convex on the optimization variables γ1, . . . , γL and σ2. After taking the
derivative with respect to γi, we obtain

M∑
m=1

(
tr(ymyHmΨmRiΨ

H
m)−

L∑
l=1

γltr(ΨmRlΨ
H
mΨmRiΨ

H
m) − σ2tr(ΨmΣΨH

mΨmRiΨ
H
m)

)
= 0.

Similarly, after taking the derivative with respect to σ2, we obtain

M∑
m=1

(
tr(ymyHmΨmΣΨH

m)−
L∑
l=1

γltr(ΨmRlΨ
H
mΨmΣΨH

m) − σ2tr
(
(ΨmΣΨH

m)2
))

= 0.

Therefore, we obtain L+1 equations for solving the L+1 optimization variables (γ1, . . . , γL, σ
2), which

can be written as the following system of equations


tr(R2

1) . . . tr(RLR1) tr(ΣR1)
...

. . .
...

...
tr(R1RL) . . . tr(R2

L) tr(ΣRL)

tr(R1Σ) . . . tr(RLΣ) tr(Σ2)

×


γ1

...
γL

σ2

 =


tr(BR1)

...
tr(BRL)

tr(BΣ)

 , (59)
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where

tr(RiRj)
.
=

1

M

M∑
m=1

tr(ΨmRiΨ
H
mΨmRjΨ

H
m, )

computes the cross-correlation between distinct channels. Note that for L = 1, the system of equations
reduces to the case of one primary user signal and noise levels, i.e., Equation (56). The former system
of equations is governed by the system matrix (59). This matrix has as main diagonal the squared
compressed normalized auto-correlation matrices at each frequency and for the noise term. The off-
diagonal terms account for correlation among the distinct channel and the noise statistics. The higher
the distinctness in terms of second-order statistics, the more “diagonal” the matrix (59) will be and the
detector will operate with high accuracy. However, if the set (R1, . . . ,RL,Σ) is highly correlated, the
performance of the detector will be degraded.

Under the white noise assumption, the system of equations particularizes to, by fixing Σ = I


tr(R2

1) . . . tr(RLR1) K
...

. . .
...

...
tr(R1RL) . . . tr(R2

L) K

K . . . K K

×


γ1

...
γL

σ2

 =


tr(BR1)

...
tr(BRL)

tr(B)

 ,

which for L = 1 reduces to a 2× 2 system of equations and the solution is given by (58).
The multi-frequency model given by (37) encompasses many practical human-made communication

signals, such as OFDM signals in DVB-T systems. In order to assess the performance in spectral analysis
of the correlation-matching approaches proposed in this Section, we employ a toy example composed
by an OFDM signal composed by 8 carriers with only 2 of which are activated.

We plot (see Figure 7) the spectral estimates of the OFDM signal with additive Gaussian noise (SNR
of -10 dB), according to the Blackman-Tuckey and Capon estimates (11) and (15) with compressed-
sampling and a compression rate of 1/2 (N = 2K). As expected, the effect of noise enhancement
appears in both estimators. Alternatively, we plot the power level estimates (γ1, . . . , γ8) according to the
solution to the system of equations (59) (gray line). The compressed correlation-matching approaches
is able to separate the white part of the noise from the compressed observations and, as a consequence,
the power levels (γ1, . . . , γ8) accounts solely for the non-white part, i.e., the OFDM signal based on the
normalized correlation matrices R1, . . . ,R8 following the model (37) with C0 a baseband OFDM signal
generated according to the DVB-T in 2K-mode. The compressed correlation-matching estimate, hence,
is a well suited approach for spectrum sensing detection in wideband (low-SNR) regimes.

4.3.3 Correlation-Matching for Stationary Signals

Assuming the knowledge on the normalized correlation lags is a robust assumption when having prior
information on the communication systems employed by the primary users at a given bandwidth and
location.

In this Section, we derive the optimal correlation-matching detector when there is no knowledge on
the normalized signal correlation matrix. AsX(t) is a stationary signal, its correlation matrix is Toeplitz
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Figure 7: Spectral estimate of a L = 8 carriers OFDM signal with compression rate 1/2.
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and obeys the form

RX
.
=


r[0] r[−1] . . . r[−N + 1]

r[1] r[0] . . . r[−N + 2]
...

...
. . .

...
r[−N + 1] . . . r[1] r[0]

 . (60)

The correlation-matching problem is then given by the solution to the N correlation lags and noise
variance

r̂X , σ̂
2 = arg min

rX ,σ2

M∑
m=1

∥∥ymyHm −Ψm(RX + σ2Σ)ΨH
m

∥∥2
,

where RX has the structure as in (60). The compression matrix Ψm is constructed by randomly selecting
K rows out of the N ×N identity matrix. Let πm denote the random set of rows selected by Ψm. Then,
Ψm will have a one in the π(1)-th column of the first row, a one in the πm(2)-th column of the second
row, up to a one in the πm(K)-th column of the last row, with 1 ≤ πm(k) ≤ N . After some mathematical
manipulations, it can be shown that the term ΨmRXΨH

m has the following structure

[
ΨmRXΨH

m

]
i,j

= [RX ]πm(i),πm(j) = r[πm(i)− πm(k)].

This formulation is not suitable for solving the problem (4.3.3) in a physical manner.
Alternatively, we propose an orthogonal decompostion for stationary correlation matrices based on

a diagonal basis. Let D̃n denote an all-zero matrix except an all-ones diagonal located n positions out
of the main diagonal, e.g., for N = 3, D̃0 = diag( 1 1 1 ),

D̃−2 =

 0 0 1

0 0 0

0 0 0

 , D̃−1 =

 0 1 0

0 0 1

0 0 0

 ,

D̃1 =

 0 0 0

1 0 0

0 1 0

 , and D̃2 =

 0 0 0

0 0 0

1 0 0

 .

This new formulation allows dealing with complex signals, as the signal correlation matrix can be ex-
pressed as RX =

∑N−1
n=−N+1 βnDn, where Dn = D̃n � (s(f)sH(f)), with the Hermitian constraint

βn = β∗−n. In such a case, the correlation-matching problem equals to solving the optimization problem

β̂, σ̂2 = arg min
β,σ2

M∑
m=1

∥∥∥∥∥ymyHm − Ψm

(
N−1∑

n=−N+1

βnDn + σ2Σ

)
ΨH
m

∥∥∥∥∥
2

= arg min
β,σ2

M∑
m=1

∥∥∥∥∥ymyHm − Ψm

(
β0D0 +

N−1∑
n=1

[
βnDH

n + β∗nDn

]
+ σ2Σ

)
ΨH
m

∥∥∥∥∥
2

,

where β .
= (β0, . . . , βN−1) and we made use of the property Dn = DH

−n. The former problem is convex
on β and σ2 and can be solved by taking the derivative with respect to the variabels and setting it to
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zero. On the one hand, we take the derivative with respect to β∗i , 0 ≤ i ≤ N − 1, which after some
mathematical manipulations, leads to the equation

β0tr(D0Di) +

N∑
n=1

[
βntr(DH

n Di) + β∗ntr(DnDi)
]

+ σ2tr(ΣDi) = tr(BDi).

Similarly, after taking the derivative with respect to the noise level σ2, we obtain the following equation,

β0tr(D0Σ) +

N∑
n=1

[
βntr(DH

n Σ) + β∗ntr(DnΣ)
]

+ σ2tr(Σ2) = tr(BΣ).

A suitable election on the correlation matrices basis {Dn}0≤n≤N−1 is an orthogonal basis in the
compressed domain, i.e., that tr(DiD

H
j ) ∝ δij . Indeed, the basis proposed in this section accomplishes

the orthogonality property, and also tr(DiDj) ∝ δi=j=0. In the compressed domain, the kernel of the
scalar product is not preserved and, stochastically, some of the scalar products of the type tr(DiDH

i )

might be zero, with low probability. Using this results, the derivative with respect to β∗i is simplified to

βitr(DiDH
i ) + σ2tr(ΣDi) = tr(BDi), (61)

from which we can obtain the ML estimate of β and the corresponding GLRT detector.

4.4 Mutual Information in Compressed-Sampling

We next discuss the design of the compression matrices Ψm, 1 ≤ m ≤ M . The objective of Ψm is
to compress or project the sparse signal onto a space of smaller dimension such that the information
contained in it is sufficient to recover x or SX(f). The compression matrix in literature is usually chosen
to be a puncturing or pinning matrix, which randomly selectsK out ofN samples of the original signal.
One advantage of this choice is that the compression matrix has the property ΨH

mΨm = I. Another
possibility is to use Gaussian random entries to build the compression matrix. In such a case, the
product ΨH

mΨm asymptotically goes to the identity matrix as the size of the observation grows.

4.4.1 Capacity Analysis

From an information-theoretical perspective, the set {Ψm} can be casted as M multiple-input multiple-
output channels withN inputs andK outputs, where the same statistical input, given by the correlation
matrix RX , is injected to the channels. Consider now that Ψ is fixed for the M channels. Let x̃m =

xm + wm denote the noisy observations of a sparse wideband spectrum. The compressed-sampling
framework for fixed compression matrix is depicted in Figure 8a.

Typically, the achievable capacity is then given by assuming Gaussian-coded input, i.e.,

C(Ψ)
.
= max I(Y ;X) = log det

(
Ψ(RX + RW )ΨH

ΨRWΨH

)
, (62)

where we made use of the accepted notation det(A/B) = det(AB−1) = det(B−1A), and where RW
.
=

E[wwH ] stands for the noise plus interference covariance matrix. By the general properties of the com-
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Figure 8: Compressed-sampling framework with fixed (a) and variable (b) compression matrix.

pression matrix, we note that the inverse (ΨRWΨH)−1 can be expressed as Ψ−HR−1
W Ψ−1 = ΨR−1

W ΨH .
This observation allows the capacity (62) to further be reduced to

C(Ψ) = log det
(
I + ΨR−1

W ΨHΨRXΨH
)

(63a)

≈

{
tr
(
ΨR−1

W ΨHΨRXΨH
)

wideband
log det

(
ΨR−1

W ΨHΨRXΨH
)

narrowband,
(63b)

where the approximation has been done under the wideband or low-SNR, and narrowband or hight-
SNR assumptions.

Conversely, consider that the compression is in general dependent on the realization m, that is, M
random process independent realizations as depicted in Figure 8b. Even though the achievable capacity
would be given by the conditional mean, here we assume that the set {Ψm} is known by the cognitive
radio user. In such a case, we define the achievable channel capacity as [93]

C(Ψ1, . . . ,ΨM )
.
=

1

M

M∑
m=1

log det

(
Ψm(RX + RW )ΨH

m

ΨmRWΨH
m

)
, (64)

which can be also simplified using the properties of the compression matrix to the following expressions
under the wideband and narrowband regimes:

C(Ψ1, . . . ,ΨM ) =
1

M

M∑
m=1

log det
(
I + ΨmR−1

W ΨH
mΨmRXΨH

m

)
(65a)

≈

{
1
M

∑M
m=1 tr

(
ΨmR−1

W ΨH
mΨmRXΨH

m

)
wideband

1
M

∑M
m=1 log det

(
ΨmR−1

W ΨH
mΨmRXΨH

m

)
narrowband

. (65b)

The formulation presented in [93] is suitable for the problem in hand because, in the limit M → ∞,
(64) becomes the expectation, that is,

lim
M→∞

C(Ψ1, . . . ,ΨM ) = EΨ [C(Ψ)] = EΨ

[
log det

(
Ψ(RX + RW )ΨH

ΨRWΨH

)]
,
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where Ψ denotes the matrix random variable from which the set of compression matrices (Ψ1, . . . ,ΨM )

is obtained. When the compression matrices are chosen as selection matrices, (65) is simplified to the
following under the wideband and narrowband regimes:

EΨ [C(Ψ)] = EΨ

[
log det

(
I + ΨR−1

W ΨHΨRXΨH
)]

(66a)

≈

{
EΨ

[
tr
(
ΨR−1

W ΨHΨRXΨH
)]

wideband
EΨ

[
log det

(
ΨR−1

W ΨHΨRXΨH
)]

narrowband
. (66b)

From an analytical perspective, when the compression matrix is fixed for all the observations, the
same reference samples are taken to compute the sufficient statistics for the sensing problem. That is,
the compressed sample covariance matrix common in all expressions in (63), i.e., ΨRXΨH selects K
rows and K columns out of RX . On the other hand, when the compression matrix is variable for each
sample or for each subset of samples, then the overall capacity is a random process whose expected
value is given in (66). It is easy to check that the product ΨHΨ randomly places K ones at the main
diagonal uniformly. Hence, we have P

(
[ΨHΨ]ij = 1

)
= K/Nδij , where δij is the Kronecker delta. Then,

we show that
EΨ[ΨHΨ] =

K

N
I.

Therefore, it is expected that the capacities in (66) achieve the full capacity of a non-compression system
scaled by a factor K/N . However, the capacities in (63) depend on which eigenmodes of the signal
and noise covariance matrices are selected. For large data records, i.e., when the size of the observation
asymptotically grows with N → ∞, the eigenvalues and eigenvectors of RX and RW approximate to
the spectra [94]

λn(RX) = SX(fn), λn(RW ) = SW (fn)

un = 1√
N

[1 exp(2πfn) . . . exp(2π(N − 1)fn)]
T

where SX(fn) and SW (fn) denotes the power spectral density of the observations and the nosie at
fn

.
= n/N , respectively. Under this assumption, (63) can be written as

C(Ψ) ≈

{
tr
(
ΨR−1

W ΨHΨRXΨH
)

=
∑
n∈K

SX(fn)
SW (fn) wideband

log det
(
ΨR−1

W ΨHΨRXΨH
)

=
∑
n∈K log SX(fn)

SW (fn) narrowband,
,

where as, similarly, the capacities (66) for large data records become

EΨ [C(Ψ)] ≈

{
EΨ

[
tr
(
ΨR−1

W ΨHΨRXΨH
)]

= K
N

∑N
n=1

SX(fn)
SW (fn) wideband

EΨ

[
log det

(
ΨR−1

W ΨHΨRXΨH
)]

= K
N

∑
n∈K log SX(fn)

SW (fn) narrowband
.

Here, we have defined K as the location of the K ones in the main diagonal of the product ΨHΨ.
This has become a typical problem of deviation: while for fixed compression matrix we obtain a

capacity given by the Ψ realization, for variable compression matrix we expect the average capacity,
which is the capacity in the case of no compression scaled by the compression rate. Therefore, we
need to analyze the former capacity expressions from an outage probability viewpoint. In other words,
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evaluate P (C(Ψ) ≥ EΨ [C(Ψ)]).
In an sparse wideband environment, the probability that S selects the eigenmodes that contain pri-

mary user signal, with large compression rate, is low. Moreover, it is a fundamental limit that in the best
case, it selects all the non-zero eigenmodes, hence the wideband capacity equals the no-compression ca-
pacity. Let σX denote the sparsity set of the wideband signal X when the size of the observation is N ,
i.e, SX(fn) > 0 for |σX | = S values of n, and zero otherwise. Then,

E[C(Ψ)] ≈ K

N

∑
n∈σX

SNRn,

An alternative manner to evaluate the effect of the compression matrix in the process of recovery is
making use of the concept of outage probability. Outage probability evaluates the probability that some
performance indicator falls below or above a given value corresponding to the maximum or minimum
allowable, respectively. Even though the purpose in this work is distinct, the outage probability has
been widely used in evaluating the performance of digital communication systems from a wide variety
of perspectives [60, 61, 63–67, 95].

The outage probability of the process of data reconstruction is given by

OP(Ψ) = P(‖x− x̂‖2 ≤ ε), (67)

where ε defines the reconstruction accuracy in the mean-squared error sense.

4.5 Medium Access in Cognitive Radio

In order to provide an assessment on the convenient MATs for cognitive radio, we consider two inde-
pendent approaches from an information-theoretical perspective. On the one hand, the classical MAC
capacity will be analyzed when employing the proposed MATs. On the other hand, in a more pragmatic
step, the analysis will focus on the so-called transmission capacity, where the target is to maximize the
geographical density of reliable transmissions.

4.5.1 Classical Information-Theoretical Perspective

In this first approach, the well known achievable Ahlswede-Liao capacity region [96,97] will be consid-
ered. Before a more concrete presentation, the following itemized remarks are relevant.

• The achievable MAC capacity is based on infinite delay latency, i.e., it is only an asymptotic formu-
lation of the problem, making the analysis of partial practical interest.

• The analysis becomes useful in the comparison of basic MAC schemes, as for TDMA, MF-TDMA,
and CDMA, being possible to state that some of MATs cannot provide working conditions achiev-
ing the entire possible capacity region.

• In the MAC problem, the optimal resources assignments are not unique, that is, the optimization
of the rates, assignments to the different users can be performed under many different fairness
approaches. Typically, the most common characterizations are:
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– The single-user rates, R1
k are the maximum achievable rates based on multiple single-user

communication scenarios. This is still very common approach, and it is coexisting with
multi-used detection and multiple-access interference mitigation enhanced methods. The
single-user rates are an indicator of te achievable rates of each user and, therefore, of each
user’s channel capacity. In other words, if the system ensures a certain rate Rk to the k-th
user in the MAC, the ratio Rk/R1

k represents the relative cost that the systems pays due to
other users sharing the resources, a parameter which is more representative than the absolute
value.

– The maximum sum-rate corresponds to maximize the total rate of the wireless network, i.e.,∑
k αkRk subject to

∑
k αk = 1, where the parameters αk establish the priorities for the users.

In a non-weighted scenario, αk = 1/K and the maximization is done over the direct sum of
rates,

∑
k Rk. This has been widely used in literature, but might result in unbalanced rate-

allocations to different users, depending on the channel propagation conditions [98–100].

– The maximum common rate, which is obtained by setting R1 = . . . = RK . This approach
under performs when the single-user rates are very diverse, as the common rate is a waist of
resources because if forces the users with the best channels to lower their rate dramatically
to reach the level of the weakest channels.

– When establishing a set of rate requirements, denoted by {ϕ1, . . . , ϕK}, the system is optimized
to achieve Rk = ϕk for each user. This structure assumes there is enough available power at
the transmitter side and that the optimization process equals to find the minimum power to
achieve the rate requirement (e.g. [101]). With sum power constraint, this scheme might not
be possible —maybe only a small number of users are served— and some other strategies
are considered, like

– the maximum balanced-rate, first explored in [102], is such that

R1

ϕ1
= . . . =

RK
ϕK

,

where ϕk represents the target rate for user k, and it is usually set to ϕk = R1
k. This means

that all the users transmit at a rate proportional to the single-user rate offered by their own
channel. As a result, the relative cost implied by the coexistence with other users in the same
system is the same for all users. Though it seems to be the most fair situation, it has only been
analyzed in [102] for the scalar memoryless broadcast providing water-filling algorithm, and
[103] for multi-tone systems, providing loading for the two users case. This approach is
useful when individual rate requirements are crucial.

– The maximum rate-product considers the maximization of ΠkR
α̃k

k where now the priorities are
normalized to Πkα̃k = 1. This case ensures that if a user is unfairly treated, it is reflected
with more weight in the target function and, as a result, the system will tend to treat all the
users more equally, taking into account their priorities. It is worth noting that the maximum
rate-product becomes equivalent to the maximum common-rate if there are no additional
design constraints in the overall system optimization and αk = 1. It is more evident that in
this criterion the rate-allocation will tend to be equalized.
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Figure 9: The Multiple-Access Channel with M = 2 users.

• Conventionally, the MAC management requires of a centralized control scheme. It is nowadays
possibe to start considering distributed cooperative-network management approaches, with the
different access-nodes cooperating in the dynamic resource allocations.

• Considering achievable transmission rates is of interest in the definition of meduim to long-term
standards as the most advanced known coded-modulation schemes become feasible with the cur-
rent and future computation capabilities.

For the sake of clarity, the presentation of the MAC capacity will be performed in the simplest case
with two access terminals, according to the model in which each user encodes the information messages
W1 and W2, and transmits the coded information X1 and X2 over a multiple-access communication
channel characterized by the transitions probabilities P (Y |X1, X2). The output of the channel, Y , is
then decoded to recover the original information of the two users, Ŵ1 and Ŵ2. Let xm = (xm1 , . . . , x

m
N )

be N consecutive encoded symbols of user m. For a memoryless MAC, the following input-output
characterization will apply

P(y|x1,x2) =

N∏
n=1

p(yn|x1
n, x

2
n).

Accordingly, the Ahlswede-Liao capacity region (R1, R2) is given by the following set of equations [96]:

R1 ≤ I(X1;Y |X2)

R2 ≤ I(X2;Y |X1)

R1 +R2 ≤ I(X1, X2;Y ).

(68)

The normal (non-degenerated) case for the three constraints is depicted in Figure 10 [14], where the pair
(R1, R2) is achievable inside the convex hull set.

TDMA and MF-TDMA MATs. In the TDMA MAC access, different users are allocated to different
disjoint time slots. In the same manner, for MF-TDMA MAC access, the allocation is performed at
disjoint time-frequency slots. These are two classical MATs, and are based on coded-modulations not
well suited for a multi-user detection (MUD) at the receiver in the uplink. The difficulty in the adoption
of feasible MUD is mostly because of the complexity in the joint synchronization of the signals and not
because of the joint detection and decoding, which is indeed possible. For these two cases, we have that
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Figure 10: Capacity Region of the Multiple-Access Channel with M = 2 users.

the Ahlswede-Liao capacity region (68) particularizes to

R1 ≤ I(X1;Y )

R2 ≤ I(X2;Y )

R1 +R2 ≤ αI(X1;Y ) + (1− α)I(X2|Y ),

(69)

where the parameter 0 ≤ α ≤ 1 stands for the percentage of channel occupation of the first user, while
(1− α) is for the second user. The capacity region is then according to a convex hull given by (...).

The Gaussian MAC. In this section, we will make use of the Gaussian encoding theory, such that the
ultimate achievable performance for any system is characterized. The signal model is then a memory-
less Gaussian MAC scheme, i.e., the received signal at the uplink is given by Y = X1 +X2 +Z, where Z
denotes the additive Gaussian noise of variance E(|Z|2) = σ2

Z . Here, hence, we assume that both user 1
and 2 make use of Gaussian codes. Any MAC will be upper-bounded by the following three equations:

R1 ≤ I(X1;Y |X2) ≤ 1
2 log

(
1 +

σ2
X1

σ2
Z

)
R2 ≤ I(X2;Y |X1) ≤ 1

2 log

(
1 +

σ2
X2

σ2
Z

)
R1 +R2 ≤ I(X1, X2;Y ) ≤ 1

2 log

(
1 +

σ2
X1

+σ2
X2

σ2
Z

)
,

(70)

where σ2
Xm

denotes the received power of signals Xm, 1 ≤ m ≤ M . It is worth noting that the up-
per bounds are achievable for Gaussian codes when the information of users 1 and 2 are statistical
independent, i.e., when the three inequalities in (70) become equalities. It is also remarkable that the
expressions are the one-dimension capacities, and the scaling factor could be removed for an alternative
two-dimensional formulation.

Despite the general analysis is possible, two asymptotic cases will be considered for clarity, i.e., the
analysis in the high-SNR and wideband regimes.
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The Wideband Regime. Let’s define the two SNRs γ1
.
= σ2

X1
/σ2

Z and γ2
.
= σ2

X2
/σ2

Z . In this case of
study, we will assume that both users work in the wideband regime. It is well known that the wideband
regime is characterized by low SNRs and close to zero spectral efficiency [11]. Therefore, we can make
the low-SNR approximations log(1 +γ1) ≈ γ1, log(1 +γ2) ≈ γ2 and, similarly, log(1 +γ1 +γ2) ≈ γ1 +γ2.
Hence, the capacity region becomes

R1 ≤ I(X1;Y |X2) ≈ 1
2

(
σ2
X1

σ2
Z

)
R2 ≤ I(X2;Y |X1) ≤ 1

2

(
σ2
X2

σ2
Z

)
R1 +R2 ≤ I(X1, X2;Y ) ≤ 1

2

(
σ2
X1

+σ2
X2

σ2
Z

)
,

(71)

which, in fact, correspond to a rectangular region delimited by R1 ≤ 1
2γ1 and R2 ≤ 1

2γ2. This result can
be easily generalized to a higher number of users, e.g.,M . The conclusion is that the achievable rates for
the different users are only limited by their own SNRs., and there is not impact on the multiple-access
interference. This analysis suggests that the noise contribution is dominant and a spread-spectrum strat-
egy with an optimal multiple-access interference cancellation for DS-CDMA or FH-CDMA alternative
with a null hopping collision.

The High-SNR Regime. On the other hand, this second assumption is intended for characterizing the
MF-TDMA MAT. We will assume that the SNRs are arbitrarely large such that the following approxi-
mations are fulfilled on the achievable rate capacity:

R1 ≤ I(X1;Y |X2) ≈ 1
2 log

(
σ2
X1

σ2
Z

)
R2 ≤ I(X2;Y |X1) ≤ 1

2 log

(
σ2
X2

σ2
Z

)
R1 +R2 ≤ I(X1, X2;Y ) ≤ 1

2 log

(
σ2
X1

+σ2
X2

σ2
Z

)
.

(72)

Despite is not possible to go further on equations (72), we sill now focuss on the case there is no near-
far between users, that is, for σ2

X1
= σ2

X2
= σ2

X . We then have that the inequalities in (72) all become
R1 ≤ 1

2 log(1 + σ2
X/σ

2
Z), R2 ≤ 1

2 log(1 + σ2
X/σ

2
Z), and R1 + R2 ≤ 1

2 log(1 + σ2
X/σ

2
Z), being the latter

the most restrictive. We conclude then that TDMA becomes optimal in the case of a high-SNR regime
without near-far effect between users.

4.5.2 A Novel Outage Perspective: Transmission Capacity

We now discuss the baseline formulation for the transmission capacity in the MAC of wireless networks,
and provide upper and lower bounds for sake of mathematical tractability. We then discuss the effect
of the Rayleigh channel and derive the corresponding bounds the MATs under assessment.

Fundamentals on Transmission Capacity. We first consider the simpler case where the propagation
conditions are given exclusively in terms of distance between terminals and the path-loss exponent n,
for n ≥ 2. We assume that a set of M terminals are geographically distributed according to a Poisson
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point process (PPP) of intensity λ—this roughly means that there are λ terminals per unit area—, whose
locations are given by the set Π(λ) ⊂ (R2)M .

The transmission capacity is defined as the spatial intensity of attempted transmissions associated
to an outage probability of the SINR. The outage probability (OP), denoted by q, is the probability that
the SINR at the MAC receiver is below a specified level β required for reliable communication, i.e.,

q(λ)
.
= P (SINR < β) , (73)

where the expression of the SINR depends on the MAT and transmit and receive signal processing used
in the wireless network. The randomness of the SINR is on the interferer locations Π(λ), and the OP is
a function of n, β, and λ. Note that 0 ≤ (λ) ≤ 1 is a continuous monotone function increasing in λ. The
transmission capacity is written as

c(ε)
.
= argλ q(λ) ≤ ε. (74)

In (74), the quantity ε denotes the outage probability of P(SINR < β), and is a network-wide quality of
service measure, ensuring a typical attempted transmission will succeed with probability (1− ε). Note
that the transmission capacity is a valid metric for MATs that have multiple-access interference (such as
CDMA or SDMA), whereas multiple-access techniques in which users have disjoint allocated resources
(such as TDMA or MF-TDMA) the equivalent SINR becomes the SNR, hence independent on λ.

Bounds on Transmission Capacity. The exact formulation for c(ε) can only be obtained for some par-
ticular cases, such as path-loss only propagation with n = 4, or Rayleigh fading channel. The main
reason for the unavailability of a closed-form solution of (73) and (74) lies in the essential difficulty in
computing the distribution of the SINR, which as mentioned above, depends on the interferer loca-
tions and the parameters λ, n, and β. This motivates the search of lower and upper bounds for the
transmission capacity [59], which are discussed next.

A lower bound on the probability of outage is obtained by partitioning the set of interferers Π(λ)

into dominating and non-dominating nodes, i.e., near and far nodes. Here, a node is considered to
be dominant if its interference contribution alone is sufficient to cause outage at the MAC receiver.
Consider any dominant node Xm, located at distance rm to the MAC receiver. The individual SINR of
a reference transmitter located at distance r is given by

SINR .
=

σ2
X

σ2
Z + σ2

Xm

,

where σ2
X = ρr−n, σ2

Xm
= ρr−nm , and σ2

Z is the noise variance. The parameter ρ reflects the transmitted
power, which for sake of clarity, we assume the same for all the terminals. The set of dominant nodes,
which we denote by Π1(λ), is then equivalent to

Π1(λ) = {rm : SINR < β} =

{
rm :

ρr−n

σ2
Z + ρr−nm

< β

}
≡
{
rm : rm < κ−1/n

}
,

where κ .
= r−n/β − σ2

Z/ρ. In other words, the set of dominant interferers is geographically defined
as the interferers located inside a disk of radius κ−1/n. By ignoring the far nodes, the lower bound
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on (73) is given by the probability that an interferer is inside the disk of radius κ−1/n. Since terminals
are distributed according to a PPP with spatial intensity λ, the outage probability (73) becomes q(λ) ≥
1− exp

(
−λπ(κ−1/n)2

)
, that is 1− P(r ≤ κ−1/n). This upper-bound on the outage probability allows to

determine the intensity λ to satisfy the relation (74), which is given by

c(ε) ≤ λ∗ = argλ

{
1− exp

(
−λπ(κ−1/n)2

)
= ε
}

= − log(1− ε)
π

κ2/n.

As the outage ε is small, we can further simplify the expression for the tranmssion capacity by making
use of the inequality− log(1−ε) ≤ ε. This allows the transmission capacity to be upper bounded by [59]

c(ε) ≤ ε

π
κ2/n. (75)

Similarly, an upper bound on (73) and the corresponding lower bound on (74) can be obtained by
only considering the far terminals. Using the Chebychev inequality [59], it can be stated that

c(ε) ≥ 1

2

ε

π
κ2/n. (76)

The tightness of the bounds is analyzed in [59], which concludes that the upper bound (75) is much
tighter than the upper bound (76). Therefore, in the following assessment of the FH-CDMA and DS-
CDMA multiple-access methods, we focus on the upper bound (75).

4.5.3 Spread-Spectrum Multiple-Access

In this section, we discuss the transport capacity for the FH-CDMA and DS-CDMA methods with
spreading factor parameter K.

FH-CDMA. Frequency-hopping CDMA is a MAT that exploits the frequency diversity and the ran-
domness of the carrier selection to enhance the robustness in front of channel fading and multiple-
access interference, and has important inherent security features. A FH-CDMA system divides the total
bandwidth B into a large number of non-overlapping frequency slots or carriers of bandwidth B/K,
being K the number of bands. In any signaling interval, the transmitted signal occupies one or more
of the available frequency slots. The selection of the frequency slots in each signal interval is made
pseudo-randomly, according to a pseudo-random sequence. Assuming perfect synchronization with
the receiver, the pseudo-random frequency translation introduced at the transmission is successfully
removed at the demodulator, and the data signal is extracted —usually a FSK modulation with non-
coherent demodulation is employed.

The frequency-hopping rate can be selected equal, lower, or higher than the symbol rate. If the rate is
equal or lower than the symbol rate, the FH-CDMA is then called a slow-hopping system; whereas is the
hopping rate is higher, i.e., there are multiple frequency hops per symbol, the system is a fast-hopping
CDMA. However, there is a penalty in subdividing an information symbol into several frequency-
hopped elements, because the energy from the separate elements is combined non-coherently.

By its nature, FH-CDMA provides a high probability of interference avoidance, which grows with
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the number of frequency slots K. Specifically, if there are other users sharing the frequency bandwidth,
there are occasional collisions when two transmitters select the same frequency slots, causing mutual
multiple-access interference. These collisions happen with low probability, and it is then possible to
recover from a moderate number of collisions when time-coding is employed. For this particular reason,
the FH-CDMA MAT is known to achieve a high capacity even in dense wireless networks.

We next state the transmission capacity upper-bound of FH-CDMA in a wireless network where the
terminals are PPP geographically distributed.

Proposition 5. The transport capacity for a FH-CDMA system withK carriers and outage probability ε is given
by the upper-bound [67]

cFH(ε) ≤ εK

π
κ2/n, (77)

where κ .
= r−n/β − σ2

Z/ρ.

Proof. Let β be the nominal SINR requirement for FH-CDMA. An arbitrary receiver on a wireless net-
work using FH-CDMA only sees interference from transmitters on subcarrier k, and the aggregate in-
terference at each subcarrier must be such that the SINR exceeds the threshold β. Because of the in-
dependent sampling assumption, each process Πk(λk) is an homogeneous Poisson point process with
intensity λk = λ/K, 1 ≤ k ≤ K. The outage probability (73) is then given by

qFH(λk) = P

(
ρr−n

σ2
Z +

∑
l∈Πk(λk) ρr

−n
l

< β

)
,

for 1 ≤ k ≤ K. The noise power σ2
Z = N0

B
K accounts for the active k-th subcarrier, being N0 the

noise power spectral density, and B the total bandwidth. From the upper bound (75), we have that
λk = λ

K ≤
ε
πκ

2/n, or, equivalently, cFH(ε) ≤ εK
π κ

2/n.

DS-CDMA. Direct-sequence CDMA (DS-CDMA) allows several users to simultaneously access a
given frequency allocation by spreading the modulated waveform of narrow bandwidth B/K over the
wider bandwidth B using spreading codes unique for each user, by a factor of K. DS-CDMA spreads
the signal by directly multiplying the data waveform with a high bandwidth pseudo-random sequence.
Assuming perfect synchronization, the receiver is then able to detect the transmitted signal because the
noise and the interference signals become attenuated by a factor of approximately K.

However, because of other users do not use completely orthogonal spreading codes, there is a resid-
ual multiple-access interference present at the multi-user demodulator, which can be a critical problem
if the SINR is low. Residual interference is usually overcome at higher layers with multiple-access
control, which along with power allocation can effectively perform spectrum efficiency maximization
and interference mitigation [104]. One way to further improve the performance of FH-CDMA is to use
spectrum sensing to avoid collisions, which consist of sensing the hopping sequences of the nearby ter-
minals. The spectral efficienty of DS-CDMA has been analyzed by Verdu and Shamai in [105], whereas
the transmission capacity is given by the following statement.

Proposition 6. The transport capacity for a DS-CDMA system with a spreading factorK and outage probability
ε is given by the upper-bound [67]

cDS(ε) ≤ ε

π
(κK)2/n, (78)



4 PRELIMINARY RESULTS 56

where κ .
= r−n/β − σ2

Z/ρ.

Proof. Contrarily to FH-CDMA, DS-CDMA uses the spreading factor K to reduce the minimum SINR
required for reliable communication. If the nominal threshold is β, then DS-CDMA reduces the SINR
requirement to β/K, assuming a typical pseudo-noise code [106]. The total noise power in DS-CDMA
is Kσ2

Z = N0B, where σ2
Z is the noise at each subcarrier, i.e., in DS-CDMA the power from the entire

band causes noise to the receiver. The outage probability (73) is then given by

qDS(λ) = P

(
ρr−n

Kσ2
Z +

∑
l∈Πk(λk) ρr

−n
l

<
β

K

)
.

From the upper bound (75), we see that cDS(ε) ≤ ε
π (κ′)−2/n, where now κ′ = r−n

β/K − Kσ
2
Z/ρ = Kκ,

which after placing in into (75), concludes the proof.

Comparing the transmission capacity upper bounds for FH-CDMA (77) and DS-CDMA (78), we ob-
serve that the ratio cFH(ε)/cDS(ε) only depends on the spreading factor K and the path-loss parameter
n by

cFH(ε)

cDS(ε)
= K1−2/n.

In other words, if n > 2, FH-CMDA outperforms DS-CDMA for fixed system conditions by a factor
of, e.g.

√
K in indoor environment with n = 4 [78]. For satellite communications and spherical trans-

mission, n = 2 and consequently both techniques suffer from the same transmission capacity bounds.
Conversely, in some situations such as ultra wideband (UWB) communications, different signals can
add constructively at the receiver, leading to a path-loss exponent n < 2, for which DS-CDMA is pre-
ferred to FH-CDMA. Figure 11 reflects this result, which depicts the transmission capacity for both
MATs for nominal SNR = 0 dB, β = −10 dB, outage probability ε = 0.1, and a spreading factor K = 10.

4.5.4 Asymptotic Analysis

In the next sections we analyze the behavior of the transmit capacities derived in this Section for asymp-
totically wideband and high-SNR regimes. We assume that the information signal has a fixed band-
width of B/K Hz, hence increasing the spreading factors increases the total bandwidth. We now par-
ticularize (77) and (78) for the wideband regime. Let the total bandwidth B → ∞. Since the narrow
bandwidth required for the information signal is fixed, this is equivalent to consider K → ∞. Under
this assumption, we see that the transmit capacity for FH-CDMA (77) increases with a rate which is
linear with K. On the other hand, we observe that the transmit capacity of DS-CDMA (78) increases
with a sublinear rate of K2/n, when n > 2, the rate becomes linear for spherical propagation n = 2. The
explanation for this phenomenon is that when increasing the total bandwidth or spreading factor in DS-
CDMA, the total noise power increases linearly with K, whereas the SINR requirement is divided by
the same factorK. As a result, the interference caused by the near terminals can be neglected compared
to the noise power and, due to path-loss propagation, the outage probability is dominated by the SNR
level, which in view of (78) increases the capacity with exponent 2/n. The effect of the bandwidth, or
equivalently spreading factor, can be seen on Figure 12, which depicts the evolution of the transmission
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Figure 11: Transmission capacities upper-bounds for FH-CDMA (77) and DS-CDMA (78) versus the
path-loss exponent for SNR = 0 dB, β = −10 dB, ε = 0.1 and K = 10.

capacities versus the spreading factorK for SNR = 0 dB, SINR threshold β = −10 dB, outage probability
ε = 0.1 and path-loss exponent n = 3.

Finally, we analyze the asymptotic behaviors with the nominal SNR, defined as SNR .
= ρ/σ2

Z . From
(77) and (78), we observe that the parameter κ can be expressed as κ = r−n/β − 1/SNR. Therefore,
for SNR→ ∞, the first term in κ, i.e., rn/β dominates and the corresponding transmission capacity for
FH-CDMA and DS-CDMA saturate at

cFH(ε)→ εK

π

1

r2β2/n
and cFH(ε)→ ε

π

K2/n

r2β2/n
,

respectively.
In order to illustrate this result, Figure 13 shows the transmission capacity upper-bounds for a

spreading factor of K = 10, SINR threshold β = 0 dB, outage probability ε = 0.1, and path-loss ex-
ponent n = 3. The saturation curves for SNR → ∞ are likewise included. It is important to highlihgt
that the transmission capacity is associated to an outage probability on the received SINR being below
a required threshold. This means that at the low-SNR regime, the inequality holds for SNR < β with
an outage probability associated to ε. The upper-bound derived in (75), nonetheless, establishes an in-
equality on the transmission capacity taking into account only the near terminals, which are located
geometrically inside a disk of radius κ−1/n, which must satisfy κ > 0. This condition reflects that, in
general, as κ .

= r−n/β − 1/SNR, SNR > β/r−n, that is, the target SINR scaled by the path-loss propa-
gation. This effect is reflected in Figure 13, as the transmission capacity is valid for the SNR > β/r−n

region.
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Figure 12: Transmission capacities upper-bounds for FH-CDMA (77) and DS-CDMA (78) versus the
spreading factor (bandwidth) for SNR = 0 dB, β = −10 dB, ε = 0.1 and n = 3.
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Figure 13: Transmission capacities upper-bounds for FH-CDMA (77) and DS-CDMA (78) versus nomi-
nal SNR K = 10, β = −10 dB, ε = 0.1 and n = 3.
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4.5.5 Conclusions

We have shown that TDMA becomes optimal in narrow-band or high-SNR regimes without near-far
effect between user terminals; whereas for the wideband or low-SNR regimes, a spread-spectrum strat-
egy such as CDMA should be employed as the noise contribution is dominant. CDMA-based multiple-
access strategies tolerate all sources of interference with bounds determined by the spreading factor K,
whereas orthogonality in TDMA or FDMA can be compromised due to interferences. CDMA requires
that both transmitter and receiver have knowledge of the agreed pseudo-random sequences and the
position of the sequence, which is more stringent in DS-CDMA as the synchronization must be estab-
lished to within a fraction of chirp interval of duration 1/B, whereas on the other hand in FH-CDMA
the chirp interval is the time spent in transmitting the signal in a particular frequency slot of bandwidth
B/K, i.e., approximately an interval of duration K/B [13]. Asymptotic performance results illustrate
that the transmission capacity for DS-CDMA grows sub-linearly with K while in FH-CDMA it grows
linearly for n > 2. Hence, increasing the spreading factor in FH-CDMA results in improved interference
avoidance, which is preferable to interference suppression such as in DS-CDMA [78].

5 Work Plan

The presentation of this Ph.D. thesis proposal involves the completion of some of the objectives defined
in Section 2.2. The most important efforts have been concentrated on acquiring advanced technical
background and state-of-the-art signal processing and communication tools for compressed-sampling,
spectrum sensing and traffic-capacity theories.

5.1 Lines of Investigation

So far, preliminary results on GLRT-based spectrum sensing for wideband cognitive radio have been
achieved, as well as first conclusions within the information-theoretical analysis of the compression
matrix and spectral analysis of sparse signals. A first approach for second-order statistics reconstruc-
tion from compressed observations based on a correlation-matching approach has also been studied.
Furthermore, in the field of dynamic spectrum access, asymptotic results on the traffic capacity theory
for wideband regimes have been also achieved.

Therefore, in view of the preliminary results and state-of-the art literature, the following three open
investigation lines define the future research for the present Ph.D. thesis:

• Optimal spectrum sensing detection based on compressed-sampling second-order-statistics for
wideband cognitive radio (Objectives 1-6).

• Assessment on multiple-access techniques for wideband cognitive radio (Objectives 7-8).

• Underlying wideband cognitive radio communication strategies (Objective 9).

5.2 Methodology

The following tasks, defined for each objective encompassed by the open lines of investigation uncov-
ered above, outline the general means through which the research objectives are achieved.
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1. Optimal spectrum sensing framework for cognitive radio.

(a) (Achieved) Derivation of optimal GLRT spectrum sensing detectors for Gaussian noise and
signal under the low-SNR regime. The formulation of GLRT detectors include solving con-
vex optimization problems to compute the maximum likelihood (ML) estimates of the sta-
tistical parameters of the primary users’ signal and noise unknown to the cognitive user, as
well as determining the likelihood ratio test employing such estimates.

(b) (Achieved) Discovering an underlying framework for the GLRT detectors in the frequency-
domain based on the second-order statistics of the observations. A comparison between the
derived detectors uncovers a general structure for any GLRT detector in terms of a set of
parameters that determine the factors that affect the final performance of the detector.

(c) (Further analysis) Simulation assessments on the performance of the GLRT detectors in re-
alistic scenarios. The metrics employed in the literature are the probability of detection and
probability of false alarm restrictions (receiver operating characteristics, ROC) in distinct
channel conditions (SNR, primary user correlation level).

2. Information-theoretical analysis of compressed and nonuniform sampling.

(a) (Achieved) Computation of capacity formulas for the compressed-sampling scheme. We
identify the compressed-sampling scheme as a communication channel with additive noise
before compression, and derive the achievable rates in function of the compression matrix.

(b) (Further analysis) Particularization of the capacity formulas for wideband regimes. The ex-
pressions of the achievable rates are obtained for the low-SNR regime to obtain the asymp-
totic behavior of the compressed-sampling scheme.

(c) Comparison of variable and fixed compression matrices. Employing the aforementioned
metrics, a critical assessment on the compressed-sampling scheme using fixed or random
compression of the observations is required to determine which compression scheme favors
the reconstruction of second-order statistics.

3. Spectral analysis of sparse wideband signals.

(a) (Achieved) Derivation of the compressed versions of classical spectral analysis methods
such as the Blackman-Tuckey or the Capon level estimators. We recognize that in wide-
band regimes the activity of the primary users is a sparse signal, and therefore consider a
compressed-sampling scheme for spectral analysis.

(b) Simulation results of sparse wideband spectral analysis in realistic scenarios. This task in-
volves the reconstruction of the primary users’ spectrum via Blackman-Tuckey and Capon
level estimates in several compression and channel conditions, and determine which com-
pression conditions are good in recovering sparse spectrum signals.

4. Second-order statistics reconstruction from compressed observations.

(a) (Achieved) Compressed correlation-matching for second-order primary users’ statistics. An-
alyzing the preliminary results on the GLRT detectors, we identify that the second-order
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statistics of the observations become a sufficient statistic for detection. Therefore, a first at-
tempt to recover the sample covariance matrix from the compressed observations is given
employing the correlation-matching approach.

(b) Simulation results on the performance of the correlation-matching approach for second-
order statistics reconstruction. The performance of the proposed correlation-matching ap-
proach is to be determined in terms of mean squared error (MSE) of the reconstructed pa-
rameters in realistic scenarios.

5. Compressed spectrum sensing algorithms for wideband cognitive radio.

(a) Combination of the second-order statistics reconstruction from compressed observations with
the optimal GLRT spectrum sensing detectors for wideband signals. Once the estimates of
the unknown statistical parameters of the primary users’ signal and noise are obtain via
compressed-sampling reconstruction, the optimal likelihood ratio test with compressed ob-
servations is obtained.

(b) Unified framework of compressed GLRT spectrum sensing detectors. This task involves the
further analysis on the frequency-domain parameters that determine the general structure of
the detection when using compressed observations.

(c) Final performance of compressed spectrum sensing algorithms. The ROC of the proposed
compressed detectors is to be obtained in several primary users’ signal, channel and com-
pression conditions, and a comparison to other state-of-the art compressed-sampling spec-
trum sensing approaches is required.

6. Cooperative spectrum sensing of sparse signals.

(a) Derivation of optimal GLRT spectrum sensing detectors with neighbors side information.
The information on the detection or ML estimation performed by nodes in the vicinity can
be incorporated in the GLRT detector as prior information. Then, each node performs a
maximum a posteriori (MAP) estimation of the statistics parameters for detection based on
the prior information passed by the adjacent nodes and the compressed local observations.

(b) Design of message-passing strategies for side information communication among nodes in
the area. This task involves determining the most relevant information that affects the indi-
vidual spectrum sensing detection, and how this information is sent to the other nodes, by
establishing a trade-off between performance and network overhead.

(c) Performance of cooperative spectrum sensing. In this task, the ROC of the proposed coop-
erative detectors has to be determined to uncover which parameters of the compression and
cooperation schemes play a fundamental role in the detection of primary user activity in
wideband regimes.

7. Traffic capacity asymptotic performance in wideband cognitive radios.

(a) (Achieved) Background on the novel formulation of traffic capacity. A detailed view on the
premises, derivations, and conclusions of the traffic capacity theory is done. This study con-
cludes that main restrictions and mathematical tools required to apply this field to cognitive
radio.
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(b) (Further analysis) Particularization of traffic capacity formulas for wideband regimes in prac-
tical dynamic access techniques. The asymptotic behavior of the frequency-hopping and
direct-sequence CDMA traffic capacities is studied in this task.

(c) Traffic capacity formulation of cognitive radio networks with primary user interference re-
strictions. In underlying and interweave cognitive radios, the secondary user network is
conditioned by the primary user activity, i.e., the spectrum sensing information and the in-
terference caused to the primary users. Therefore, a traffic capacity analysis taking into con-
sideration these factors is done in this task.

8. Multiple-access techniques for cognitive radio.

(a) (Further analysis) Classical and traffic capacity assessment on multiple-access techniques. A
fair comparison between multiple-access techniques in terms of classical multiple-access ca-
pacity and the novel traffic capacity perspectives is required to determine which techniques
are suited for cognitive radio networks.

(b) Design of multiple-access techniques for wideband cognitive radio. Recognizing the sparse
and interference-limited nature of cognitive radio, the design of efficient multiple-access
techniques of secondary users is done by optimizing the capacity of the secondary network
by making use of the spectrum sensing information on the activity of the primary users.

9. Communication approaches for underlying cognitive radios.

(a) Final combination of compressed-sampling, spectrum sensing and dynamic access for wide-
band cognitive radio. The precedent tasks are designed to uncover which are the optimal
compression, sensing and access conditions in realistic cognitive radio scenarios where the
primary users’ activity is sparse in wideband regimes. In this task, we will combine the three
fields to check the final performance of the physical and access layers in cognitive radio.

(b) Alternative methods for underlying cognitive radio communication. Whereas task 9a focuses
on cross-layer optimization, communication approaches can be designed directly from the
compressed local observations to perform opportunistic communication in cognitive radio
networks, e.g., by transmitting in such a way that the interference caused to the primary
systems is small without performing spectrum sensing.

In view of the preliminary work achieved, the aforementioned pending and future tasks, and taking
into consideration that this Ph.D. thesis has started in September 2009, a tentative date for the Ph.D.
thesis dissertation is May 2012.
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Appendices
A Remark for the Proof of Proposition 2

Recalling the expression of the complex multivariate Gaussian distribution, the exact LRT for the detec-
tion problem (16) when the noise and signal covariance matrices are known can be written as

L(X|CS ,CW ) =
det(CW )M

det(CW + CS)M
· exp tr(−XH(CS + CW )−1X)

exp tr(−XHC−1
W X)

(79)

Consider the matrix inversion lemma (A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1, for
invertible matrices. When applied to (CS + CW )−1, the inversion lemma results in (CS + CW )−1 =

C−1
W − C−1

W CS(C−1
W CS + I)−1C−1

W . By left-multiplying the inside of the inverse term (C−1
W CS + I)−1

by CW , it follows that (CS + CW )−1 = C−1
W − C−1

W CS(CS + CW )−1. Combining this result with the
second fraction in (79), the LRT is then given by

L(X|CS ,CW ) =
det(CW )M

det(CW + CS)M
· exp tr(XHC−1

W CS(CS + CW )−1X).

Finally, the log-LRT, defined as the logarithm of the LRT, is given by

l(X|CS ,CW )
.
= lnL(X|CS ,CW )

= M ln det(CW )−M ln det(CS + CW ) + tr
(
XHC−1

W CS(CS + CW )−1X
)
, (80)

whereas the equivalent test T (X|CS ,CW ) in (20) is obtained retaining only the data-dependent terms,
i.e., the term tr

(
XHC−1

W CS(CS + CW )−1X
)
. Since the logarithm is a monotonically increasing func-

tion and the remaining term is positive, the final test decides for H1 is T (X|CS ,CW ) ≥ γ. This is
an important remark, as in detection simpler expressions are preferred. Finally, moving XH into the
right-hand side of the trace, we equivalently obtain (20) up to a non-negative scaling factor.

B Proof of Theorem 1

Departing from the expression of the optimal test when the noise and signal covariance matrices are
known (20), we develop the (CS + CW )−1 term in the following manner. We take CW as a common
left-factor, i.e., [CW (C−1

W CS + I)]−1, which after making use of the low-SNR Approximation (81) in
Appendix C it becomes C−1

W , which concludes the proof.

C Low-SNR Approximation

Let CS and CW be the covariance matrices of the signal and the noise, respectively. At low-SNR,
asymptotically

C−1
W CS + I→ I. (81)
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Proof. Let us express the signal and noise covariance matrices in the following form,

CS
.
= σ2

SΣS ,

CW
.
= σ2

WΣW ,
(82)

where σ2
S , σ

2
W ≥ 0 are the variances of the signal and noise, and ΣS and ΣW have ones at the main

diagonal, i.e., [ΣS ]nn = [ΣW ]nn = 1 for 1 ≤ n ≤ N . Then, the SNR is reflected in the product C−1
W CS =

σ2
S/σ

2
WΣ−1

W ΣS , which at the low-SNR regime, approaches σ2
S/σ

2
W → 0.

D Proof of Theorem 2

The ML estimate of CS is given, according to the GLRT estimates (18) by the maximization problem

ĈS = arg maxCS
p(X|H1,CS ,CW )

s.t.CS � 0.
(83)

The solution to the former problem is obtained by solving the Karush-Kuhn-Tucker (KKT) conditions
[107] given by

• The stationarity condition∇L(ĈS) = 0,

• the primal feasibility λn(ĈS) ≥ 0 for 1 ≤ n ≤ N ,

• the dual feasibility µn ≤ 0 for 1 ≤ n ≤ N , and

• the complementary slackness µnλn(ĈS) = 0 for 1 ≤ n ≤ N ,

where L(CS) is the Lagrangian L(CS) = ln p(X|H1,CS ,CW ) +
∑M
n=1 µnλn(CS), and µn are the La-

grange multipliers for the inequality constraint.
First, from the stationarity condition we obtain that the eigenvalue decomposition of ĈS must ac-

complish ĈS = ÛSΛ̂SÛH
S = A − diag (µ1, . . . , µN ), where A

.
= RX − CW . Applying the primal fea-

sibility and taking into account the dual feasibility, we see that the Lagrange multipliers are non-zero
for those eigenvalues of A that are negative, that is, µn = min(λn(A),0), for which the complementary
slackness is accomplished as in such a case λn(ĈS) = 0, otherwise µn = 0. Finally, we then obtain that
ÛS = UA and Λ̂S = Λ+

A, where Λ+
A denotes diagonal-wise max(λn(A), 0), which concludes the first

part of the proof.
With the ĈS estimate, the test (79) becomes

L(X|CW ) =
det(CW )M

det(ĈS + CW )M
exp tr(−X(ĈS + CW )−1X)

exp tr(−XC−1
W X)

,

which can be further processed as in Appendix A to obtain the log-GLRT (80) with placing the estimate
of CS instead of its known value, i.e.,

l(X|CW )
.
= lnL(X|CW ) = M ln det(CW )−M ln det(ĈS + CW ) + tr

(
XHC−1

W ĈS(ĈS + CW )−1X
)
.
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Now, the only data independent term is M ln det CW , which after being removed from l(X|CW ), we
obtain (22) up to a nonnegative scaling factorM . Test (22) allows further simplification for the following
two particular cases.

On the one hand, consider the asymptotic PDF of zero-mean wide sense stationary Gaussian random
processes. Clearly, RX obeys a symmetric Toeplitz matrix and, as such, it is known that for N → ∞
(i.e., large data records), the eigenvalues λn(RX) and eigenvectors un(RX) are easily found by [94]

λn(RX) = SX(fn),

un = 1√
N

[1 exp(2πfn) . . . exp(2π(N − 1)fn)]
T (84)

where SX(f) denotes the power spectral density of the observations and fn
.
= n/N . The same result

can be applied to the noise process. As a result, UX = UW and, by construction, also equal to ÛS so
that we obtain that the ML estimate for the signal covariance matrix obeys

ĈS = U (ΛX −ΛW )
+

UH , (85)

where U = [u1 . . . uN ]. By taking the logarithm to L(X|CW ) we then obtain the following four terms

M ln det(CW ) = M

N∑
n=1

lnλn(CW )

−M ln det(ĈS + CW ) = −M
N∑
n=1

ln max (λn(RX), λn(CW ))

−tr(XH(ĈS + CW )−1X) = −M
N∑
n=1

min

(
1,
λn(RX)

λn(CW )

)

tr(XHĈ−1
W X) = M

N∑
n=1

λn(RX)

λn(CW )

By adding the fourth terms up, the equivalent log-GLRT is given by

l(X|CW ) = M

N∑
n=1

(
ln

λn(CW )

max (λn(RX), λn(CW ))
−min

(
1,
λn(RX)

λn(CW )

))
+M

N∑
n=1

λn(RX)

λn(CW )

We observe from the former expression that the max and min operators keep only a few data-dependent
terms, leading to

T (X|CW ) =
∑
n∈A+

ln
λn(CW )

λn(RX)
−
∑
n∈A+

λn(RX)

λn(CW )
,

which after a sign multiplication, concludes the second part of the proof. Here, the set A+ has been de-
fined as the set of indexes for which the eigenvalues of the observations are larger than the eigenvalues
of the noise, i.e., A+

.
= {n : λn(RX) > λn(CW )}

Finally, under the white-noise assumption, we observe that matrix A takes the eigenvectors of RX ,
as CS does so. In such a case, we similarly obtain that the ML estimate for the signal covariance matrix
obeys ĈS = UX (ΛX −ΛW )

+
UH
X , and after similar mathematical manipulations, T (X|CW ) becomes
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(24), that is, with λn(CW ) = σ2
W for 1 ≤ n ≤ N .

E Proof of Theorem 3

We consider the low-SNR approximation for the optimal test when the noise signal covariance matrix
is unknown, given by (22), which we recall here

T2(X|CW ) = tr
(
C−1
W ĈS(ĈS + CW )−1RX

)
− ln det(ĈS + CW ).

For the first part of the test, following analogous developments as for the estimator-correlator (21), we
can state that

tr
(
C−1
W ĈS(ĈS + CW )−1RX

)
→ tr

(
C−1
W ĈSC−1

W RX

)
, (86)

whereas for the second part of the test, we make us of the following approximation of the logarithm of
the determinant for small-normed matrices. Specifically, the first-order approximation ln det(I+ εA)→
εtr(A), when ε→ 0 can be cast with ln det(I + C−1

W ĈS) when using the low-SNR approximation given
in Appendix C, with ε = σ2

S/σ
2
W . Therefore, the second part of the test can be further developed as

ln det(ĈS + CW ) = ln det(I + C−1
W ĈS) + ln det CW → tr(C−1

W ĈS) + ln det CW . (87)

By neglecting the data independent term ln det CW and joining (86) with (87), we proof (22).
We now show the low-SNR approximation for the white noise assumption, which is also valid and

equivalent to large data records. At the low-SNR regime, we can assume that the ratio λn(RX)/λn(CW )

in (26) approaches to one, as λn(RX) contains the power of both noise and signal.
Consider now the Taylor-decomposition of the natural logarithm function, i.e., ln(1+x) = x−x2/2+

O(x3) for x → 0. When applied to 1 + x = λn(RX)/λn(CW ), we note that at the low-SNR regime, by
neglecting the higher order tems, we get

ln
λn(RX)

λn(CW )
=
λn(RX)

λn(CW )
− 1− 1

2

(
λn(RX)

λn(CW )
− 1

)2

.
After some mathematical manipulations and omitting data-independent terms, the test becomes

(26), concluding the proof.

F Proof of Theorem 4

The ML estimates of the noise covariance matrix for the cognitive radio problem (16) when the signal
covariance matrix is known are given by the maximization problems (18)

ĈW0 = arg max
CW

p(X|H0,CW )

ĈW1 = arg max
CW

p(X|H1,CS ,CW ),

both subject to CW � 0. On the one hand, the ML estimate under H0 is given by [44] ĈW0
= RX . On

the other hand, the ML estimate under H0 is analogous to problem (83), i.e., the ML estimate of CS
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when the noise variance matrix is known. Hence, ĈW1
is given by UBΛ+

BUH
B , where UBΛBUH

B is the
eigenvalue decomposition of the correlation matrix B

.
= RX − CS and the superscript in Λ+

B denotes
the diagonal-wise operation max(λn(B), 0), concluding the first part of the proof.

With the ĈW0
and ĈW1

estimates, the test (79) becomes

L(X|CS) =
det(ĈW0

)M

det(CS + ĈW1
)M
· exp tr(−XH(CS + ĈW1

)−1X)

exp tr(−XHĈ−1
W0

X)
,

which after some manipulations, the log-GLRT l(X|CS) derives to (27). We now focus on two particular
assumptions. First, we consider the asymptotic case for large data records. The PDF of the zero-mean
wide sense stationary Gaussian random processes corresponding to the observations and the noise.
Clearly, both RX and CW will obey a Toeplitz matrix whose eigenvectors, for N → ∞, are given by
(84). As a result, matrix B will do so. Then, by taking the logarithm of the GLRT, we obtain the following
four terms:

M ln det(ĈW0
) = M

N∑
n=1

lnλn(RX)

−M ln det(CS + ĈW1) = −M
N∑
n=1

ln max (λn(RX), λn(CS))

−tr(XH(CS + ĈW1
)−1X) = −M

N∑
n=1

min

(
1,
λn(RX)

λn(CS)

)
tr(XHĈ−1

W0
X) = MN.

By adding them up, we obtain equivalently that the log-GLRT is given by

l(X|CS) = M

N∑
n=1

(
ln

λn(RX)

max (λn(RX), λn(CS))
−min

(
1,
λn(RX)

λn(CS)

))
.

We see from the former expression that only the eigenvalues accomplishing λn(RX) > λn(CS) are the
remaining data-dependent terms, leading to (28) and concluding the second part of the proof.

G Proof of Theorem 6

Consider the optimal test for unknown white noise and known signal covariance matrix, given by

L(X|CS) =
det(σ̂2

W0
I)M

det(σ̂2
W1

I + CS)M
·

exp tr
(
−XH(σ̂2

W1
I + CS)−1X

)
exp tr

(
−XH(σ̂2

W0
I)−1X

) . (88)

We now make use of the following approximation. At the low-SNR regime, consider the signal covari-
ance matrix decomposition (82), with ΣW the identity matrix. Then, the addition σ̂2

W1
I + CS can be

written as
σ̂2
W1

I + CS = σ̂2
W1

I + σ2
SΣS = σ̂2

W1
(I + σ2

S/σ̂
2
W1

ΣS)→ σ̂2
W1

I,
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where we made use of Approximation (81). After taking the logarithm to (88) we get the following
terms

M ln det(σ̂2
W0

I) → MN ln σ̂2
W0

−M ln det(σ̂2
W1

I + CS) → −MN ln σ̂2
W1

−tr
(
XH(σ̂2

W1
I + CS)−1X

)
→ −MNσ̂−2

W1
σ̂2
W0

tr
(
XH(σ̂2

W0
I)−1X

)
= MN.

Finally, neglecting the data-independent terms in the test, we obtain (31), which concludes the proof.

H Remarks on the Proof of Proposition 3

The ML estimates of CS and σ2
W are given, according to the maximization problem (18), i.e.,

σ̂2
W0

= arg max
σ2
W

p(X|H0, σ
2)

ĈS + σ̂2
W1

I = arg max
CS+σ2

W I
p(X|H1,CS , σ

2
W ),

where both estimators have the constraint σ2
W ≥ 0 and CS + σ2

W I � 0, respectively. These are classical
estimation problems, whose solution is given by [88] σ̂2

W1
= tr(RX)/M and ĈS + σ̂2

W1
I = RX .

As a result, the GLRT (17) becomes

L(X) =
det(σ̂2

W0
I)M

det(ĈS + σ̂2
W1

I)M
·

exp tr(−XH(ĈS + σ̂2
W1

I)−1X)

exp tr(−XH σ̂−2
W0

X)
. (89)

Given the expressions of the ML estimates, both terms inside the trace operators become data-independent
constant and can be removed from the test. By taking the logarithm and substituting the expressions of
the ML estimates, the test is then given by

T (X) = M ln det(σ̂2
W0

I)−M ln det(ĈS + σ̂2
W1

I) = MN ln tr

(
RX

N

)
−M ln det (RX) .

By dividing the whole expression by NM , we get

T (X) ≡ ln tr

(
RX

N

)
− ln det (RX)

1/N

≡ ln
1
N tr(RX)

det(RX)1/N
,

which after removing the logarithm, concludes the proof.

I Proof of Theorem 8

Under the white noise assumption CW = σ2
W I, we consider the following structure for the signal

covariance matrix CS = σ2
SC0, with C0 normalized as tr(C0) = N . The correlation-matching criterion
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is given by the optimization problem

σ̂2
W1
, σ̂2
S = arg min

σ2
W ,σ2

S

‖RX − σ2
SC0 − σ2

W I‖2F .

By taking the derivative with respect to σ2
W and σ2S, we obtain the system of equations

tr(RX)−Nσ2
W −Nσ2

S = 0

tr(C0RX)−Nσ2
W − σ2

S − tr(C2
0) = 0,

whose solution is given by (34)–(35), concluding the first part of the proof.
Under H0, we have similarly that the correlation-matching estimate of the noise variance is given

by the optimization problem
σ̂2
W0

= arg min
σ2
W

‖RX − σ2
W I‖2F ,

which after taking the derivative and equal it to zero, we obtain σ̂2
W0

= 1
N tr(RX), the same as the ML

estimate [88].

J Proof of Theorem 7

Consider the optimal GLRT (32) when both signal and noise covariance matrices are unknown, which
we write it in the logarithm version. We now make the following approximation

ln
1
N tr(RX)

det(RX)1/N
= ln

1
N

∑N
n=1 λn(RX)(∏N

n=1 λn(RX)
)1/N

≈

√
1
N

∑N
n=1 λ

2
n(RX)

1
N

∑N
n=1 λn(RX)

.

We define p as the average power estimate, p .
= 1

N

∑N
n=1 λn(RX). Then,√

1
N

∑N
n=1 λ

2
n(RX)

1
N

∑N
n=1 λn(RX)

=

√
1
N

∑N
n=1 λ

2
n(RX)

p

=
1

2

1
N

∑N
n=1 λ

2
n(RX)

p2

=
1

2
ln
p2 +

(
1
N

∑N
n=1 λ

2
n(RX)− p2

)
p2

=
1

2
ln

(
1 +

1
N

∑N
n=1 λ

2
n(RX)− p2

p2

)

≈ 1

2p2N

N∑
n=1

(λn(RX)− p)2,

which concludes the proof.
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K Proof of Theorem 9

According to the GLRT, the ML estimate of σ2 is the solution to the constrained maximization problem

σ̂2 = arg maxσ2 p(X|CW ,C0,σ
2)

s.t. σ2 � 0.
. (90)

Let us first consider the log-likelihood function to be maximized, that is,

ln p(X|σ2) = −MN lnπ −M ln det(CW + CS)−Mtr
(
(CW + CS)−1RX

)
,

where CS =
∑K
l=1 σ

2
l Cl. We take into account then the following derivative properties:

∂

∂x
A−1 = −A−1 ∂

∂x
AA−1,

∂

∂x
ln det(A) = tr

(
A−1 ∂

∂x
A

)
.

When applied to the log-likelihood function for an arbitrary σ2
k, the terms become

∂

∂σ2
k

(CW + CS)−1 = −(CW + CS)−1Ck(CW + CS)−1

∂

∂σ2
k

ln det(CW + CS) = tr
(
(CW + CS)−1Ck

)
,

which after some mathematical manipulations leads to (43), concluding the first part of the proof.
Solving (43) might be difficult due to the inversion of the terms. We now consider the first order

Taylor decomposition of the following function f(σ2) = (I +
∑K
l=1 σ

2
l /σ

2
WΣ−1

W Ck)−1 for σ2/σ2
W → 0.

That is,

[
∂

∂σ2
f(σ2)

]
k

= −

(
I +

K∑
l=1

σ2
l /σ

2
WΣ−1

W Ck

)−1

Ck

(
I +

K∑
l=1

σ2
l /σ

2
WΣ−1

W Ck

)−1

,

and hence, f(σ2) ≈ I−
∑K
l=1 σ

2
l /σ

2
WΣ−1

W Ck. Applying this result to the left-hand term of equation (43),
we get

tr

(CW +

K∑
l=1

σ2
l Cl

)−1

Ck

 ≈ tr
(
C−1
W Ck

)
− tr

(
K∑
l=1

σ2
l C
−1
W ClC

−1
W Ck

)
.

If we do a similar procedure for the quadratic term on the right-hand side –that is, first obtain the Taylor
decomposition of the quadratic form until the first order and apply it to (43), we obtain

tr

((
CW +

∑K
l=1 σ

2
l Cl

)−1

Ck

(
CW +

∑K
l=1 σ

2
l Cl

)−1

RX

)
≈

tr
(
C−1
W CkC

−1
W RX

)
− 2

∑K
l=1 σ

2
l tr
(
C−1
W CkC

−1
W ClC

−1
W RX

)
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which leads to expressions of βkl and δk in Theorem 9.

L Proof of Theorem 10

The correlation matching approach aims to solve the following minimization problem

σ̂2 = arg min
σ2

∥∥∥∥∥
K∑
k=1

Ck + CW −RX

∥∥∥∥∥
2

. (91)

Consider first the objective function in (91). The Frobenius norm of an Hermitian matrix can be written
as ‖R‖2 = tr(RR), and hence

∥∥∥∥∥
K∑
k=1

Ck + CW −RX

∥∥∥∥∥
2

= tr

((
K∑
k=1

Ck + CW −RX

)
·

(
K∑
k=1

Ck + CW −RX

))

=

K∑
k=1

K∑
l=1

σ2
kσ

2
l tr(CkCl) + 2

K∑
k=1

tr(CkCW )− 2

K∑
k=1

tr(CkRX)

−2tr(CWRX) + tr(CWCW ) + tr(RXRX).

After taking the derivative with respect to σ2
k, we obtain that

2

K∑
l=1

σ2
ktr(CkCl) + 2tr(CkCW )− 2tr(CkRX) = 0,

which after some mathematical operations, concludes the proof.

M Assymptotic Performance of GLRT

Consider the case of large sampling depth, i.e., M → ∞. In such a case, we can assume that the
sample covariance matrix approaches to the true value, that is, RX → CS + CW . On the one hand, the
expressions in Equations (40)–(41) can be equivalently written in a single trace term, by

βkl = tr
(
C−1
W CkC

−1
W Cl(2C−1

W RX − I)
)

δk = tr
(
C−1
W Ck(C−1

W RX − I)
)
.

The summation in (39) then becomes

K∑
l=1

σ2
l βkl = δk

tr
(
C−1
W CkC

−1
W CS(2C−1

W RX − I)
)

= δk.

On the other hand, for large data records we have that the terms involving the sample covariance matrix
approach to 2C−1

W RX−I→ 2C−1
W CS+I, and also C−1

W RX−I→ C−1
W CS . By plugging these two results
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into the ML equation, we get the following identity:

tr
(
C−1
W CkC

−1
W ĈS(2C−1

W CS + I)
)

= tr
(
C−1
W CkC

−1
W CS

)
,

where ĈS accounts for the ML estimate to be solved. As it can be seen, at low-SNR we have

2C−1
W CS =

2

K

K∑
l=1

σ2
l

σ2
W

Σ−1
W Cl → 0.

Therefore, it can be stated that at the low-SNR for large data records, the solution to the ML estimator
(39) is consistent with the true value of σ2, though uniqueness is not guaranteed.

N Proof of Theorem 11

The Wald test with nuisance parameters is given by [44]

TW (X) =
(
Θ̂r1 − Θ̂r0

)H
×
([

I−1(Θ̂1)
]
ΘrΘr

)−1 (
Θ̂r1 − Θ̂r0

)
,

where in our problem Θ̂r1 = σ̂2
k, Θ̂r0 = 0, and Θ̂1 = σ̂2 is the ML estimate of the unknown parameters,

including nuisance parameters, underH1k. After particularizing, we obtain (53).
On the other hand, the Rao test with nuisance parameters is given by [44]

TR(X) =
∂ ln p(X|Θ)

∂Θr

∣∣∣∣H
Θ=

˜Θ

[
I−1(Θ̃)

]
ΘrΘr

× ∂ ln p(X|Θ)

∂Θr

∣∣∣∣
Θ=

˜Θ
,

where Θ̃ = σ̂2
k̄ is the ML estimate of the unknown parameters under H0k First, we note that at the

low-SNR regime, the outer terms are given by:

∂ ln p(X|Θ)

∂Θr

∣∣∣∣H
Θ=

˜Θ
=

∂ ln p(X|σ2)

∂σ2
k

∣∣∣∣
σ2=σ̃2

k̄

=

K∑
l=1

σ2
k̄lβkl − δk,

which after being plugged into the general Rao test, concludes the proof.
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