

D2.3 REVISED REPORT ON MODULAR
ARCHITECTURE, PROTOCOLS AND APIs

Grant Agreement nr 856879
Project acronym PRESENT

Project start date (duration) September 1st 2019 (36 months)
Document due: 31/08/2020

Actual delivery date 31/08/2020
Leader Framestore

Reply to richard.olloson@framestore.com
Document status Submission Version

Project funded by H2020 from the European Commission

1

Project ref. no. 856879

Project acronym PRESENT

Project full title Photoreal REaltime Sentient ENTity

Document name Revised Report On Modular Architecture, Protocols And APIs

Security (distribution level) Public

Date of delivery 31/08/2020

Deliverable name D2.3 Revised Report On Modular Architecture, Protocols And
APIs

Type Report

Status & version Submission Version

Number of pages 64

WP / Task responsible Framestore

Other contributors all partners

Author(s) Theo Jones

EC Project Officer Ms. Adelina Cornelia DINU -
Adelina-Cornelia.DINU@ec.europa.eu

Abstract This deliverable represents the initial architecture that will
govern the overall design and deliverables associated with
the PRESENT project. The goal is to provide a high level
overview of the various components required to deliver the
overall functionality.

Keywords Software, systems architecture, use case reflections, risk
analysis

Sent to peer reviewer Yes

Peer review completed Yes

Circulated to partners No

Read by partners No

Mgt. Board approval No

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 2

Revision History

Revision Date Description

v1.0 24/2/2020 First draft specification for distribution.

v1.1 27/2/2020 Revised and improved based on partner feedback.

v1.2 1/3/2020 Added Use Cases

v1.3 3/3/2020 Q2 Meeting Draft

v2.0 16/3/2020 Report Release

v2.1 18/3/2020 Final version: Due to the COVID19 situation, it has been
necessary to carry out the document review and
adjustment process without the participation of the
deliverable leader. Thanks to the very well structured
information and organization of the document, and being it
almost ready to deliver, this fact has not really affected the
final result. For this final version, alternative contact is
jmontesa@brainstorm3d.com

v3.0 14/08/2020 Revised report based on current progress and partner
feedback - for UPF review

v4.0 28/08/2020 Final submission version

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 3

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY 7

2. INTRODUCTION 8
2.1. Background 8
2.2. Objectives and Goals 8
2.3. Third Party Tools 8

3. METHODOLOGY 10
3.1. Software Loops and Continuity 10
3.2. Software Components and Applications 13
3.3. Input and Output Processing 14
3.4. Exploitation Environment 14
3.5. Reference Implementation 15
3.6. Agent Creation 16

3.6.1. Character Capture 16
3.6.2. Character Build 17
3.6.3. Performance Capture 18

4. DATA FLOW 20

5. TECHNICAL RISK ANALYSIS 21
5.1. RISK 1: Knowledge Base 21

5.1.1. Issue 21
5.1.2. Solution 21
5.1.3. Caveats 21

5.2. RISK 2: Multiple Agent Creation 21
5.2.1. Issue 21
5.2.2. Solution 22
5.2.3. Caveats 22

5.3. RISK 3: Audio Generation 22
5.3.1. Issue 22
5.3.2. Solution 22
5.3.3. Caveats 23

5.4. RISK 4: Unreal Engine Platform Constraint 23
5.4.1. Issue 23
5.4.2. Solution 23

5.5. RISK 5: Background Visualisation 23
5.5.1. Issue 23
5.5.2. Solution 23

6. HIGH LEVEL SYSTEMS ARCHITECTURE 24
6.1. Speech Input 25

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 4

6.2. Emotional Input 26
6.3. Body Input 27
6.4. Audio Trigger Input 28
6.5. Blueprint Input 29
6.6. Camera Input 30
6.7. Dialog 31
6.8. Security 32
6.9. Haptics Output 34
6.10. Motion Generation 35
6.11. Lightweight Asset 37
6.12. High Quality Asset 38
6.13. Agent State Output 39
6.14. Animation Data Format Specification 41
6.15. Core Application Logic 42
6.16. Components not covered in this report 44

6.16.1. Super Render Computer (WP6T2) 44

7. HIGH LEVEL AGENT CREATION ARCHITECTURE 45

8. CHANGE MANAGEMENT 46
8.1. Identification and Proposal 46
8.2. Approval 46
8.3. Re-Release 46
8.4. Component Update 46

9. REFERENCE IMPLEMENTATION 47
9.1 Components 47
9.2 Mock Variables 50
9. 3 Third Party Signatures 51

Emotional Assessment: 52
Audio Processing: 52
Text To Speech: 52
Action Response: 52
Motion Generation: 53

10. TESTS, VERSIONING AND DISTRIBUTION 53
10.1. Functional tests 53
10.2. Unit tests 53
10.3. Versioning 53
10.4. Component Distribution 54

11. USE CASE REFLECTIONS 55
11.1. Adam 0.1 55
11.2. Complex Social Situation 56
11.3. Greek Chorus 57

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 5

11.4. Sports Broadcast 58
11.5. Virtual Clerk 59
11.6. Virtual Production 60

12. CONCLUSIONS 61

APPENDIX A - PROJECT TERMINOLOGY 62

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 6

1. EXECUTIVE SUMMARY
This document represents an update to the initial architecture document delivered as D2.2.
This update reflects the results of ongoing meetings and discussions between the partners
that have refined the overall architecture and connections between certain components.

The project architecture reported here has been guided by

i. Weekly meetings between Framestore, Cubic Motion, Augsburg, Inria and UPF.
ii. Discussions in the quarterly project meetings attended virtually by all partners.
iii. Meetings between all individual partners and Framestore (FS) as the partner

responsible for the drafting of this document.

As defined at the grant proposal stage, a modular architecture has been pursued with
‘Inputs’ and ‘Outputs’ clearly defined and separated. Further, the design has been split into
Components and Applications, establishing the separation between the functional
components and the integration projects bringing these components together to create the
use cases.

Complementary to this deliverable, work has been undertaken by Framestore to create a
reference implementation in Unreal Engine, defining and prototyping the interfaces outlined
in this document. This has been shared amongst the partners and provides a reference
platform against which i) input components can be tested and validated and ii) provides a
template for the integration projects. Although a number of key components are represented
in the current, released version of the reference implementation there are further
components to be added, in particular those relating to the integration of Brainstorm and
Infocert’s components.

As part of ongoing discussions, gaps have been identified in the overall system. These gaps
are identified in this report and discussion is given to the current strategies and plans to
mitigate / manage these. As virtual human interaction is a very active field of research, it is
expected that over the 3 year cycle of this project, there will be many advances in the field. It
is therefore expected that some of the gaps identified in the overall architecture may well be
filled by open source third parties. The modular architecture presented here plays to these
strengths as components can be interchanged either globally within the system or for
specific use cases.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 7

2. INTRODUCTION

2.1. Background
This deliverable is a fourth quarter deliverable against WP2 and updates the overall
architecture of the project as well as adding further detail where planning and work has
progressed.

This report details current progress on the reference implementation as well as updates to
key aspects of the interconnection between components where discussions amongst the
partners has led to more specific detail.

While each of the partners has a high degree of individual domain knowledge it should be
emphasized that the challenge of this project does not lay in any one specific knowledge
domain but rather in the integration and execution of the whole.

2.2. Objectives and Goals
● The overarching goal of PRESENT is to provide a Human Computer exchange

framework capable of accepting and interpreting human natural language input and
responding in an emotionally appropriate manner.

● Human speech and expression will be processed for both semantic and emotional
content and these will inform and guide the PRESENT agent response.

● The PRESENT architecture will be constructed in a modular fashion such that
individual feature enhancement and/or component substitution can occur with
minimal to no disruption to the rest of the architecture

● To provide a clearly defined set of high level interfaces for exchanging data with
downstream components.

● To provide a process for technical collaboration.
● To define a common technical platform on which the project is built.
● To establish a clear set of principles for how the system should be designed.

2.3. Third Party Tools
In order to understand the overall goals of the project, it is essential to understand the
underlying framework and the design decisions taken toward achieving these goals at the
very same time the technologies that underpin the framework are evolving at a very fast
pace.

A key point to make is to look at where this project sits relative to other related efforts, most
notably those of the current crop of digital assistants: Google Assistant, Amazon Alexa and
Apple Siri. All of these technologies are designed in order to be embedded in as wide a
variety of deployment models as possible - both in software and in hardware. Similarly, the
financial incentives for capturing this portion of the digital assistant market are extremely
lucrative and represent not only commercial possibility but are also the leading edge of AI,
arguably they are the first steps toward Artificial General Intelligence.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 8

As called out in the proposal, the PRESENT project is well placed to utilise these
developments and tools and their use is integrated into the architecture outlined in this
report.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 9

3. METHODOLOGY

3.1. Software Loops and Continuity
The concept of a loop is a way to define a call and response operational state. An example
from everyday life of a loop is a neighbour greeting you in the morning and your reply in kind.
There is identification, engagement, acknowledgement and response.

The PRESENT project will deliver an environment wherein a human IRL (“In Real Life”) user
engages the PRESENT agent (a CG creation) in a meaningful and conversational manner.
In order to facilitate this dialogue, there are a number of “loops” that function within the larger
architectural framework to accept input, process meaning and deliver a response

The challenge of defining an architecture such as this is the need for a dynamic response
system where the base components respond in a continuous and consistent manner,
independent of changing input parameters or component substitution. The overall goal of the
project is natural human computer interaction that accepts and returns both audio and visual
information. This includes all the human foibles such as awkward silences, poorly formed
dialogue and incomplete sentences.

Continued next page...

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 10

● Continuous Idle Loop – While the application is waiting for user input, the CG agent
must present itself in a manner that is natural and does not suggest to the user that it
is anything but present in the room

● Continuous Input – This part of the pipeline represents the capture of user activity
(audio as well as visual) and the continuous parsing and processing of that
information. Processed user input information, such as simple values describing the
user’s emotional state, are continuously fed into the agent rendering and animation
systems, allowing them to instantly respond to for example a change in mood in the
user.

Figure 1: Input Loop

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 11

● Continuous Authorisation – The system is continuously ensuring that the current

user is allowed to access the system.

Figure 2: Authorisation Loop

● Continuous Response – This is a time sensitive path where interpreted emotional

and semantic state, and evaluated dialogue and/or previous session persistence is
converted into a response that can be packaged to:

○ Drive the visual CG rig (ie; lips are in sync, facial emotional cues are
consistent and body language considered)

○ Deliver a response consistent with the user dialogue in a low-latency manner
○ Synthesize the verbal audio response

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 12

3.2. Software Components and Applications
The PRESENT architecture is divided into two fundamentally different concepts: Software
Components and Applications, as illustrated in the figure below:

Figure 3: Separation of Components and Applications

- Components are distinct, orthogonal and independent units of functionality.
- Applications are projects which bind the components together to form a fully

functioning executable.
- In the PRESENT consortium, most partners are component providers. Infocert,

University of Augsburg, INRIA, Framestore and Cubic Motion are building software
solutions that can be used in the context of PRESENT.

- On the PRESENT consortium, CREW and Brainstorm are application developers
delivering executables to clients by integrating Unreal engine components into a fully
functioning product.

- Each component has a well defined interface contract as well as a set of service
level objectives (SLOs) to define its performance characteristics.

- The interface for each component is versioned with an integer number that keeps
incrementing whenever a change to the interface is agreed upon.

- A special Reference Implementation Application is provided alongside the
architecture to provide a fully working example, showing all the Components
assembled into a fully working state. This is outlined in detail below.

With this architecture, components are highly independent, meaning that they can be easily
utilised outside this particular context. For example, a visual input component that provides

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 13

the Unreal Engine environment with tracking data from a user may be utilised in other
separate projects. With each component implementing a well defined interface, it is also
easy to test and run a test application with a mix of components of different maturity.

3.3. Input and Output Processing
Game engines are part of a subclass of software called real time simulation software. Flight
simulators are also based on the same philosophy (Ex: CAE, the largest flight simulator
company in the world, follows a similar architectural philosophy with their simulation
software).

Figure 4: Simulation / Game Architectural Concepts

One of the core software architecture philosophies behind real time simulation software is
the clear boundaries between components doing input processing and components doing
output processing.

⚐ Note: While we could tolerate having monolithic software components able to handle
both inputs and outputs, from an architecture standpoint and from a documentation
standpoint, they will be represented by more than one interface.

3.4. Exploitation Environment
Technical collaboration on the PRESENT project requires a platform on which partners can
safely and efficiently exchange technology and digital assets as well as share and
collaborate on software components in an effective and low risk fashion. Furthermore, a well

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 14

https://www.cae.com/

defined realtime platform is a requirement for designing the high performance API interfaces
required for the loops as well as the real time data exchange required by PRESENT.

This document therefore defines the principal operational environment for PRESENT as
being Unreal Engine. Unreal Engine is the standard development platform in both the
Broadcast and Visual Effects markets and is used by millions of developers and hundreds of
millions of users. All interfaces and components outlined in this document are thus defined
within Unreal Engine environment and are based on Unreal Engine SDK.

⚐ Note: While Unreal Engine is the central point where all components are being joined
together into an application, the software architecture imposes no restrictions on how
each component chooses to implement its core business logic. For example, an
implementation may consist of a minimal unreal engine plugin that connects via
socket IPC to a separate process which contains the business logic.

⚐ Note: As this is a three year project, we need to acknowledge that there may be
advances in Unreal Engine which we want to exploit. The version of Unreal Engine
being used as the reference implementation will therefore be reviewed at month 15
and month 24 and an assessment made as to whether to switch reference versions.
The decision on whether to change will be taken in consultation with all partners and
agreed in the Architectural Review Board. If a new version of Unreal Engine is
decided upon, a new reference implementation will be created and circulated as
appropriate in order that all parties have a common application environment to test
within

3.5. Reference Implementation

When creating a set of independent software components, with the plan of later on
assembling these into an application, it is crucial to connect them into a working environment
as early as possible. Therefore, a reference implementation has been created in Unreal
Engine v4.23, consisting of simple stub interfaces and component interfaces.

● For application developers, the reference implementation acts as a sample and a
starting point for their work.

● For component providers, the reference implementation makes it easy to test that
the integration of a component operates as expected in a full system.

● For all partners, it means work can happen in a safe and decoupled fashion.

Initial releases of this reference implementation have been made available to the partners.
The latest release version is v2.1.1 and this contains representations of the following
components:

● Emotional Assessment
● Audio Processing
● Text to Speech

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 15

● Action Response
● Motion Generation

The components associated with integrating Brainstorm’s InifinitySet software as well as
InfoCert’s security API’s are not yet present. Support for these components will be added in
future releases.

3.6. Agent Creation

3.6.1. Character Capture
Creating the highest quality agent requires the highest quality photographic reference data
of a source actor. The benchmark capture system for the highest quality facial geometry is
The ‘Medusa Facial Capture System’ developed by Disney Research. Further, the highest
quality facial texture data is provided by the ‘Dorothy’ capture system developed by Clear
Angle. Pursuant to gaining the best source data for the project, per the amendment
‘Proposal for reallocation of Ikinema work’ Framestore have i) cast a source actor and ii)
performed full capture sessions with both Medusa and Dorothy iii) received, QC’d and
ingested all captured material. The capture systems above have the following key benefits
over other solutions.

Compared to other systems the Medusa system captures not only the endstate of the fully
triggered shape but generates a temporally consistent capture of an expression from the
neutral face to the final end result. Other systems are not able to give us more than just a
singular snapshot of the individual expression. In order to achieve high quality believable
deformations it is however vital to know about the movement of a given shape and therefore
muscle in all its states besides just the extremes. Humans when talking fire a lot of facial
muscles simultaneously but rarely is a muscle triggered to more than 50% or more when
talking or subtly emoting. The Medusa capture system is currently the only way to capture
these complex low range motions that we otherwise have to invent ourselves or just rely on
the defomer’s linear interpolation which will likely yield unsatisfying results. Also as a positive
side effect the resulting data saves time for the modelling artist creating the facial setup and
ensures detail is maintained in a realistic fashion between the varying states of a given
shape. It achieves this by providing a constant topology on the facial meshes for each face
shape captured and therefore increasing the quality of the final output we are able to
achieve.

The Dorothy capture system is a purpose built rig, specifically for facial capture, which
combines high resolution cameras with a 360 degree light rig designed specifically to
produce the flat texture data that is required for CG asset creation. This system also
provides excellent reference for the lookdev artist beyond the texture acquisition step. It
achieves this by firing many lights sequentially in rapid succession in a controlled lighting
environment which allows artists to successfully adjust the shader models mimicking the
complex behaviours of the human skin in various lighting conditions in a realistic way.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 16

Framestore put out two casting calls to secure the services of a source actor and reviewed
over 80 audition tapes. 7 actors were called in to audition in front of Framestore and Cubic
Motion representatives. This process resulted in ‘Gareth Leighton’ being cast as the source
actor and presented to the consortium partners in the Q3 project meeting. Gareth’s casting
was based on 3 parameters i) acting ability, ii) ability to accurately pull FACs shapes
(specific facial expressions) to drive the facial rig being generated, iii) neutral facial anatomy
and features. Gareth’s performance was judged over these three parameters respectively as
constituting the best combination of performance to i) provide the best possible acting
source data for Cubic Motion’s work packages to derive and learn performance data, ii) form
the basis of a pose based facial rig and iii) provide as neutral a template for potential future
transfer to other agents with different facial anatomy.

Due to the extremely labour intensive process of creating a computer generated agent that
advances the state-of-the-art in real-time rendered humans, only a single hi-res agent is
within the scope of the project. Therefore only one actor was cast as the source for this
build. Evidently one actor cannot encompass the full range of human gender/race/age/etc.
In order to address this concern a rig control template will be provided and documented that
will allow any future agent adhering to this convention to be plugged into the system.
Although outside of the scope of this project, it is hoped that this will allow future agents of
different genders, races and ages to be easily incorporated into the system.

In addition to the two capture sessions outlined above, Cubic Motion will carry out a series of
motion capture / head mounted camera sessions with Gareth to capture high volumes of
body / facial footage of him interacting with users in the use cases defined. Cubic Motion will
tag and analyse Gareth’s performance and his reactions to different users in different
emotional states to build a library of performance from which to build algorithms to derive
wholly new performances depending on the emotional state and body language of the
person interacting with the agent.

The ability of Cubic Motion to carry out these motion capture sessions has been severely
impacted by the COVID-19 pandemic and the resulting restrictions on travel and multiple
person gatherings. In order to maintain progress Cubic Motion are utilising generic motion
capture for the development phase of their component. This situation will be monitored and
the Gareth specific sessions scheduled as soon as restrictions allow.

3.6.2. Character Build
There are different applications for the agent within the project scope which require different
agent visual and computational complexity. For some use cases / partners / research
streams, the goal is to run the avatar at realtime in a lower specification computational
resource environment (e.g. web based), whereas in other cases the goal is ultimate visual
fidelity.

We have therefore split the agent development into two streams, the ‘lightweight’ agent and
the ‘high fidelity’ agent. Taking the Medusa and Texture scans of the actor from who’s image
the agent is to be derived, 2 versions of the agent will be created. Framestore are building

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 17

the ‘high fidelity’ agent using the highest quality character rigging and shading models and
pushing what is possible with the highest end hardware. Using the same source data
(photogrammetry scans of Gareth Leighton), Cubic Motion are building the ‘lightweight’
agent using their established CG character build process.

Given the ‘lightweight’ approach uses established build processes, it is expected that this will
reduce the time to having a first pass agent available in the system. This allows Cubic
Motion to do their initial animation training on the ‘lightweight’ agent and rig whilst the ‘high
fidelity’ agent and rig are being built. By working closely on the rig controls, Framestore and
Cubic Motion have aligned the rig control design such that retargeting the animation to the
higher resolution rig at a later date is as simple as possible.

By aligning on a common rig interface and control layout, the two agent rigs have been
designed to be compatible. This means a common interface between the rigs and a common
animation solve in the main loop with the same animation able to drive either rig. This
approach is intended to be complementary to the overall goals of the project, specifically a
single animation driving both rigs and delivering a varying level of visual fidelity depending
on use case.

In order to focus on getting the highest visual fidelity agent possible, Framestore will create a
single agent of the highest visual fidelity (the ‘high fidelity’ agent). By having the ‘lightweight’
agent build approach, we potentially unlock a workflow for the creation of other agents at
lower effort / cost. This approach is also intended to unlock the issue of potentially creating
multiple agents that can better reflect diversity of gender, race and age in the future. By
designing and supplying a rig interface specification that clearly lays out the structure
required for system compatibility other partners will in future be able to create agent rigs that
can be driven by the system using the same user interface or via a retargeting module.

One of the challenges of introducing other agents into the system will be the visual result of
driving animation ‘learned’ from our performer’s animation (Gareth Leighton) to drive the
animation of a second person. A person’s anatomy and expression are intrinsically linked. In
casting Gareth, we have chosen an actor with a neutral facial anatomy in an effort to mitigate
these influences.

3.6.3. Performance Capture
In order to model the behaviour of the actor we require large volumes of performance data.
This consists of the face and body movement, as well as the actor's voice. This needs to be
done concurrently, since there are correlations between these aspects of behaviour which
should be reflected in the performance of the virtual agent. These capture sessions have
been delayed due to the COVID-19 travel restrictions. Therefore work is currently
progressing using generic motion capture that will then be swapped out for capture done
with Gareth Leighton when restrictions allow.

For facial performance capture, the gold standard is multi-view 4D reconstruction of
geometry using a system such as Medusa. This is impractical for our purposes due to cost

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 18

and the inability to capture face and body at the same time. We propose to use a
head-mounted camera system to obtain the best quality we can within these constraints. We
will use two synchronised 2k computer vision cameras operating at 60fps mounted on a
helmet to gather video data of the actor's performance. The position of these cameras will be
fixed relative to each other, allowing stereo calibration and reconstruction of the actor's facial
geometry. This will not be of the same quality as the Medusa data but will be state of the art
for head-mounted capture. We will undertake experiments to refine the hardware to improve
capture and reconstruction quality.

Body movements will be captured using industry standard optical motion capture, solving to
a body skeleton matching the actor's dimensions. Since the body movements of the actor
are fairly limited, this will be sufficient for our purposes. Hand and finger movements are
more difficult to capture and important for the purposes of this project due to the role of hand
gestures in the communication of the agent. There are two options for finger capture: optical
motion capture and gloves with inertial sensors. We will evaluate these options and choose
the method delivering highest fidelity.

Audio will be captured in a sound-proofed studio environment. This will be synchronised with
the face and body data using industry standard timecode.

The range and type of data we choose to capture is an open-ended question. Some
standard behaviour will be required to cover basic communication, idling and transitions, but
we will also need specific performance data related to the use cases in the project. We will
need to capture all of this data over a range of different emotional and behavioural variations
to provide enough data to build a generative model of performance. We propose to stagger
the motion capture sessions over a number of months to allow for experimental progress
and to account for the development of multiple use cases.

This approach is intended to provide a means of capturing a large, high quality data set
capable of delivering photo-real animation and modelling the range of behaviour needed for
a believable virtual agent.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 19

4. DATA FLOW
Figure 5 outlines the data flow through the system (as presented by Framestore at the Q1
summit) and highlights partner responsibilities within the project. Further, it calls out the gaps
in the partner work packages and indicates the proposed solutions to these gaps where
applicable. This breakdown has formed the starting point for the iteration process which has
led to the high level architecture specification outlined in this document.

Figure 5: Data Flow Overview (v1.1)

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 20

5. TECHNICAL RISK ANALYSIS
Over the course of the architectural design process, risks have been identified in the system
which fall between the work packages.

5.1. RISK 1: Knowledge Base

5.1.1. Issue
The level of specialised knowledge required to address issues surfacing around the
Knowledge Base strike to the core of the challenges facing AI and more appropriate to this
project, AGI (Artificial General Intelligence). Directly addressing these challenges are out of
scope for the partnership.

5.1.2. Solution
It is anticipated that developments in the larger community around digital assistants will lead
to progress and enable an increasing level of proficiency around the integration of "off the
shelf" solutions. By keeping the architecture and API's modular it is anticipated that current
offerings (DialogFlow) will naturally lead to more advanced integrations (Google Assistant)

The knowledge base will therefore be implemented in the core application logic, specific to
each use case. Some applications make use of a simple lookup table, others may use
Google Assist / Amazon Alexa.

UPF have started research that may provide a common framework for underpinning the
application logic in some or all of the use cases.

5.1.3. Caveats
As a result of developments in this area, it is possible that the dialogue component may well
evolve over the course of the project.

5.2. RISK 2: Multiple Agent Creation

5.2.1. Issue
The creation of high resolution, photoreal CG characters is a highly time and labour intensive
process. The capture costs alone are a significant proportion of Framestore’s project costs.

In order to push the visual limits of real time character development, Framestore’s skills and
focus need to be focused on creating a single character / agent of the highest quality
(derived from the scan of our source actor). However, there are use cases in PRESENT that
require multiple agents, not necessarily at the highest visual quality.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 21

Further, Framestore’s rigging technology is both proprietary and requires very highly skilled
individuals to use.

Likewise, per the ‘Performance Capture’ section of this report (METHODOLOGY), the
animation training dataset for the PRESENT project will be trained from the performance of
our main visual agent (the acting of our source actor). Again, training is a highly time and
labour intensive process and Cubic Motion will be focusing on a single solve to a single
performer.

As the rig is the interface between Cubic Motion and Framestore, this presents challenges. i)
The animation training in Cubic Motion’s work packages needs to be targeted to a single rig
interface. ii) other partners need to be able to create simpler agents with simple rigging tools
that have a common interface.

5.2.2. Solution
Cubic Motion are a specialist provider of rigs for the games industry and have licensable
plugins for the creation of rigs suitable for high end game characters. Cubic Motion and
Framestore are aligning rig controls to a common interface such that the animation system
can be retargeted between the Framestore rig and the Cubic Motion rig. This will allow
alternative agents to be created by partners using the commercial Cubic Motion plugin and
be driven from the same animation system. Cubic Motion will provide a license for the plugin
to each partner for the duration of the project.

5.2.3. Caveats
Regardless of the rigging technology used, human performance and anatomy are
fundamentally directly linked. Therefore mapping animation performance derived from one
human to another human (CG character) anatomy will yield results that will break this link. In
casting our source actor, we have taken care to cast an individual with ‘generic’ features with
the aim that the dataset is as transferable as possible. However, it will always be the case
that the animation system will work best on the actor from which the performance is derived.

5.3. RISK 3: Audio Generation

5.3.1. Issue
The generation of agent speech poses a number of unique challenges to the consortium.
While significant effort has been made to capture and process human input, the resulting
generation of the agent speech requires a skill set outside that contained in the group. There
are design decisions: go with a synthesized voice and determine how to match phonemes to
appropriate emotional content and delivery, use ML techniques on a captured audio dataset
matching the human used for the base scan and use this to drive the facial rig.

5.3.2. Solution
There are two possible solutions to this issue:

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 22

- The first solution is to use Google Dialogue flow to generate the speech (audio). This
solution is presented in the architecture presented here.

- The second solution, at least for the high resolution agent, is to procedurally process
audio captured during the Performance Capture of the source actor. This is currently
presented as a stretch goal, but may yield results in future.

5.3.3. Caveats
The use of Google Dialogue Flow will result in a computer generated voice. This will reduce
the sense of ‘Presence’.

5.4. RISK 4: Unreal Engine Platform Constraint

5.4.1. Issue
With the architecture outlined in this document, Unreal Engine is singled out as the single
application environment where PRESENT use cases can be exploited. The modular nature
of the architecture allows components to be used in isolation or together to fulfil each partner
and use case needs. Deciding on Unreal as the integration platform is a key architectural
decision necessary in order to mitigate risk and allow partners to effectively exchange code
as well as digital assets.

5.4.2. Solution
Partners are aligned on Unreal as the application environment. The definition of the
interfaces specified in this report, coupled to the reference implementation, allows partners
to develop components in whatever development environment best fits the functionality of
that component.

5.5. RISK 5: Background Visualisation

5.5.1. Issue
The project specification outlines a component that handles background visualisation.
(WP3T20. Because this is handled in month 13-24 of PRESENT, this specification is not yet
defined.

5.5.2. Solution
This component is to be discussed in the next quarterly meeting in order to map out a
solution satisfactory to all partners.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 23

6. HIGH LEVEL SYSTEMS ARCHITECTURE
The diagram below outlines the different software components in the system. It also outlines
a high level design for the application logic - the part of the system that each application
implementation would need to construct in order to bind all the components together into a
fully working system.

Figure 6: High Level Architecture

- Each component is implemented as part of an unreal plugin which can be accessed

either via C++ or via a blueprint.
- Each of the components outlined above has a well defined interface that specifies its

data exchange.

⚐ Note: The breakdown in Figure 6 outlines the component interfaces. While each
interface needs to be part of an unreal plugin, there is nothing stopping a plugin from
implementing multiple interfaces if this makes the implementation easier.

In the sections below follow principal interface details for all components defined above.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 24

6.1. Speech Input

Description Processes user speech input and
returns this as text.

Revision 2

Owner University of Augsburg

Implementation
Details

This will utilize Google Dialog Flow for its implementation. It will process
an audio stream from a microphone, determine when a sentence or
phrase ends, and at that point connect to the Dialog Flow web service to
request a translation.

Performance/
SLA

The system will wait until the end of a sentence (or for a maximum of 10
seconds) and will then respond within 2 seconds (including going
through Google Dialog Flow). For short sentences, a roundtrip will take
~2.5s. Worst case scenario is that an error is returned after 10+2=12
seconds.

Notes

Utilised by use
cases

Greek Chorus, Adam, CSS (CREW), Virtual Clerk (UPF), Sports
Broadcast (Brainstorm), Virtual Production (FS)

Configuration Hardware (microphone) configuration parameters.

Interface Inputs The ability to
- Register an event that fires when a sentence begins.
- Register an event that fires when a sentence ends.
- Register an event that fires when processing is complete.

Interface
Returns

- Spoken dialog, as a string.
- Audio data in raw form.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 25

6.2. Emotional Input

Description Processes user input and returns
an approximation of the user’s
emotional state.

Revision 1

Owner University of Augsburg

Implementation
Details

The system consists of an unreal implementation and an external
executable that communicates using an IPC mechanism (sockets). The
external executable processes audio and video at a constant rate of
30FPS and can be queried about its last known state at any given time.

Performance/
SLA

- Return a response within 10ms
- Ensure that response data is never older than 150ms
 (~5 frames @ 30FPS)

Notes

Utilised by use
cases

CSS, Adam (CREW), Sports Broadcast (Brainstorm), Virtual Clerk
(UPF)

Configuration Hardware (microphone and camera) configuration parameters.

Interface Inputs - A method to query if a user has been detected.
- A method to query emotional state.

Interface
Returns

- Returns a floating point tuple (arousal, valence) describing a
coordinate in an emotional state space for the currently detected user.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 26

6.3. Body Input

Description Processes user input in order to
output a model for the user body
or hand motion.

Revision 1

Owner INRIA

Implementation
Details

Processes inputs from a Xsens motion suit at interactive rate. Outputs
data to describe the user’s body language.

Performance/
SLA

Requires a fast response (50ms average response time, 1.5 frame
buffering at 30fps).

Notes An almost direct connection to the xsens motion suite. There is an
opportunity to potentially align the interface of this component so that it
could be implemented in full by a third party plugin.

Utilised by use
cases

Greek Chorus, CSS, Adam (CREW)

Configuration Hardware configuration parameters.
- Ability to to need hand tracking/full body tracking

Interface Inputs The ability to query for the current body motion state of the user:
- The global coordinates of limbs
- Centre of mass
- Position of the eyes / head
- Position of the feet
- Velocities and Acceleration

Interface
Returns

Data structure of a rigged hierarchy of matrices denoting the orientation
and velocity of the limbs

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 27

6.4. Audio Trigger Input

Description Processes audio and sends an
event once it reaches a given
level.

Revision 1

Owner INRIA

Implementation
Details

This component monitors external audio hardware and sends an event
once the audio signal reaches above a given threshold.

Performance/
SLA

Event emission within 20ms after audio detected.

Notes Used to for example trigger logic after a user claps their hands.

Utilised by use
cases

n/a

Configuration Hardware (microphone) configuration parameters.
Threshold level to trigger at.

Interface Inputs The ability to register an event that fires when the threshold is reached.

Interface
Returns

Event contains details of the detected audio amplitude (level) detected.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 28

6.5. Blueprint Input

Description Processes external data and
turns that into a stream of
commands that control blueprint
state.

Revision 2

Owner Brainstorm

Implementation
Details

This component will enable communication with existing Brainstorm’s
tools, such as InfinitySet. It will allow those tools to command some
aspects of Unreal Engine.

Performance/
SLA

Once the request has arrived in the engine, processing should be
instant (<5ms).

Notes This component does not
expose an interface to the
application layer:

- Ability for a client to
connect.

- Ability for a client to
introspect a subset of
application blueprints at
runtime.

- Ability for client to read,
write blueprint values

Utilised by use
cases

Sports Broadcast (Brainstorm)

Configuration - Connection parameters
- Which blueprints and parameters are available for introspection.

Interface Inputs Ability to start and stop the service

Interface
Returns

A series of asynchronous events coming from clients.
Events notifying the application about connection and disconnection.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 29

6.6. Camera Input

Description Provides video streams from
InfinitySet and/or their camera
tracking data when available.

Revision 2

Owner Brainstorm

Implementation
Details

A low latency solution (to be defined by implementation) that allows the
InfinitySet render and its tracking information to be shared and used to
drive Unreal camera. It is also possible to use this module to share just
video or just tracking information.

Performance/
SLA

Once the request has arrived in the engine, processing should be
instant (<5ms).

Notes

Utilised by use
cases

Sports Broadcast (Brainstorm)

Configuration Not required

Interface Inputs n/a

Interface
Returns

Events notifying the application about connection and disconnection.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 30

6.7. Dialog

Description The ‘conversation engine’.
Receives a text based query and
passes back a text and audio
response.

Revision 2

Owner University of Augsburg

Implementation
Details

Based on google Dialog Flow. Running as a containerized service
outside of Unreal Engine. Sending http requests over the Internet to
google. The Unreal Engine plugin is a thin wrapper around a REST or
websockets interface.

Performance/
SLA

Maximum response time 2 seconds.

Notes In an application setting, the current SLO of this component may be too
slow to yield a realistic response. This may need to be superseded by
an implementation which responds asynchronously and with low
latency. Also Dialog Flow does not support embedded phoneme,
viseme meta-data so another option may be needed such as Amazon
Polly

Utilised by use
cases

Adam (CREW), Virtual Clerk (UPF), Sports Broadcast (Brainstorm)

Configuration Service connection parameters

Interface Inputs An input string in the form of a sentence (e.g. “What will the weather be
like tomorrow in Atlantic City?”)

Interface
Returns

- A string containing a response (e.g. “Tomorrow in Atlantic City, it will
be mostly sunny with showers in the afternoon”)
- Generated audio response
- Embedded phonemes and viseme data likely needed

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 31

6.8. Security

Description A two-way interface for
managing a secure session for
the interaction between a user
and an agent given the facial
appearance of the user and the
unique credentials of the agent.

Revision 2

Owner Infocert

Implementation
Details

The Unreal Engine plugin will be a thin wrapper of a websockets or
REST API, connecting with a containerized service which handles the
authentication. Please note that this API is both input and output;
requests are initiated by the agent as well as by the service.

Performance/
SLA

Image upload should be less than 1 sec.

Notes The high level interaction with with the authentication service would
appear to the user as follows:

- The user starts a session with the application, for example by
approaching the setup or pressing a start button.

- A QR code is presented to the user with instructions on how to
scan it on a mobile device.

- On the mobile device, the user consents for the application to
access personal data.

- Once processed on the mobile device, the application will
validate the user’s face. This process will be transparent to the
user.

- A secure session is now either initiated or denied.

In order for this to be integrated, the application implementation typically
implements the following two user interactions:

- UX for presenting the user with a QR code
- UX and input logic for capturing an image of the user’s face

During application execution, an application implementation is
responsible to continuously authenticate in order validate the session.

At any point, the application may re-request a session exchange to

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 32

happen.

A separate function is required in order to check if the face is in motion
so that the service cannot be tricked by a photograph of the person

Utilised by use
cases

n/a

Configuration Service connection parameters

Interface
Methods

Authentication Invite Request from application to security plugin.
- For the very first authentication, will return an image of a QR

code.
- For subsequent authentications, session id is immediately

returned.
Face scan request event - triggered by the security plugin when an
image of the user’s face is needed.
Face scan upload - sends image data (of the user’s face) to the
security plugin. Upon success, a session id is returned.
Is face moving/alive - function to check face is in motion to guard
against static photos being used to trick the system

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 33

6.9. Haptics Output

Description Generates haptic feedback to an
external device.

Revision 1

Owner INRIA

Implementation
Details

The haptics system consists of custom external hardware built by
INRIA.

Performance/
SLA

- Be able to detect a haptic response within 200ms

Notes Multiple units may be connected.

Utilised by use
cases

n/a

Configuration Hardware configuration parameters.

Interface Inputs - A method to trigger a haptic impulse
- A method to turn on haptics output
- A method to turn off haptics output

Interface
Returns

 n/a

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 34

6.10. Motion Generation

Description Converts high level commands
into character motion for both
body and face for the agent.

Revision 2

Owner Cubic Motion

Implementation
Details

The component will run as a separate executable, outside of Unreal
Engine. The data will be sent from the Unreal Engine plugin
Implementation via some form of IPC and will be returned using
Livelink..

Performance/
SLA

- High level behavior decisions to be processed in < 200ms.
- For mid level behavior decisions, such as muscle reaction time,

state transition to new action state should happen within 33ms (1
frame at 30FPS).

Notes Document with more detailed specifications for this component has
been composed by Cubic Motion and shared with partners

Utilised by use
cases

All Use Cases

Configuration - Animation configuration parameters, including any fixed animation
responses that an application wishes the system to respond with.

Interface Inputs - Audio waveform of the synthesised speech response
- Normalised text transcription – converted to speech tokens (eg.”$200”

- two hundred dollars)
- Phonemes tags – token pronunciations
- Visemes tags – visual configuration corresponding to the phonemes
- Paralinguistics tags – aspects of spoken communication that do not

involve words
- Emotional state – to be provided based on the emotion tuple (arousal,

valence)
- Gestural cues – inferred by the user’s data denoting the orientation

and velocity of the limbs
- Synchronisation information – timestamp and/or frame numbers

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 35

- World coordinates – relative to the camera
Format options:

- EMMA (Extensible Multimodal Annotation Language) - W3C
recommendation

- EmotionML - W3C recommendation
- SSML (Speech Synthesis Markup Language) - W3C

recommendation
- BML (Behaviour Markup Language) - draft

Interface
Returns

- Unreal livelink with data conforming with the animation interface
defined later on in this document.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 36

6.11. Lightweight Asset

Description A lightweight digital human
unreal asset.

Revision 1

Owner Cubic Motion

Implementation
Details

The asset will be assembled through an asset blueprint in UE4 and will
be exposed as a skeletal mesh. A LiveLink interface will be provided
with this asset blueprint.

Performance/
SLA

90 FPS (targeting VR render). It should be possible to instance multiple
characters within a single application.

Notes The animation data is sent on a form defined by the animation data
format specification.

Utilised by use
cases

Greek Chorus, CSS, Adam (CREW), Virtual Clerk (UPF),

Configuration n/a

Interface Inputs Receives livelink data from the motion generation plugin. Data format
conforming with the animation interface defined later on in this
document.

Interface
Returns

n/a

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 37

6.12. High Quality Asset

Description A photoreal digital human unreal
asset.

Revision 1

Owner Framestore

Implementation
Details

The agent will be assembled through an asset blueprint in UE4 and will
be exposed as a skeletal mesh. A LiveLink interface will be provided
with this asset blueprint.

Performance/
SLA

30 FPS (targeting screen render).

Notes The animation data is sent on a form defined by the animation data
format specification.

Utilised by use
cases

Virtual Production (Framestore), Sports Broadcast (Brainstorm)

Configuration n/a

Interface Inputs Receives livelink data from the motion generation plugin. Data format
conforming with the animation interface defined later on in this
document.

Interface
Returns

n/a

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 38

6.13. Agent State Output

Description Output high level information
about the character state, and
events to trigger actions, to an
external application.

Revision 1

Owner Brainstorm

Implementation
Details

An open, well documented data exchange using the InfinitySet existing
protocol. Used to connect to a system such as Brainstorm InfinitySet.
System is threaded and non-blocking.

Performance/
SLA

The performance of this module will be largely dependent on the
connection from to the receiving client, so a SLO is not practical to
define.

Notes The Unreal Engine plugin
implements a server that one or
more clients can connect to in
order to receive information
asynchronously. No
authentication is required in
order to connect.

Utilised by use
cases

Sports Broadcast (Brainstorm)

Configuration Connection configuration.

Interface Inputs - Ability to query which clients are connected
- Ability to send high level emotional state metadata to connected
clients. This will be in the form of a well documented json structure with
parameters for mood, animation state, position etc.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 39

- Ability to send trigger data to control the InfinitySet scene graphics.

Interface
Returns

 n/a

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 40

6.14. Animation Data Format Specification

Description A data format specification to
ensure that the animation data
streamed from the motion
generation plugin can be
consumed correctly by the
render plugin.

Revision 1

Owner Cubic Motion / Framestore

Implementation
Details

Body Rig:
Framestore and Cubic Motion will align on a common skeletal mesh for
the body rig - Framestore will initially provide a skeleton to Cubic Motion
on which to derive the CM version of the body rig.

Face Rig:
Framestore and Cubic Motion will align on common blend shapes and
GUI controls between their versions of the rig. Framestore will provide
Cubic Motion a diagram mapping each control in the UI for retargeting
between the 2 versions of the facial rig.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 41

6.15. Core Application Logic

Description Main implementation that
connects all components into a
functional system.

Revision n/a

Owner One implementation per use
case.

Implementation
Details

The core application logic takes all input, ensures that the user is still
authenticated, requests a response from the dialog plugin and based on
that creates output state for the agent which is sent down to the motion
generation plugin for processing. The application also implements
rendering and output from Unreal engine, e.g. the logic and
configuration for how the pixels should leave the system (VR, Screen,
ipad etc).

Performance/
SLA

n/a

Notes Please note that this is not a component or unreal plugin – instead it
defines the work that needs to be done by the integration partners in
order to integrate the software components into a fully functioning
system.

⚐ Note: Any functionality or logic not outlined as components in this document is
assumed to be handled as part of the application logic.

The breakdown in Figure 7 outlines how an application could be designed given the
interfaces presented by the various components to form a fully functioning system as defined
by the main PRESENT specification. The core application logic is broken down into four
distinct parts:

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 42

Figure 7: Core Application Logic

Initialisation
An application wishing to implement the security module would need to start by establishing
an authenticated session between the user and the system. This currently involves an UX
process where a QR code is read in and passed down to the security plugin.

Synchronisation of inputs
At this stage, the goal is to create coherence at the input level. Inputs generated by the
speech plugin may have a significant lag (up to 2 seconds after a sentence has completed).
These need to be synced with the inputs from the visual input plugin, which may have as
little as one frame, or 33ms, of lag. This is done in a smooth fashion, such that the system
response (as seen through the agent) is coherent over time.

Once synchronized, speech data as well as the position and emotional state of the user
should be available and can be passed onto the next stage.

Global states and response processing
At this stage, the goal is to react to the response collected through the inputs. The logic for
generating a response will depend on the input:

- If the user is not talking, determine an ‘idle state’ for the agent given the mood of the

user and what previous state the agent was in.
- If speech is incoming via the inputs, forward it on to the dialog plugin for processing

and switch the agent to a state where it is getting ready to talk
- If a speech response is coming back from the dialogue component, prepare for the

processing of this.
- Authentication of the current user happens continuously.

A state will be maintained in order to track over time the emotional state of the agent and
based on this determine the appropriate animations to request. This is where the application
rules are implemented and how the specific system responses will be coded.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 43

Output logic
This part is relatively simple. The goal of the output logic is to send high level commands to
the motion generation plugin through a buffered output classes interface. It will also receive
information from the motion generation plugin when an animation response has completed,
allowing the output logic to feed this back into the state processor.

Rendering
Rendering is separate from the simulation logic and encompasses the code and
configuration needed in order for the pixels to leave Unreal engine and be drawn on a
display device or similar. Unreal engine supports a wide range of devices, such as screens,
VR headsets and tablets, and in the case the output is not supported, the application
developer will need to extend the system appropriately.

6.16. Components not covered in this report

6.16.1. Super Render Computer (WP6T2)
WP6T2 covers the building of a high-performance low latency “super render computer”.
Given advances in GPU technology since the proposal was written we no longer anticipate
that this approach will be required.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 44

7. HIGH LEVEL AGENT CREATION ARCHITECTURE
A rig defines the interface between animation and the movement of the agent geometry.
Animation is therefore tied to the rig and geometry to which it is targeted. The agent creation
architecture is therefore split into two rigs. The ‘High Fidelity’ and ‘Lightweight’ rigs.

Framestore will create the ‘High Fidelity’ Rig. Cubic Motion will create the ‘Lightweight’ rig. A
common interface will be defined between Framestore and Cubic Motion which will allow
animation generated from the Cubic Motion performance component to drive both rigs.

As outlined in the methodology, Framestore will deliver a single, high resolution agent for the
project on the ‘High Fidelity’ rig. Cubic Motion will produce the same agent on the
‘Lightweight’ rig.

Cubic Motion will create a ‘Lightweight’ rig and will licence out the plugins necessary to
utilise this rig for the duration of the project.

Framestore and Cubic Motion will design and supply an interface specification that clearly
lays out the rig structure required for system compatibility. This will enable other partners to
create agent rigs in future that can be driven by the system using the same user interface or
via a retargeting module.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 45

8. CHANGE MANAGEMENT
Over time, changes to the interface specifications are expected. This section outlines the
process for how such a change is managed.

8.1. Identification and Proposal
A need arises - usually in the process of utilizing a component in an application. As a
consequence, the relevant partners liaise and discuss a proposal for how the interface could
evolve. If relevant, a collaborative prototype is carried out in order to validate that the
interface change is relevant. A written proposal explaining the details of the change as well
as why the change is needed is drafted and distributed to the partners.

8.2. Approval
The change is presented to the architecture board - ideally along with the practical prototype
to demonstrate the need as well as the implementation. The architecture board reviews and
approves the change.

8.3. Re-Release
The architecture specification is re-released to all partners. The component interface version
number is incremented. Framestore re-releases the reference implementation to implement
the interface in a way that demonstrates the added functionality in a relevant way.

8.4. Component Update
Lastly, the partner responsible for providing the component re-releases the component with
support for the new interface. The version number of the component should reflect the
version number of the component interface.

⚐ Example: If the component interface was version 12 and the most recent component
release was v12.3.1, an interface change would result in the component interface
version being incremented to become 13. The initial release of a component to
support this interface would be v13.0.0.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 46

9. REFERENCE IMPLEMENTATION
The current version of the reference implementation - v2.1.1 - is released to all partners via
the Framestore sFTP.

9.1 Components
Reference implementation v2.1.1 divides the components according to Figure 8.

The following components are represented in v2.1.1:

● Emotional Assessment
● Audio Processing
● Text to Speech
● Action Response
● Motion Generation

The components associated with integrating Brainstorms InifinitySet software as well as
InfoCert’s security API’s are not yet implemented. These components will be supported in
future releases.

Each component is represented as a Third Party Plugin in the Unreal Engine reference
implementation project. Part of each plugin is therefore the library (dll) that each partner can
edit as they see fit, and the other part is the integration of that library (dll) with a mock
implementation. The plugins are integrated through a wrapping actor component, and linked
in the project between actors.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 47

Fig. 8. Reference Implementation Schematic

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 48

Below is a typical breakdown of the components - the example given is the Emotional
Assessment plugin :

> Everything under there is the
integration of the library and any
other code required for the
reference implementation project
to use the partner’s library, as well
as the mock implementation.

> Everything under ThirdParty
belongs to the Partner. It can be
any kind of project/sources, as
long as it a generated dll with the
correct signature under
x64/Release/. That dll must also
be found in the
Binaries/ThirdParty folder of the
plugin

The aim with this structure is to have a base class that can be derived from, to allow for any
implementation required. In this case, the first is the Mock Implementation, which fakes the
feature, and the second one is the ThirdParty Implementation which uses the partner dll.

The integration is done through an Actor Component, which controls the switch between
each implementation when the engine is running. It is a wrapper of the implementation
integration, to expose it to the blueprint scripting language in the editor.

Each actor using these components derives from BP_ModuleBase, which contains variables
for switching from mock to real implementation, and logic for debug information.
You have access to 2 variables to control that on every module actor.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 49

Each module actor does its integration of the module c++ component, as well as linking with
other modules through scene references and events.

The component is initialized first, along with its required events. Then steps are added to
control the mock implementation variables, and the debug information. These steps will be
ignored when variables described above are unchecked. Here’s an example of the
TextToSpeech Actor setup.

9.2 Mock Variables
These are the exposed variables used to change the behavior of the reference
implementation for each module.

Emotional Assessment:
No variables are required for this component, it uses sin and cos functions over time to
generate valence and arousal.

Audio Processing:

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 50

A list of text sentences that are broadcast with Unreal events once every “MinDelay” to
“MaxDelay” seconds.

Text To Speech:
A list of sound wave audio files associated with its translation in text. The mock
implementation choses a random entry in the list when it receives text from the audio
processing module.

And an additional variable controlling whether this module should play the audio file or not.

Action Response:
The offset from the user position where the digital human will move.

Motion Generation:
A list of animation sequences that are used randomly when a response is triggered.

9. 3 Third Party Signatures
These are all subject to change. The reference implementation is in its early stage releases
and all variables are subject to requests and feedback from the partners concerned with the
components implementation. Framestore fully expect to be iterating on the exact
configuration of the component interfaces in the reference implementation throughout the
project.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 51

Every module was created with a method that is being called when the module is loaded in
the editor. It is here for convenience if dlls need single time initialization.

void OnModuleLoaded();

Emotional Assessment:
Gives access to a valence and arousal value at any time.

float GetValenceValue();

float GetArousalValue();

Audio Processing:
This module keeps track of the valence/arousal values and should send an event when a
sentence is recognized from the audio feed and an answer is found..

typedef void (__stdcall *EventCallback)(const char*);

void UpdateEmotionValues(float valence, float arousal);

void RegisterEventCallback(const EventCallback& func);

Text To Speech:
This module listens for text sentences sent from the audio processing module and generates
audio data to be played to the user, based also on the emotion status of the user. It sends
that audio event in the form of a SpeechData object.

typedef void(__stdcall *EventCallback)(SpeechData);

void ReceiveProcessedText(const char* text);

void UpdateEmotionValues(float valence, float arousal);

void RegisterEventCallback(const EventCallback& func);

struct SpeechData

{

const char* AudioFile;

const char* NormalizedText;

const char* PhonemesData;

const char* VisemesData;

};

Action Response:
This component listens for the speech data event in order to choose from a range of actions
to give life to the digital human response.

typedef void(__stdcall *EventCallback)(ActionData);

void RegisterEventCallback(const EventCallback& func);

void UpdateEmotionValues(float valence, float arousal);

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 52

void UpdateTargetValues(Vector3d headPosition, Vector3d bodyPosition);

void ReceiveAudioEvent(SpeechData speechData);

struct ActionData

{

Vector3d GazeTarget;

Vector3d MoveTarget;

const char* FaceExpression;

const char* BodyGesture;

};

Motion Generation:
This module is the last one in the chain to create a reaction. It receives information from the
other modules to generate the final animation of the character. The output is yet to be
determined based on feedback from Cubic Motion.

typedef void(__stdcall *EventCallback)(const char*);

void RegisterEventCallback(const EventCallback& func);

void UpdateEmotionValues(float valence, float arousal);

void ReceiveAudioEvent(SpeechData SpeechData);

void ReceiveActionEvent(ActionData ActionData);

10. TESTS, VERSIONING AND DISTRIBUTION
This section describes the various processes for alignment which will be operating during the
project in order to ensure that all partners can establish the right expectations on other
partners and be able to collaborate, iterate and mitigate risk.

10.1. Functional tests
The reference implementation will be the main functionality alignment vehicle. The validity of
the functionality within a given release of a software component is practically demonstrated
by its integration into the most recently released reference implementation.

10.2. Unit tests
Accountability for unit testing resides with each component provider. Partners authoring test
plugins will share their test plans but partners will have the choice of choosing the testing
process they choose fit for the project and their needs. It is not a requirement that unit
testing has to happen within Unreal Engine.

10.3. Versioning
Each software component and the API for each software component is versioned using
semantic versioning, as outlined at https://semver.org/. The version of the interface
specification should be reflected in the major version number, e.g. if a software component
implements version 3 of a component interface, it should be versioned as v3.x.x.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 53

https://semver.org/

10.4. Component Distribution
Each component provider is responsible for making available all the released versions of
their software components to all other project partners in such a way that integration is
reasonably straight forward:

- Each release includes details of features added and bugs addressed.
- Each release includes installation instructions, outlining the practical steps for

integration.
- If a software component contains complex services, a dockerfile and/or docker

compose file is included, allowing any partner to easily stand up all services required.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 54

https://www.docker.com/

11. USE CASE REFLECTIONS
In order to ensure the architecture is relevant and appropriate, this section discusses a
number of the PRESENT use cases and how each one of them would be realised given the
components and principles introduced in this document.

11.1. Adam 0.1
Use Case Leader: CREW

Figure 9: Adam 0.1

- Adam receives speech, body and emotional input from cameras and audio inputs.
- Adam’s application logic implements gesture recognition.

⚐ Note: Adam’s dialog generation may be too complex to be able to utilize the basic
google dialog flow based component implemented by Augsburg. In this case, the
same dialog interface can be utilized but with an augmented component.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 55

11.2. Complex Social Situation
Use Case Leader: CREW

Figure 10: Complex Social Situation

- Posture and hands based non-verbal input is generated from the body input plugin
- Speech and emotional input augments the non-verbal input but is used by the

application to a lesser degree.
- Multiple lightweight characters are rendered for VR output

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 56

11.3. Greek Chorus
Use Case Leader: CREW

Figure 11: Greek Chorus

- User speech is input in both audio and text form along with emotional input and body
position.

- Core application logic generates synthesized speech as well as physical expression
and positions for multiple characters.

- The user experiences these multiple avatars in VR.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 57

11.4. Sports Broadcast
Use Case Leader: Brainstorm

Figure 12: Sports Broadcast

- Camera input, positioning of key ‘points of interest’ in the virtual studio as well as
triggers for graphics are input from infinitySet to the application via camera and
blueprint inputs.

- Audio and video feeds of a user are turned into speech and emotional input.
- The application reacts to the emotional state of the user, uses the interpreted audio

to respond with one out of a fixed responses that were prepared in advance of the
session.

- High level agent states (key position, emotional state, etc), as well as events, are
flagged to InfinitySet via the agent state output component. This will allow controlling
Aston graphics in InfinitySet.

- The application generates rendered output in a way that is suitable to stream back
into InfinitySet.

⚐ Note: Streaming video from InfinitySet into Unreal engine’s rendering loop may
require a bespoke solution. From an architecture point of view, this is considered to be
within the application logic.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 58

11.5. Virtual Clerk
Use Case Leader: UPF

Figure 13: Virtual Clerk

- User speech and emotional input is analyzed by the application logic
- A logical as well as audio response is generated via the google dialog flow based

dialog component.
- Logic for displaying images, maps and related media is handled by the application.
- The response is rendered via the lightweight asset in order to be able to run the

application on affordable hardware.

⚐ Note: In this use case, the dialogue component may need to be augmented in order
to provide specific instructions

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 59

11.6. Virtual Production
Use Case Leader: Framestore

Figure 14: Virtual Production

- Framestore’s proprietary virtual production technology is used for all inputs into the
application.

- The performance of the high quality asset is driven directly from the application logic,
stemming directly from the performance capture.

⚐ Note: In this use case, the user and the agent are the same person. The user’s
motion is used to drive the agent’s behaviour directly, rather than the agent being a
different individual who is responding to what the user is doing.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 60

12. CONCLUSIONS
The architecture presented here forms a solid foundation to the project and clearly defines
partner responsibilities and interfaces. The reference implementation complements this and
provides a strong platform from which partners can build. A number of components are yet
to be completed within the reference implementation and many more iterations are
anticipated over the course of the project based on partner feedback. However foundational
progress has been made and key elements of the architectural design laid out.

The design evolution of individual components, interfaces and system architecture will be
monitored in the ongoing bi-weekly meetings between partners. There are also defined
points in the schedule called out to assess updates to the Unreal Engine version.

Whilst not to be overstated, it should be acknowledged that there is a tension in the project
between modularity and performance. Whilst the use of REST APIs and live links in Unreal
Engine to link work packages are deemed to be the best interfaces for the project goals, it is
also at odds with the active pursuit of overall system performance (overall system latency
and human computer interactivity). This trade off is accepted as the best compromise. It
gives partners freedom to work in their own established development environments and
workflows to create the best components and functionality. Whilst we acknowledge this as
an overall architecture and interface compromise, the relative largest latency in the system is
not within the interfaces, but instead carried in the individual components.

Whilst gaps have been identified in the work packages, there are proposed solutions to fulfil
the aims of the project, and given the active research by other parties in this area, the
consortium will be looking for potential third party solutions that can further improve the
outcomes of the project. The modular design architecture compliments this philosophy and
provides flexibility to benefit from external research and components.

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 61

APPENDIX A - PROJECT TERMINOLOGY
A

ᐤ Agent : Potential term for the proposed photoreal, realtime computer generated character that is the
subject of this grant

B
ᐤ Brainstorm : Partner and developer of Virtual Studio broadcast software

C
ᐤ Call And Response : Initial instantiation of conversation and beginning of a single session
ᐤ Christina EU project : Previous grant project Uni of Augsburg and UPF
ᐤ Cubic Motion : Partner and facial and body motion capture and animation specialists
ᐤ Crew Online : Partner and Belgium live performance based entity specialising in the use of VR in live

environments
D

ᐤ DCC : Digital Content Creation tools used to create the base modeling, rigging, animation, lighting and
compositing aspects necessary to create the CG character and environment

ᐤ DeepMind : Google AI powerhouse
ᐤ Dialogue Management : Process of capturing conversational persistence beyond the initial “call and

response” (see: Google Dialogflow)
ᐤ Dialogue Persistence : A subset of Dialogue Management providing response consistency across

multiple sessions, including indexing into a fuzzyDB where the information is delivered in an intentionally
general way. Ie; remembering too much detail could prove disconcerting to the User

E
ᐤ Emotion Engine : A set of modules designed to take human user input, process that input for meaning,

index the result into a response criteria and package that response ultimately for presentation to the CG
Agent.

ᐤ Emotional Metadata : NEED to define input vs output. Emotional Metadata(in) is derived from Speech
Emotion Recognition with influence from dialogue content and as EM(out) it represents a payload
delivered from the Emotion Engine that influences the voice and facial response potential for the Agent
combining with output from the Knowledge Mining module.

F
ᐤ FPGA : Field Programmable Gate Arrays : a computer processing technique that allows for the

developer to produce a domain specific hardware architecture in order to increase the computational
ability of a specific computing node. A potential alternative to GPU technology.

ᐤ Framestore : Partner and specialist Film, Advertising and Experiential visual effects company
G

ᐤ Google Dialogflow: An end-to-end, build-once deploy-everywhere development suite for creating
conversational interfaces.

I
ᐤ Infiniband : A high throughput, low latency network designed to facilitate node based parallel

processing
ᐤ InfoCert : Partner and pioneer in Sovrin Trust network specialising in digital identity verification and

persistence
ᐤ INRIA : Partner and French university and research institute.
ᐤ IPR : Intellectual Property Rights. In the context of the grant process this is represented as “foreground”

(IP that existed before the project began) and “background” (IP generated as a product of the grant
process)

K
ᐤ Knowledge Component : The Agent response to User Interaction is encapsulated in a Response

Envelope comprising two main deliverables: the Emotion Metadata and Knowledge Component
ᐤ Knowledge Discovery : In the context of the proposal, these are the methods applied to the collected

data gathered via multiple User <> Agent exchanges and used to provide insight and guidance into
further dialogue sessions

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 62

https://www.cubicmotion.com/
http://www.framestore.com/
https://dialogflow.com/
https://www.inria.fr/en/research/research-teams

ᐤ Knowledge Mining : Variation on data mining, knowledge discovery, knowledge extraction. An
approach to indexing into domain specific knowledge to provide the Knowledge Component of the
Response Envelope

ᐤ Knowledge Representation : Guidelines for structuring initial database lookups for performance and
indexing

L
ᐤ Letter(s) Of Support : from non-grant parties endorsing proposals. Currently: Google, Nvidia, Epic

Games, Datatonic
M

ᐤ Modeling (Character) : The process of generating computer based geometry to match the physical
properties of the object in question

ᐤ Motion Capture : The process of capturing human or animal motion via a variety of methods and
digitizing that motion with the purpose of retargeting the physical motion on to a CG (computer
generated) object

P
ᐤ Photoreal : In the context of the proposal this is a computer generated character whose skin quality,

emotional characteristics and overall lighting are indistinguishable from a photograph of the same target
individual.

R
ᐤ Ray Tracing : A graphics rendering technique based on computing rays of light in order to produce

physically plausible representations of computer generated scenes
ᐤ Real-time Rendering : In the context of the proposal this is the ability for the CG character to visually

respond to user input in a natural manner and with minimal noticeable latency
ᐤ Reinforcement Targets : Potential positive outcomes for a dialogue session as proposed by Bjorn

Schuller. (ie: to cheer someone up)
ᐤ Response Envelope : The accumulated payload from both the Emotion Engine (metadata) and
ᐤ Rigging :
ᐤ RTX Graphics : A next generation GPU from Nvidia that incorporates ray tracing techniques

significantly improving photorealism
S

ᐤ Sentiment Analysis : valence recognition from text or other human signals as related to an object of
sentiment

ᐤ Smart Prompt : TODO design for idle loop periods or the “awkward silences” present or potential in all
conversations. Depending on URT may prompt user for more engagement or wait patiently.

ᐤ Sovrin Network : Digital Identity framework based on blockchain and digital ledger (DLT) technologies.
Within the proposal, Infocert are members of the consortium.

ᐤ Speech Emotion Recognition : recognition of emotion in classes (such as the “big 6”) or dimensions
(such as arousal or valence) from acoustic and linguistic properties in the speech signal

T
ᐤ TaxiDriverMode : “Are you talking to me?”
ᐤ Time Well Spent : a movement based on shifting the User <> Computer interaction from the current

Time On Site model to a more user-centric Time Well Spent model as advocated by Tristan Harris.
ᐤ Turing Test :

U
ᐤ University of Augsburg : Partner and European leader in Speech Emotion Recognition
ᐤ Unreal Engine : popular game engine from Epic games
ᐤ UPF : Partner and project administrative lead. Shorthand for Spanish Universitat Pompeu Fabra located

in beautiful Barcelona
ᐤ User Expression Template (UET) : A set of questions designed to prompt the human user in order to

better understand that users preferences for dialogue and interaction. At a base level, it represents an
evolution of the Myers-Briggs Type Indicator test. See also: Rogerien Psycotherapy)

ᐤ User Preferred Response Envelope (UPRF) : Variation on the URT below.
ᐤ User Response Template (URT) : A software filter representing the users preferred communication

methods and style

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 63

https://sovrin.org/
https://cacm.acm.org/magazines/2018/5/227191-speech-emotion-recognition/fulltext
http://humanetech.com/
https://en.wikipedia.org/wiki/Time_Well_Spent
https://en.wikipedia.org/wiki/Myers%E2%80%93Briggs_Type_Indicator
https://en.wikipedia.org/wiki/Person-centered_therapy

V

ᐤ VFX : general term for film visual effects
ᐤ VizRT : Virtual Studio broadcast software
ᐤ Volumetric Solver :

W
ᐤ Wavecrest : Project coordinator and specialist in preparation of grant funding proposals
ᐤ WP : Work Package. The unit of work assigned to a subcomponent of the overall grant process

Z
ᐤ Zero Density : Virtual Studio broadcast software

PRESENT_D2.2_WP2_First Report On Modular Architecture, Protocols And APIs_31082020_FS 64

