
D7.5 - AGENT INTEGRATION
DEMONSTRATION

Grant Agreement nr 856879
Project acronym PRESENT

Project start date (duration) September 1st 2019 (36 months)
Document due: August 31st 2022

Actual delivery date August 31st 2022
Leader Framestore

Reply to Richard.Ollosson@framestore.com
Document status Submission Version

Project funded by H2020 from the European Commission

Project ref. no. 856879

Project acronym PRESENT

Project full title Photoreal REaltime Sentient ENTity

Document name Agent Integration Demonstration

Security (distribution level) Public

Contractual date of delivery 31/08/2022

Actual date of delivery 31/08/2022

Deliverable name D7.5 Agent Integration Demonstration

Type Demonstrator

Status & version Submission Version

Number of pages 20

WP / Task responsible FS

Other contributors all partners

Author(s) Theo Jones, Richard Ollosson, Adam Alsegard

EC Project Officer Ms. Diana MJASCHKOVA-PASCUAL
Diana.MJASCHKOVA-PASCUAL@ec.europa.eu

Abstract Key aspects of the realtime agent integration architecture
and functionality along with demonstrations of the adaptation
of that architecture to meet a wide variety of use case needs.

Keywords digital human, real-time, Unreal Engine

Sent to peer reviewer Yes

Peer review completed Yes

Circulated to partners No

Read by partners No

Mgt. Board approval No

Document History

Version and date Reason for Change

1.0 28-06-2022 First Draft created by Theo Jones

1.1 25-08-2022 Version reviewed by Roberto De Prisco

1.2 31-08-2022 Version for submission post internal peer review

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 2 of 20

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY 4

2. BACKGROUND 6

3. INTRODUCTION 6
3.1 Main Objectives 6
3.2 Terminology 6

4. AGENT INTEGRATION 7
4.1 Reference Implementation Architecture 7

4.1.1 Common actors 8
4.2 Partner components 9

4.2.1 Emotional Assessment 10
4.2.2 Audio Processing 10
4.2.3 Action Response 10
4.2.4 Text-to-Speech 11
4.2.5 Motion Generation 11
4.2.6 Security Manager 12
4.2.7 Broadcast Sports Analysis 12
4.2.8 Multi Agent 12

4.3 Virtual Agents 13
4.3.1 Mid-Resolution to High Resolution Agent Retarget System 14

4.4 Unreal Engine 5 15

5. RESULTS 16
5.1 Adam Use Case - Non-Verbal Interaction 16
5.2 Sports Broadcast Use Case - Dialogue and Motion Management 17
5.3 Registration Authority Officer Use Case - Security Management 17
5.4 Delirious Departures Use Case - Multiple Agents 18

6. CONCLUSIONS 19

7. APPENDIX 20

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 3 of 20

1. EXECUTIVE SUMMARY

This deliverable presents the key architecture and protocols of the integrated agent, both
mid-resolution and high-resolution. These systems have been developed within and
alongside Unreal Engine. Unreal Engine is the most widespread game engine in use
today for high fidelity characters and therefore gives the maximum possible access,
flexibility and visual quality for the final demonstrations and ongoing development.

An overall architectural design of the agent integration within the Reference
Implementation is first presented in section 4.1, followed by a description of the
different partner components in section 4.2. Section 4.3 then makes a comparison of the
agents and demonstrates the framework that allows for the high-resolution agent,
created by Framestore as part of the WP3, to be driven directly from the animation data
targeted to the mid-resolution agent, created by Cubic Motion as part of their
contribution to WP3. This showcases the capability of the final implementation to be
tailored to the specific computational system resources available to the user.

Thanks to Cubic Motion’s position as part of Epic games the mid-resolution agent has
been built based upon the Epic MetaHuman character framework, which became
publicly available in April 2021 and is now widely adopted, therefore giving maximum
utility to the final uses of the agent. The wide variety of gender and ethnicities available
on the MetaHuman architecture also addresses a key diversity weakness identified in the
project.

The demonstrations and associated agent capabilities presented here are centred on the
specific use cases selected as part of the Present project final deliverable:

● Adam Use Case
○ Demonstrates integration of the emotional recognition work carried out

by University of Augsburg as part of WP4, the high-resolution virtual
agent developed by Framestore as part of WP3 and the emotional
modelling work implemented by Cubic Motion as part of WP3.

● Sports Broadcast
○ Demonstrates integration of InfinitySet and the virtual studio carried out

by Brainstorm as part of WP7 and the dialogue, animation and gaze
management carried out by Cubic Motion as part of WP3.

● Registration Authority Officer
○ Demonstrates integration of the security protocols implemented by

InfoCert in WP5, the high-resolution virtual agent developed by
Framestore as part of WP3 and the decision logic carried out by UPF as
part of WP6 .

● Delirious Departures
○ Demonstrates integration of motion-matching capabilities developed by

Cubic Motion as part of WP3, 1-n agent-to-agent interaction
implemented by Inria as part of WP4 and the experimental production
work carried out by CREW as part of WP8.

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 4 of 20

Although the demonstrations presented here relate specifically to the PRESENT use
cases the Reference Implementation architecture is designed in such a way as to be
easily extensible to satisfy use cases not directly covered.

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 5 of 20

2. BACKGROUND

This deliverable belongs to the task WP7T2, Agent Integration, led by the University of
Augsburg, and the Adam Use Case demonstration is included to cover this functionality.
However, given Framestore’s role in integrating the two agent resolutions and the
multiple partner components, a wider demonstration of the various agent functionalities
and the integration architecture is included. This deliverable builds on work presented
in multiple partner component demonstration deliverables across WP3, WP4, WP5 and
WP6. In particular it should be viewed alongside D5.5, Protocols and API’s
Implementation, where details can be found of mechanisms for the adaptation of the
reference implementation for new use cases, and D3.4, where the procedure for the
addition of novel mid-resolution agents via the MetaHuman framework is provided.

3. INTRODUCTION

Framestore was tasked with developing a common project architecture that could be
utilised by all project partners to both integrate their individual components and
configure those components, along with others developed by other partners on the
project, to meet the needs of a wide variety of use cases.

This deliverable details the reference implementation architecture developed to meet the
above requirements, while utilising a number of the project's use cases to demonstrate
the success of this architecture in adapting to meet the wide variety of use case
demands.

3.1 Main Objectives

● To provide a common project framework that allows for the easy integration of
multiple, varying external components covering functionality such as dialog
management, emotional modelling, locomotion and security.

● To develop a project architecture that allows for the easy adaptation to novel use
cases and the configuration of the functional components to meet bespoke
requirements.

● To integrate multiple resolutions of virtual agents to allow for the adaptation of
the use cases to different computational budgets and visual fidelity requirements.

3.2 Terminology

● BML: Behaviour Markup Language is a XML description language used to control1

verbal and nonverbal behaviour of (humanoid) embodied conversational agents (ECAs).
The standard defines the form and use of BML blocks, mechanisms for synchronisation,
the basic rules for feedback about the processing of BML messages, plus a number of
generic basic behaviours.

● Epic: Refers to Epic Games Inc., the company that develops Unreal Engine and its
native features.

1 https://projects.cs.ru.is/projects/behavior-markup-language/wiki (accessed 18/08/2022)

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 6 of 20

https://projects.cs.ru.is/projects/behavior-markup-language/wiki

● FIRA: Fast Immersive Rigging and Animation, refers to the machine learning rig
evaluation component developed by Framestore as part of D6.2 Fast Renderer
Demonstration.

● InfinitySet: Application developed by Brainstorm to control virtual studio integrations .2

● MetaHuman: Refers to digital human avatars created in Epic’s MetaHuman Creator
tool . Its introduction has made it much simpler for users without intrinsic knowledge in3

advanced Digital Content Creation applications to create realistic digital humans of
great diversity.

● Reference Implementation: This refers to the Unreal Engine project responsible for
the integration of the various PRESENT partner components and their configuration to
satisfy the requirements of individual use cases.

● UE: Unreal Engine, the game engine used for the reference implementation. Developed
by Epic Games. Unless specified otherwise 4.27 is the version that is referred to .4

● UMANS: Unified Microscopic Agent Navigation Simulator is a crowd-simulation5

framework developed by Inria that can reproduce many different algorithms for local
navigation behaviour (such as collision avoidance) in crowds.

4. AGENT INTEGRATION

This chapter gives a brief overview of the architecture of the Reference Implementation
in Unreal Engine (UE) and then describes how the different virtual agents have been
integrated into that project. This includes both the medium-resolution (mid-res) agent,
based on Epic’s MetaHuman and further developed by Cubic Motion, and the
high-resolution (high-res) agent created by Framestore. This chapter also describes the
differences between the agents, how the APIs relate to each other and which agent is
better suited for each use case.

4.1 Reference Implementation Architecture

The UE reference implementation project was added to create a common platform for
all use cases with an architecture that could be utilised by all partners. This section will
give a brief overview of that architecture. For the full documentation of the reference
implementation and how to use it please see D5.5 Protocols and APIs Implementation.

The reference implementation is structured in a modular way to make it easy to reuse
different “actors” and components in the different use case “maps”. A “map” or “level”
in UE is a new world with spawned objects that it owns. One map can be loaded into or
unloaded from another map, but it will always keep ownership of its objects. An “actor”
in UE is any object that can be spawned in a world. Not all actors have to be visible.
The PRESENT UE project has a collection of actors that are common for each use case,

5 https://project.inria.fr/crowdscience/project/ocsr/umans/ (accessed 18/08/2022)
4 https://docs.unrealengine.com/4.27/en-US/WhatsNew/Builds/ReleaseNotes/4_27/ (accessed 18/08/2022)
3 https://metahuman.unrealengine.com/ (accessed 18/08/2022)
2 https://www.brainstorm3d.com/products/infinityset/ (accessed 18/08/2022)

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 7 of 20

https://project.inria.fr/crowdscience/project/ocsr/umans/
https://docs.unrealengine.com/4.27/en-US/WhatsNew/Builds/ReleaseNotes/4_27/
https://metahuman.unrealengine.com/
https://www.brainstorm3d.com/products/infinityset/

some actors that are swapped depending on the use case (e.g. mid-res agent vs high-res
agent) and a few data objects or logic implementations that are specific to a single case.

To enable parallel development one base map was created for each use case, initially
only containing the common actors. As the project evolved some maps added actors or
sublevels (for example with a standard lighting setup or a collection of target actors)
while others removed a few. Each map enables the partner plugins needed for its use
case and loads the common actors with the correct configuration. The objects and logic
related to the common actors have been collected and organised separately so that the
same actors can be reused in a different use case, but with different configuration.
Figure 1 demonstrated how some of these objects have been organised in the project.

Figure 1: The content folder structure in the reference implementation project

4.1.1 Common actors

The two main common actors are the Digital Human and Digital Human Processing.
The Digital Human is the virtual agent and can be either of medium-resolution or
high-resolution and can be spawned either as a single actor or as multiple actors. It is
built to mostly be a “dumb” actor which means that it should not have much internal
logic but instead have an external “controller” which takes all the input needed,
processes it with logic depending on the use case and then produces instructions for
how the virtual agent(s) should act. That controller is the Digital Human Processing
actor. It has direct access to the Digital Human and all other actors in the map and can
direct how they should behave. This is where the partner components (described in
section 4.2) are loaded and connected which then determine the logic for the specific
use case. An example of how a Digital Human Processing blueprint can look is shown
in Figure 2. The processing actor is invisible by default but it is possible to display a
representation for each of the enabled components which reports debug information
about the data sent and received.

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 8 of 20

Figure 2: A subset of the “Event Graph” blueprint in a Digital Human Processing actor

Other examples of common actors are:

● The Input Controller which handles user input from keyboard, mouse, gamepad
or any other device.

● The Spectator Camera which sees the scene from a third person point of view. Is
controlled by the Input Controller. It is possible to add multiple spectator
cameras and switch between them during runtime.

● The Reference Human which is a basic representation of the user in the world. It
has functions that can be called by the Input Controller, or used by the Digital
Human Processing in a particular use case.

4.2 Partner components

The main logic is implemented in different components that are included in the Digital
Human Processing actor and connected differently depending on the use case. The
processing actor can either pull data from the components with certain intervals, for
example on every frame, or it can react on events when new data has been produced by
the components.

To facilitate partners working on integrating their functionality in parallel the
components were created as separate UE plugins. Partners could then either implement
their logic directly in the UE plugin or communicate with their API through a pre-built
DLL or a web service. The diagram in Figure 3 shows the different components and the
initial suggestion for how the data would flow and how components would
communicate with each other. A more detailed description of all components follows.

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 9 of 20

Figure 3: A simplified data flow diagram of the partner components

4.2.1 Emotional Assessment

The purpose of this component is to determine the current emotional state of the user
and simulate the emotional state of the agent by using video and audio streams of the
user. That functionality was implemented by the University of Augsburg as a separate
application (called SSI Pipeline) which is explained in depth in D4.5 Agent Social
Interpretation Enabling.

The SSI Pipeline communicates with the reference implementation project via UDP
sockets. This is suitable as the output from the application is primarily a stream of
valence and arousal values for both the user and the agent and it does not matter too
much if a single message is lost. An expressiveness factor can also be received and from
the received values an emotional label can be calculated. New emotional values are
pulled by the Digital Human Processing on every frame.

4.2.2 Audio Processing

Its purpose is to convert the user’s speech audio to text. This functionality was also
included by the University of Augsburg in the SSI Pipeline and uses the same UDP
connection. Every time a sentence has been parsed it is sent to the Digital Human
Processing which broadcasts it to all listener components.

The use cases selected for the final PRESENT deliverable had no direct need for this
component and it is therefore not showcased in the results. If it would be needed in the
future one potential improvement could be to use a TCP connection instead to make
sure no sentences were lost or received out-of-order.

4.2.3 Action Response

The function of this component is to take the emotional values of the user and agent
along with other information about the world and targets defined by the user and then
produce facial and body behaviour for the agent. For example, take a location target to
point to, another to look at and a third to move to, along with information about where
the user is and which emotional state the agent is in. It also takes the user speech text
and produces a text response for the agent.

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 10 of 20

Although no single use case utilises all aspects of this component, the different
functionalities of this component are used by separate use cases. For example, the
Behaviour Planner developed by UPF produces behaviour triggers and scripted text
responses for the agent in the Virtual Clerk demonstration (see D8.5 Prototype
Evaluation Results for a detailed description). An initial connection from the reference
implementation project to the Behaviour Planner was set up with WebSockets and later6

changed to NodeJS . However, as the Virtual Clerk use case already demonstrated the7

full functionality of the Behaviour Planner in a WebGL application with a lower8

resolution agent it was decided that the reference implementation would focus on
showcasing the part of the script that interacted with the Security Module developed by
InfoCert. This would be integrated with the high-res agent as a proof-of-concept and is
demonstrated in the Registration Authority Officer use case (see section 5.3).

Another example of similar functionality is the possibility to send BML commands to
trigger certain behaviours in the agents. This functionality was moved to the Motion
Generation component and is explained further in section 4.2.5.

Generating a text response for the agent was not part of any of the partner use cases in
WP7 and has therefore not been demonstrated here.

4.2.4 Text-to-Speech

The purpose of this component is to convert a generated agent response from text to
audio while also producing the visemes and phonemes to be used by the agents when
pronouncing the audio. As with the generation of text responses this was not needed for
any of the partner use cases in WP7 and has therefore not been demonstrated here.

4.2.5 Motion Generation

The purpose of this component is to control the motion of the agents. Cubic Motion has
introduced several different ways to interact with this component. It can now play
animation assets and sequences directly or stream control keys every frame, both for the
mid-res and high-res agent. It can also trigger certain behaviours by BML commands,
for example setting a target to move to or shaking/nodding of the head. This is also
where the motion-matching functionality is integrated as the different behaviours and
animations are blended together and then matched to the subsequent animation. Cubic
Motion also added an Emotional Modelling functionality that created a more realistic
emotional space for the agent (see D6.4 Interactive Facial Animation Demonstration).

The default implementation of each feature is targeted to the mid-res agent and
implemented directly into UE in a few different plugins. A couple of the features have
also been retargeted to the high-res agent by Framestore. Specifically playing animation
clips and sequences directly, streaming control keys and using certain BML commands
to trigger behaviours.

8 https://www.khronos.org/webgl/ (accessed 18/08/2022)
7 https://nodejs.org/en/ (accessed 18/08/2022)
6 https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API (accessed 18/08/2022)

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 11 of 20

https://www.khronos.org/webgl/
https://nodejs.org/en/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

4.2.6 Security Manager

The responsibility of this component is to communicate with the Security Module
developed by InfoCert (see D5.6 Trust and security infrastructure software components
v2) via a REST (HTTPS) API. It can start a new authorization process by taking a photo
of the user’s face and send it to the Security Module. The user then needs to verify their
identity by scanning a QR code displayed in the reference implementation with the
mobile app developed by InfoCert. If something goes wrong along the way or if the
authentication fails it will try again until successful or the configuration tells it to stop.

Once the initial authentication has been successful the user can interact with the rest of
the project. A new verification check will be performed continuously, on a configurable
interval, to make sure that the user is still authorised. This will once again take a photo
of the user’s face and match it with the database but no QR code needs to be scanned
once the initial authentication has been completed.

The proposed protocol by InfoCert was for both the reference implementation and the
security server to send REST requests to each other. However, as the reference
implementation can be run inside secure firewalls this proved to be more difficult than
initially expected. The protocol was therefore changed so that only the reference
implementation sends requests. Instead of having the server send back the results when
ready, the UE project checks for new results periodically until a successful or failed
authentication is produced.

4.2.7 Broadcast Sports Analysis

This component was implemented by Brainstorm with the purpose of communicating
with their InfinitySet application (see D7.4 Virtual Studio Integration Report). It relays
commands and events both ways and can for example trigger specific animations via the
Motion Generation component and receive an event when the animation has finished
playing. It communicates to InfinitySet via a TCP connection and has a Web Remote
Control (HTTP) interface set up as well.9

4.2.8 Multi Agent

This was the last component to be added and its purpose is to work as an interface to the
UMANS library developed by Inria, especially to make use of the Interaction Fields
functionality (see D4.7 Reactive Agent and Touch Enabling). It can start a prepared
scenario with multiple agents or generate a completely new scenario with specified
configuration from the user. This component is responsible for everything regarding the
agents on the UE side, for example spawning, updating and removing them.

UMANS is integrated as a pre-built DLL and its output is mainly the position, velocity
and orientation of all the simulated agents. The Multi Agent component can then
calculate and visualise the trajectory for all the agents. Then they are animated by using
motion-matching via the Motion Generation component.

9 https://docs.unrealengine.com/4.27/en-US/ProductionPipelines/ScriptingAndAutomation/WebControl/
(accessed 18/08/2022)

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 12 of 20

https://docs.unrealengine.com/4.27/en-US/ProductionPipelines/ScriptingAndAutomation/WebControl/

The mid-res agent is the default one used but other actors such as the UE4 Mannequin
or any StaticMesh or SkeletalMesh actor could also be simulated. The motion-matching
has been trained with the mannequin and should work for other MetaHumans as well.
The high-res agent would not work well with this component as it has been optimised
for rendering of a single agent and most normal workstations are not powerful enough
to render several high-res agents simultaneously in real-time.

4.3 Virtual Agents

From the start of the project it was decided that multiple versions of the agent were
needed, primarily as the high-resolution agent developed by Framestore would be too
computationally heavy for several of the use cases. Therefore, Cubic Motion developed
a medium-resolution version of the scanned actor as well. Thanks to Cubic Motions
position as part of Epic Games the mid resolution agent was able to be targeted to the
MetaHuman character framework ahead of its official release giving the project an
advantage in terms of flexibility and diversity.

The mid-res agent uses MetaHuman joints, controls, clothes and an UE HairStrands
rendered groom. The first version of it was integrated into the reference implementation
project in v3.2.0 and shared with partners in M19. The high-res agent on the other hand
uses an internal rig and drives both face, body and clothes with the internal machine
learning FIRA component (see D6.2 - Fast Renderer Demonstration). However, it still
uses the UE HairStrands plugin to render the groom. It was integrated in v4.0.0 and
shared with partners in M31. Screenshots with static agents are showcased in Figure 4.

Figure 4: Visual comparison between the mid-res agent (left) and high-res agent with
basic lighting/settings (middle) and high-res agent with final custom lighting/settings

taken from FMX demo (right)

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 13 of 20

4.3.1 Mid-Resolution to High Resolution Agent Retarget System

The Motion Generation component was developed by Cubic Motion with the primary
focus to drive the animation of the mid-res agent. As that is based on a MetaHuman rig
other MetaHuman agents should work automatically as well. However, to make use of
the same functionality for the high-res agent a retargeting system for both body and face
was needed to be implemented.

A pipeline to retarget offline animations outside of UE has been developed by
Framestore. However, in some cases, as for the Adam use case (see section 5.1) the
animation data is streamed per frame and not available ahead of time. For those cases a
retargeting system has been added into the reference implementation as well which uses
animation blueprints for both the face and body. The body mapping is fairly10

straight-forward as it only retargets MetaHuman joints to high-res rig joints. The
MetaHuman face on the other hand is animated with ControlRig controls whereas the11

high-res face is controlled by custom floating point attributes and the mapping is not
1-to-1 to get the same expression. There are also a few cases where something is
controlled by a joint in one rig but by a control or an attribute on the other which adds to
the complexity of the remapping. A complex custom remapping was therefore
developed by Framestore to allow the flexibility of retargeting use cases to either the
mid-res or high-res agent as appropriate. Figure 5 shows a part of the remapping
blueprint needed for the face.

The animated values for the high-res agent are then fed into the FIRA machine learning
component developed by Framestore (see D6.2 - Fast Renderer Demonstration) which
drives the rig. FIRA’s purpose is to optimise the animation evaluation of rigs with high
complexity. It has been trained on the high-res agent and can drive the body, face and
clothes in real-time.

Figure 5: A subset of the facial retargeting animation blueprint in UE

11 https://docs.unrealengine.com/4.27/en-US/AnimatingObjects/SkeletalMeshAnimation/ControlRig/
(accessed 18/08/2022)

10 https://docs.unrealengine.com/4.27/en-US/AnimatingObjects/SkeletalMeshAnimation/AnimBlueprints/
(accessed 18/08/2022)

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 14 of 20

https://docs.unrealengine.com/4.27/en-US/AnimatingObjects/SkeletalMeshAnimation/ControlRig/
https://docs.unrealengine.com/4.27/en-US/AnimatingObjects/SkeletalMeshAnimation/AnimBlueprints/

Because of the differences between the agents every new animation or feature that is
produced for the mid-res agent needs to be retargeted before it can be used with the
high-res agent. Offline animations can now be processed ahead of time and the mapping
from MetaHuman controls to the high-res agent attributes enables streaming during
runtime. However, the emotional modelling uses a space that is created by a set of
emotional expressions that needs to be retargeted and the motion-matching is using a
base set of animations and a blending directly on the joints in an animation blueprint
which all need to be retargeted before those features can be used for the high-res agent.

A demonstration of the retarget system in action can be found in the accompanying
video:

HighResAgentRetarget_Demo.mp4

This video first shows the performance capture animation collected by Cubic Motion
and targeted to the mid-res agent. It then goes on to show the same animation data
retargeted to an offline rendered asset as well as the high-res agent in Engine. Two
more clips follow to showcase the quality of the high-res agent and its ability to be
rendered at realtime framerates in the Unreal Editor UI.

4.4 Unreal Engine 5

During the development of the project Epic released a new major version of Unreal
Engine . By the time it was available to all partners the bulk of the reference12

implementation project had already been implemented in version 4.27 and for some
partners, such as Brainstorm, an upgrade to UE5 was not feasible in the timescope of
the PRESENT project. Therefore, it was decided that the reference implementation
should stay on 4.27, even if that meant that new functionality in UE5 could not be used.
This could have improved certain features, especially related to the motion-matching.

However, there is a working build of the reference implementation in UE5 with most of
the base functionality. Figure 6 shows the map used for testing all components being run
in UE5. The biggest exclusions in this build are the Broadcast Sports Presenter
component, with its integration to InfinitySet, and some of the FIRA data needed for
rendering the high-res agent. This build is not used in any of the presented use cases as
the UE5 release came too late in the schedule. However, it clearly demonstrates that a
future utilisation of UE5 is entirely possible.

12 https://www.unrealengine.com/en-US/unreal-engine-5 (accessed 18/08/2022)

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 15 of 20

https://drive.google.com/file/d/1rKR5VlpOcWtueejBwurIW0aNr-dyPsFi/view?usp=sharing
https://www.unrealengine.com/en-US/unreal-engine-5

Figure 6: The “Reference Map” test case running in UE5 with the mid-res agent

5. RESULTS

This chapter presents each demonstrated use case, with a description of all the different
components that are used for that specific implementation.

5.1 Adam Use Case - Non-Verbal Interaction

The purpose of the Adam use case is to create an agent that the user can interact with
non-verbally. The agent uses the Emotional Assessment component to determine the
emotional state of the user from voice and facial expression and then generates an
emotional state for the agent. That state is given to the Motion Generation component
which produces an appropriate facial expression and maps it to the current agent. This
can be used for both the mid-res and high-res agents. For the mid-res agent it is also
possible to use the emotional modelling developed by Cubic Motion for a more
sophisticated emotional space. A couple of visual comparisons between the agent
version can be seen in the Appendix.

The emotional values can also be simulated in other ways, for example completely
randomised, mimicking the user or generated with a control like a gamepad. This can be
used in a demonstration with a separate admin user who controls the emotional state of
the agent while the other user interacts. This is briefly demonstrated by CREW in
Adam_UseCaseDemo.mp4, followed by the normal state where the emotional values are
generated and finally the agent is mirroring the emotion of the user. The video shows
the version of the Adam use case with the high-res agent.

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 16 of 20

Partner components used: Emotional Assessment & Motion Generation
Compatible agents: Mid-Res & High-Res

Demo Videos: Adam_UseCaseDemo.mp4
EmotionalModelling_Demo.mp4
GazeManagment_Demo.mp4

5.2 Sports Broadcast Use Case - Dialogue and Motion Management

This use case demonstrates the integration to InfinitySet and the virtual studio
developed by Brainstorm along with Cubic Motion’s functionality for playing scripted
animation clips, emotional modelling and setting targets for where the agent should
look. An in-depth evaluation of this use case has been carried out in D7.4 Virtual Studio
Integration Report.

In the demonstration video (SportsBroadcast_UseCaseDemo.mp4) InfinitySet is in
control of the scene. It sets the camera, environment, lighting, graphics as well as
adding other actors like the table and then streams the mid-res agent from the reference
implementation project into the scene. InfinitySet can then trigger animations for the
agent and react to events, e.g. when an animation finishes playing or the agent finishes
talking. It can also set location targets for what the agent should look at or point to. That
behaviour is then blended with the underlying animation. When a scripted animation
finishes the agent blends into an idling animation which runs until the next scripted
animation is triggered.

Partner components used: Broadcast Sports Analysis & Motion Generation
Compatible agents: Mid-Res

Demo Video: SportsBroadcast_UseCaseDemo.mp4

5.3 Registration Authority Officer Use Case - Security Management

This use case is a subset of the full Virtual Clerk script (see D8.5 Prototype Evaluation
Results) and its purpose is to be a proof of concept that the Security Module developed
by InfoCert can interact with the high-res agent as well.

The demonstration video (RegistrationAuthorityOfficer_UseCaseDemo.mkv) starts with
a short introduction and a few scripted choices for the user to click through. Then a new
authentication process is started by taking a picture of the user’s face. The user then has
to scan a QR code with the mobile application developed by InfoCert. The data is sent
to InfoCert’s server and checked against the ground truth image that the user took when
creating the account. The video then demonstrates what happens if the authentication
fails. After a retry the authentication is then successful and the user can interact with the
full PRESENT project. A continuous check will be performed at certain intervals to
make sure that the user is still authenticated. This interval is rather short in the video for
demonstration purposes.

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 17 of 20

https://drive.google.com/file/d/1Vy4ICCDc14batX6vBxaMiKsVr9gk2hm_/view?usp=sharing
https://drive.google.com/file/d/1DgEy7HLhzRt7bAJxwMQ-Ld99omZiqBEC/view?usp=sharing
https://drive.google.com/file/d/1uEnnX6-R9dhX_rffBO-hv98bC-rLwTYo/view?usp=sharing
https://drive.google.com/file/d/1diLDW6WQ2c4K3Zk18_spZA8EviWvZPN1/view?usp=sharing

When the user has been authenticated the agent follows the user’s camera with its gaze.
The gaze target is also set to different locations and actors during the scripted
animations. When the user can interact with the project again the different targets can be
set to absolute or relative locations or parented to any actor in the world with the use of
BML commands. BML can also be used to trigger certain animations or change the
location of the camera.

Partner components used: Security Manager & Motion Generation
Compatible agents: High-Res

Demo Video: RegistrationAuthorityOfficer_UseCaseDemo.mkv

5.4 Delirious Departures Use Case - Multiple Agents

The Delirious Departures use case was created by CREW and demonstrates that
multiple agents can be simulated in complex social situations by the UMANS
Interaction Fields and then visualised in Unreal. For their demonstration at SIGGRAPH
2022 (see DeliriousDepartures_UseCaseDemo.mp4) they used the UE4 Mannequin as
the simulated actor but the same functionality works for the mid-res agent (as seen in
MultiMidResAgent_UseCaseDemo.mkv). The reason CREW used the mannequin was
purely performance related as the mid-res agent is inherently more complex to render,
which did not suit the hardware used for this particular installation.

When running any use case with the Multi Agent component enabled it will control how
to spawn, update and remove the simulated agents. The trajectory for all agents are
updated on every frame and can be visualised and if the rendered agent type supports
motion-matching it will be applied through the Motion Generation component.

Partner components used: Multi Agent (UMANS) & Motion Generation
Compatible agents: Mid-Res

Demo Videos: DeliriousDepartures_UseCaseDemo.mp4
MultiMidResAgent_Demo.mkv

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 18 of 20

https://drive.google.com/file/d/1_eMWR2xaNgLiP033G0RuV-WJK0IoKdfb/view?usp=sharing
https://drive.google.com/file/d/1SiW1kah-LPNAgmYgC4lVAkS0Dws-7hxk/view?usp=sharing
https://drive.google.com/file/d/1igspjRSSOutegaQnyvO0CIUkKJ9nyEF0/view?usp=sharing

6. CONCLUSIONS

This deliverable has described the key architectural implementation of the common
project framework underlying the PRESENT digital agent integration. A number of the
project use cases, as well as bespoke demonstration videos, have been utilised to clearly
show how this flexible architecture can be successfully adapted to satisfy the
requirements of widely varying use cases.

As shown in the Results both the medium-resolution and high-resolution agents are
fully integrated within the reference implementation project. The mid-res to high-res
animation retargeting system, available for both offline processing and streamed
animation data, provides a mechanism for easily adapting the agents visual fidelity to
any computational budget. When this is combined with the openly available
MetaHuman digital human architecture, which underpins the mid-res agent, a highly
flexible and diverse range of outputs is possible.

The demonstration videos accompanying this deliverable clearly shows these agents to
be capable of parallel execution of dialogue, socially sound non-verbal behaviour and
input cues and of blending these outputs together. The agents are also shown to be
capable of interacting with external services such as the security module and pre-built
libraries such as the SSI Pipeline and UMANS’ Interaction Fields to create the wanted
behaviour for any particular use case.

Overall it has been demonstrated that the architectural project design presented here can
be used to realise the scenarios as diverse as the single character, emotionally
responsive interactions in the Adam use case through to the group dynamics and
locomotion of Delirious Departures. This flexibility, combined with the adaptable
retargeting system and diverse MetaHuman outputs, make for an adaptable, extensible
solution to placing responsive digital agents into a wide variety of production
environments.

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 19 of 20

7. APPENDIX

Appendix figure 1: Comparison between mid-res and high-res agents in the Adam use
case but with fixed valence (0.7) and arousal (0.6) values. The mid-res agent is also

utilising emotional modelling.

Appendix figure 2: Comparison between mid-res and high-res agents in the Adam use
case when generating emotional values. Emotion strived for was “surprised/scared”.

The mid-res agent is also utilising emotional modelling.

PRESENT_D7.5_WP7_Agent Integration Demonstration_2022.08.31_FS Page 20 of 20

