

D6.6 VIRTUAL CHARACTER PLAYER

DEMONSTRATION

Grant Agreement nr 856879
Project acronym PRESENT

Project start date (duration) September 1st 2019 (36
months)

Document due: 28/02/2022
Actual delivery date 04/03/2022

Leader UPF
Reply to josep.blat@upf.edu

Document status Submission Version

Project funded by H2020 from the European Commission

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 2 of 23

Project ref. no. 856879
Project acronym PRESENT

Project full title Photoreal REaltime Sentient ENTity
Document name D6.6 - Virtual Character Player Demonstration

Security (distribution level) PU

Contractual date of delivery 28/02/2022

Actual date of delivery 04/03/2022

Deliverable name Virtual Character Player Demonstration

Type Demonstration

Status & version Submission Version

Number of pages 23

WP / Task responsible UPF

Other contributors UAu

Author(s) Eva Valls, Josep Blat

EC Project Officer Ms. Diana MJASCHKOVA-PASCUAL
Diana.MJASCHKOVA-PASCUAL@ec.europa.eu

Abstract
Key aspects of the demonstrator of the proof of concept high-
quality virtual character player with a very high degree of
integrability undertaken mainly by UPF-GTI within the PRESENT
project.

Keywords Virtual character player, behaviour realizer, behaviour planner
Sent to peer reviewer Yes
Peer review completed Yes
Circulated to partners No
Read by partners No
Mgt. Board approval No

Document History

Version and date Reason for Change

1.0 15-01-2022 Document created by Eva Valls

1.1 15-02-2022 Version for internal review

1.2 04-03-2022 Revisions in response to review: final version submitted to Commission

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 3 of 23

Table of Contents

1 EXECUTIVE SUMMARY 4
2 BACKGROUND 4
3 INTRODUCTION 4

3.1 Main objectives and goals 5
3.2 Terminology 5

4 Virtual Character Player 5
4.1 System architecture 6
4.2 Behaviour Realizer 6

4.2.1 Web based 6
4.2.2 Use cases tested 7

4.3 Behaviour Planner 8
4.3.1 Graph system 8
4.3.2 Application modules 11

4.3.2.1 Graph Editor 11
4.3.2.2 Debugger 11
4.3.2.3 Player 11
4.3.2.4 Drive 12
4.3.2.5 Publisher 12

4.3.3 BP with other applications 13
4.3.3.1 WebSocket connection 13
4.3.3.2 Stand alone library 13
4.3.3.3 Within reference implementation 13

4.4 Message protocol and format 13
4.4.1.1 BML actions 14

5 CONCLUSION 15
6 ANNEX 15

6.1 BML action attributes 15
6.1.1 FACE BEHAVIOURS 15

6.1.1.1 FaceLexeme 16
6.1.1.2 FaceEmotion 17

6.1.2 GAZE BEHAVIOURS 18
6.1.2.1 Gaze 18
6.1.2.2 GazeShift 19

6.1.3 HEAD BEHAVIOURS 19
6.1.3.1 Head 19
6.1.3.2 HeadDirectionShift 20

6.1.4 SPEECH BEHAVIOURS 21
6.1.4.1 Speech 21
6.1.4.2 Audio 21

6.1.5 GESTURE BEHAVIOURS 22
6.1.5.1 Gesture 22

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 4 of 23

1 EXECUTIVE SUMMARY
This deliverable presents key aspects of the demonstrator of the proof of concept high-quality virtual
character player with a very high degree of integrability undertaken mainly by UPF-GTI within the
PRESENT project.
Integrability is grounded on a Behaviour Planner (BP) and a web-based Realiser based on the Behaviour
Markup Language (BML) within the SAIBA multi-modal Behaviour Generation Framework coming from
the research community on Embodied Conversational Agents (ECAs). This architecture, based on two
independent modules which communicate via BML, is discussed in 4.1. It presents several advantages,
such as, for instance, that the Realiser can directly receive BML input coming from other systems.
High quality of the interaction is based on the capabilities of supporting behaviours and intents of the
BP and the development of the Realiser, offering a wide range of interactions and animation. Further
details are given on the 4.2 Behaviour Realizer section. Visual high quality has been achieved by
including the better rendering capabilities developed in the first period of the project by UPF-GTI.

So that developers can create their own virtual assistants in the easiest possible way, making it
accessible to the content creator, the BP, based on Hybrid Behaviour Trees, is exposed through
interactive graphs supporting a pipeline that starts from editing, through debugging, until playing and
publishing. Further details are available on the 4.3 Behaviour Planner section.

UPF-GTI work supports PRESENT reference implementation and APIs, thus interfacing with Unreal
Engine, the most widespread games engine nowadays. A Web Socket connection is used to allow the
Planner and the Realizer to communicate with each other and with other applications. The protocol and
the messages formatting is based on the description of the D5.5 Protocols and APIs implementation
deliverable. The guidelines set out in section 4.4 Message protocol and format below provide more
detailed information.

The different sections of 4 cover the different aspects of the Virtual Character Player. Section 2 provides
the essential background with respect to its role within PRESENT, section 3 provides a short introduction
and includes terminology, and the final section 5 is devoted to conclusions.

2 BACKGROUND
This deliverable belongs to the task WP6T5 Virtual Character Player within WP6, and provides a bridge
towards the more natural interaction of the (sentient) agent, by driving through the Behaviour Planner
the behaviours of the agent, which result from deriving the behaviour, for instance, from the collected
and analysed inputs to the agent by means of the Social Signal Interpretation framework of University
of Augsburg leading to messages to be carried out by the agent, which are realised and rendered
through a Realiser into an animated interactive character. This work is also integrated through the APIs
of the reference implementation developed and implemented mainly by FS, which lead to animations
of a higher quality character, implemented through Unreal Engine (which use as well the Motion
Generator of higher quality provided by CM. On the other hand, the player is demonstrated through a
couple of the use cases of the project, the Registration Authority Officer and the Virtual Clerk, and
behaviours derived from the framework of UAu, at the current level of Proof of Concept of the agent.
The player should provide a more accessible way to characters of the highest level of quality using
widely available systems.

3 INTRODUCTION
UPF-GTI is in charge of creating a player for virtual characters that gathers as much data as possible
from the user, makes it accessible to the content creator, and ensures that the virtual character displays
natural reactions based on the messages received.

This deliverable describes the main elements developed and used to create the virtual character player,
such as the different modules that make up the system and how to communicate between them. In
addition to the demonstration of the performance of this player in different use cases.

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 5 of 23

3.1 Main objectives and goals

● Create a web based player that displays a virtual character that interacts with the user in a
natural manner.

● Establish and develop a pipeline to customise the behaviour of the virtual character so the
developers can create their own virtual character player in an easy way.

3.2 Terminology

● BML: Behaviour Markup Language (BML) is an XML description language used to control verbal

and nonverbal behaviour of (humanoid) embodied conversational agents (ECAs). The standard
defines the form and use of BML blocks, mechanisms for synchronisation, the basic rules for
feedback about the processing of BML messages, plus a number of generic basic behaviours.

● Behaviour Planner (BP): It is responsible for deciding which multi-modal behaviours to
choose for expressing the communicative intent (through speech, face expressions, gestures,
etc) and for specifying proper synchronisation between the various modalities.

● Behaviour Realizer (BR): It is in charge of carrying out the actions specified in the BML
message. This entails generating sound and motion (e.g., animation or robot movement) in
such a way that the time constraints specified in the BML block are met.

● Behaviour Manager (BM): It is responsible for handling the combination of behaviours of
different requests following the specified BML time constraints. That is, it determines when a
behaviour of a new request that is sent before the realisation of previous requests has been
completed has to be applied. How to combine the behaviours is specified in the composition
attribute, which can be merge, append or replace.

● Hybrid Behaviour Tree (HBT): A BT is a system to determine which behaviour an AI should
perform. HBT combines two types of workflow: vertically (used in BT) and horizontally.

● JSON: Standard format for data-interchange. It is used to represent simple data structures
and objects (associated lists). This format derives from Javascript language.

● NodeJS: It is a programming environment for developing web applications, focusing on web
servers. The programming language is Javascript and the architecture is event oriented with
asynchronous input and output.

● WebGLStudio: Platform to create interactive 3D scenes directly from the browser. It allows
you to edit the scene visually, code your behaviours, edit the shaders, and all directly from
within the app.

● Iframe: HTML element used to embed another document within the current HTML document.
In this deliverable it is used to refer to a HTML document with the scene published by
WebGLStudio.

4 Virtual Character Player
This chapter presents the key aspects of the virtual character player demonstrator, and discusses the
affordances it allows.

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 6 of 23

4.1 System architecture

The system is based on the SAIBA multi-modal Behaviour Generation Framework and the use of the
Behaviour Markup Language (BML) 1 So, the system can be split into two main different modules: the
Behaviour Planner (BP) and the Behaviour Realizer (BR). The main idea behind the first module is to
generate actions or intents for the virtual characters, taking into account internal and contextual
information and using a degree of intelligence. These actions or behaviours are formulated in BML.
Regarding the second module, the BR, it receives, interprets and executes the behaviours generated in
the BP, to play and render the virtual characters’ animations shown on the screen. Both modules have
been implemented by UPF-GTI, and they can be independently used, as discussed in later sections.

UPF-GTI Behaviour Planner is achieved through a variant of the LiteGraph2 graphs represented as
Behaviour Trees. A first version of this extension was implemented for a previous project, SAUCE3,
which has been continuously improved and extended throughout the PRESENT project. The first BP
approach4 aimed to control background virtual characters, where the quantity was more important than
the quality. The current BP approach aims to control an Embodied Conversational Agent (ECA), which
requires more precision, as well as control over dialogues and emotions in a synchronised manner,
which is a more complex undertaking than the initial one for SAUCE.

UPF-GTI Behaviour Realizer is developed in WebGLStudio5, its own open-source platform for creating
interactive 3D scenes directly in the browser. This module is in charge of controlling the body animation,
facial expressions, eye gaze and blink, the agent and contextual attributes given the actions that the
character has to perform. So, it is the Virtual Character Player.

Figure 1. System workflow

4.2 Behaviour Realizer

As mentioned above, the Behaviour Realizer is in charge of interpreting and executing the behaviours
generated in the Behaviour Planner, that is, of applying the actions on the character. Although it could
be carried out on any platform, UPF-GTI has created a web based realizer on its 3D open source editor,
WebGLStudio, for the Virtual Character Player.

4.2.1 Web based
One of the advantages of having a web based behaviour realizer is that it is accessible for anyone, on
any device without having to install anything. It also gives the opportunity to explore the limitations of
the web and improve the low-quality assets usually related to this field.

The set of actions which the realizer has to perform has been grouped into what we call intentions, a
series of co-related actions organised in time through temporal marks. These intention actions may

1 Kopp, Stefan, Brigitte Krenn, Stacy Marsella, Andrew Marshall, Catherine Pelachaud, Hannes Pirker,
Kristinn Thórisson, and Hannes Vilhjálmsson. 2006. Towards a Common Framework for Multimodal
Generation: The Behavior Markup Language.
2 Agenjo, Javier. 2013. “LiteGraph.” GitHub. https://github.com/jagenjo/litegraph.js.
3 European Union's Horizon 2020 Research and Innovation Programme. n.d. “Smart Assets for re-Use
in Creative Environments.” Sauce. https://www.sauceproject.eu/.
4 UPF-GTI and David Moreno. 2019. “HBTreeJS: Library for decision making using hybrid behaviour
trees.” GitHub. https://github.com/upf-gti/HBTreeJS.
5 UPF-GTI and Javier Agenjo. 2013. WebGLStudio. https://webglstudio.org/.

https://github.com/jagenjo/litegraph.js
https://www.sauceproject.eu/
https://github.com/upf-gti/HBTreeJS
https://webglstudio.org/

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 7 of 23

include verbal and non-verbal speech, pose and emotion shifts among others following the BML
standard, and also non-behaviour actions to support other aspects of the use cases.

This realizer has two main components: the Behaviour Manager and the Behaviour Realizer. The first
one is in charge of handling the combination of behaviours of different requests following the specified
time constraints. That is, it determines when a behaviour corresponding to a new request that is sent
before the realisation of previous requests has been completed has to be applied. How to combine the
behaviours is specified in the composition attribute. The behaviour manager, by default, merges the
behaviours, but they can also be appended or replaced. The Behaviour Realizer is in charge of carrying
out the actions after the manager has triggered them, such as making the virtual character say the
speech received using lip sync in the specified time.

The Virtual Character Player, which is the default version of this realizer published on the web, is
connected to a server. This way, any developer can use it, by sending the behaviours through a Web
Socket connection. He or she just has to follow this link, connect the service that he or she uses to plan
the behaviours to the server and put the same room both in the Virtual Character Player and in his or
her service. It is also possible to to send messages through this page to test the actions and the
messages format. The code of the player is to be published on GitHub, but for the moment is in private
mode while the documentation is being finalised. The performance of the behaviours can be seen in
this video.

Figure 2. Left: Default Virtual Character Player. Right: Web page for testing behaviours and messages
formatting.

4.2.2 Use cases tested
The Virtual Character Player has been mainly tested and demonstrated with the Registration Authority
Officer (RAO) use case. The behaviour logic had been done using the Behaviour Planner application
and publishing the scene. One can interact with her through this link or see the demonstration on this
video. For this case some non-behaviour custom actions had to be added to the realizer to support
InfoCert API requests.

Furthermore, it is used for UPF-GTI's own use case, the Virtual Clerk (VC), with some modifications. A
demonstration of the interaction can be seen in this video. It is accessible through this link for the
realizer and this other for typing. You must open the realizer and put the room first, and then put the
same room on the typing page. The interaction starts when you press the start button. The code is
available on GitHub.

https://webglstudio.org/projects/present/demos/BML-realizer/
https://webglstudio.org/projects/present/demos/BML-realizer/test/
https://github.com/evallsg/agent-controller
https://drive.google.com/file/d/1Infrfg86fBvR4h-Y8ii2-HzaMlsOy5dx/view?usp=sharing
https://webglstudio.org/projects/present/bplanner/web-app/iframe.html?url=evalls/projects/RAO%20v6.json
https://drive.google.com/file/d/1iipJfligCR-Iw8GD9gGZgMIIgetFFROC/view?usp=sharing
https://drive.google.com/file/d/1iipJfligCR-Iw8GD9gGZgMIIgetFFROC/view?usp=sharing
https://drive.google.com/file/d/1LAFEzvSqrjydwpCY7JW_F9S7hy02z6XR/view?usp=sharing
https://dtic-recepcionist.upf.edu/recepcionista/
https://dtic-recepcionist.upf.edu/recepcionista/finder
https://github.com/upf-gti/virtualclerk

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 8 of 23

Not only has the player been used for the RAO and VC, but the University of Augsburg has been also
using it for testing while waiting for the integration of the Motion Generation module into the reference
implementation. A demonstration can be seen in the video.

4.3 Behaviour Planner

As previously mentioned, in order to design and execute the behaviours that have to be applied in the
Virtual Character Player, UPF-GTI has developed a web application to provide the functionality of the
so-called Behaviour Planner. The implementation is built on top of the previous work in the SAUCE
project, where decision trees are used to decide the behaviour of an agent. The trees are displayed as
a graph in a web editor to allow the visual design of complex behaviour using a node based
programming approach. This web application allows users to create new behaviour trees and test them
using the built-in chat (that simulates user input speech) within a sample scene created using a 3D web
editor, WebGLStudio. The application is published here and the code is available on UPF-GTI GitHub.

Depending on the user inputs (i.e. speech, emotion, gestures) and the context, the tree decides which
actions the agent may take and/or what the application should do. This set of actions has been grouped
into the intentions, or series of co-related actions organised on time through temporal marks already
indicated. These intention actions may include verbal and non-verbal speech, pose and emotion shifts
among others following the BML standard (or, more precisely, interoperability specification). The
context can contain the information received from the user, other services or previous behaviours of
the agent.

There is the option to open a WebSocket connection when the Behaviour Planner executes a behaviour.
The web application uses a WebSocket connection with a server that acts as a broker to be able to
receive and send data between applications. The description of the protocol and the format of the
messages can be found in 4.4 Message protocol and format.

In the following subsections we discuss in more detail the different aspects of the Behaviour Planner
implementation, and its pipeline/workflow.

4.3.1 Graph system
The implementation of the graph system that aims to control the virtual agent’s behaviour is called
HBTree, which comes from Hybrid Behaviour Trees (HBT), embedded inside the Behaviour Planner.
These are a hybrid approach of common Behaviour Trees. They are denoted as hybrid due to their
capability to combine two workflows: one which is the common flow of a behaviour tree from top to
bottom depending on the conditions of the nodes, and a second flow which is traversal to the tree, and
allows to dynamically modify, through different nodes, the properties of some tree nodes. In Figure 3
this is visually represented through an example.

https://megastore.rz.uni-augsburg.de/file/ce695514d34716ecd1cbd33d531995a0/621f8407/JJhtOhFTbX/BackchannelFeedbackStyle.mp4
https://webglstudio.org/projects/present/bplanner/latest/web-app/
https://github.com/upf-gti/Behaviour-planner

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 9 of 23

Figure 3. HBT to decide what agent has to say depending on the user’s age. If it’s bigger than the
agent's age (it’s predefined as a property), the agent will say, for example “I’m younger than you”.

Otherwise the agent will say “I’m older than you”.

Although new node types can be easily created, the library provides the necessary nodes for planning
the agent's behaviour. The default ones are the following:

● Root/Subroot: Starting node of the tree/subtree execution.

● Selector: Executes child nodes from left to right until one succeeds (or at least does not fail).

● Sequencer: Executes child nodes from left to right until one fails. As its name indicates, it is
useful for a sequence of actions/conditions.

● Parallel: Executes all child nodes in parallel.

● Conditional / BoolConditional: This node takes a value from the left inputs and compares
it with the one set in the inner widgets. If the condition is passed, the execution continues
along this branch. If not, the execution comes back to the parent node.

● Timeline Intent: This is the most complex node. It allows users to generate verbal and non-
verbal behaviours at specific times and with specific duration. Users can generate different
kinds of actions, such as facial expressions, gaze control, speech, gesture, etc. And place them
at the time the user thinks it fits best, and with a custom duration. These actions follow the
BML specifications (see Figure 4 next).

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 10 of 23

Figure 4. Left: Timeline shown on double click in the Timeline Intent node. Users can place the actions
at the time the user thinks it fits best, and with a custom duration. Right: Each of these colourful
rectangles (which represent different actions) can be double clicked, and the specific inspector for each
type will open on the right inspector

● ParseCompare: Natural language processing node, where a set of phrases with tags or
entities can be defined to be identified in the text passed through the branches. If the text
passes the condition/ contains the text, tags or entities which are in the node, it continues with
its children. If not, it goes back to the parent. It uses a library called compromise6 to perform
the natural language processing. Check the available entities there. It can be searched on the
inspector putting # on the textbox.

● SetProperty: Puts a chosen property to a certain value.

● Event: This node is executed when an event of a given type occurs. Useful to capture when a
message is received, for example, user text (user.text). The key of the message has to be
specified as a property. It checks the message protocol.

● TriggerNode/TriggerSubtree: This node acts as a “bridge” between the current status, and
another important part of the graph that might be in previous layers. Useful to create cycles in
case several responses lead to dead ends and there is the need to go back to another stage.

● CustomRequest: This is used in case the developer needs something from the scene (hosted
in the realizer). It can also be used to indicate that the developer has to carry out some other
action not related to the character's behaviour (such as https requests).

● HttpRequest: (only works on the client side) This node allows making calls to external
services/APIs. The inspector of the node allows the users to build the http message, with
headers and body of the message. There are some templates to create the body with the
required info (api-version, ids, texts…)

● HttpResponse: (only works the on client side) It parses the response of a HttpRequest node
(this means that both are connected vertically) and detects if the code is the one set in the
embedded widget (200, 201, 400)

6 Kelly, Spencer, and Alex Corvi. 2011. “Compromise: modest natural-language processing.” GitHub.
https://github.com/spencermountain/compromise/.

https://github.com/spencermountain/compromise/

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 11 of 23

4.3.2 Application modules

The Behaviour Planner application has different modules: Graph, Debugger, Player, Drive and Publisher.

4.3.2.1 Graph Editor
In the Graph Editor module, the developer can create the graph and edit the properties of the different
elements. Each graph must start with a Root node. Sub-graphs can also be created, starting with a
SubRoot node. The subgraph will be executed if the main execution passes through the leaf node
TriggerSubtree with the id of the corresponding SubRoot node. A node can be searched by double-
clicking on the 2D canvas, so that a search box appears. This can also be performed by right-clicking
on the canvas and searching by type.

4.3.2.2 Debugger
In this module, the graph is just as in the Graph module, but this time the right inspector is a chat,
where the developer can debug and test specific use cases and see in real time the execution of the
graph (highlighting the path followed). The user can write on the text box or speak by pressing the
microphone button (the text will appear on the text box when the speech ends).

Figure 5. Debugger module view.

4.3.2.3 Player
If the user wants to test not only the dialogue but also the non-verbal behaviour, the Player module
provides a default scene to do so. The player is just an iframe containing a scene created in
WebGLStudio. This iframe can be changed by going to Actions→Change Iframe Scene, but the new
one has to be created also using the mentioned editor.

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 12 of 23

Figure 6. Player module view.

4.3.2.4 Drive
The user can register in the application and save his/her projects. So, this module is basically a File
System where stored environments and graphs can be easily found and loaded into the current session.

4.3.2.5 Publisher
When the behaviour graph is complete and the user is satisfied with the results, the player can be
published as an external web application. The published environment will have the same scene used
for the tests, that is, it will be a WebGLStudio scene using the default Behaviour Realizer, explained in
4.2 Behaviour Realizer section. The user can interact with the agent either by voice (by holding down
the space key or the microphone button) or by text (by typing on the screen). It also has a chat function
that can be activated or deactivated to keep track of the conversation. Therefore, this new application
is the virtual character player and everyone can access it if they have the link without the need to have
the BP application open.

Figure 7. Virtual Character Player. Published behaviour planner with WebGLStudio scene.

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 13 of 23

4.3.3 BP with other applications

Because in the context of PRESENT the work of most of the partners is included in the reference
implementation, developed in UE, the Behaviour Planner is also prepared to be integrated in this offline
realizer following the D5.5 Protocols and APIs implementation document. And it can be used not only
in the reference implementation, but also in any application to create new character players. There are
two ways to do that: through WebSocket connections or including the BP library in the application.

4.3.3.1 WebSocket connection
The BP application is running at wss://webglstudio.org/port/9003/ws/, so external applications can
send or receive data using a web socket connection. The other application only has to connect to the
host and to the same room (specified on environment properties). The room is used for session
persistence, that is, BP routes all messages originating from a specific client in a specific room to a
single backend web server as well as other clients connected to the same room. More detailed
information is described in the 4.4 Message protocol and format section.

4.3.3.2 Stand alone library
The logic of the BP application is developed as a stand alone library called behaviour-planner.js, so that
it can be easily integrated into any existing application and the graph system can be executed without
the need for the editor. This library is built in NodeJS, so it works both on the server and in the web
browser. At runtime, the library outputs BML blocks containing a number of behaviour elements with
synchronisation. The planner also waits for messages from the Behaviour Realizer to inform it of the
progress of the realisation as well as what is happening in the environment (e.g. user response). It is
used to inform the planner (and possibly other processes) of the progress of the realisation process.
This library can be found on UPF-GTI GitHub.

4.3.3.3 Within reference implementation
As described in D5.5 Protocols and APIs implementation, a WebSocket connection is used to execute a
behavioural planning running in the BP application in the reference implementation. But it can be also
executed inside UNREAL adding a NodeJS plugin7 to run the BP library. To do that it is necessary to
add the library code, its dependencies, the main file which uses the library and the JSON file exported
from the BP application in PRESENT/Content/Scripts/. The plugin code compiled has to be put in
PRESENT/Plugins/External.

4.4 Message protocol and format

The developer has to connect and communicate with the Virtual Character Player using the following
message formatting and the BML actions types.

Each message must be in JSON format with type and data values:

● type: Type of the message. The values can be “info”, “session”, “custom_action” and
“behaviours”. For the behaviours (bml actions), the value always has to be “behaviours”.

● data: Content of the message. For “behaviours”, it is an array of behaviours. Each behaviour
is an object with its specified attributes. For “custom_request”, it can have different parameters,
explained below.

First of all, the user has to connect to the server application creating a WebSocket connection. The host
to which the user must connect is wss://webglstudio.org/port/9003/ws/. Once connected with the
server application, he or she has to connect to the same session as the realizer application sending a
message to the server specifying the room (the same put in the Virtual Character Player). The message
has to looks like this:

7 “Embed node.js as an unreal plugin.” 2019. GitHub. https://github.com/getnamo/nodejs-ue4.

https://github.com/upf-gti/behaviour-planner.js
https://github.com/getnamo/nodejs-ue4

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 14 of 23

var msg = {

 type: "session",
 data: { token: "my room", action: "connect"}
 }
 ws.send(JSON.stringify(msg))

The room is used for session persistence, that is, the server routes all messages originating from a
specific client in a specific room to a single backend web server as well as other clients connected to
the same room. This way the user establishes a private server session between the Virtual Character
Player and his/her service/application.

If the connection in a session succeeds, a message like the following one will be received:
 {
 type: "info",
 data: { "Info: connected to a session with token "my room"}
 }

4.4.1.1 BML actions
Although the actions that the realizer allows are based on the BML specification, they are not exactly
the same. Here are the descriptions of each behaviour related to a specific tag:

FACE BEHAVIOURS

At the moment this only supports back-to-back lexemes, i.e. one lexeme starts when the other finishes,
not at the same time or within the same time range as another lexeme is running.

● <faceLexeme>: This behaviour shows a (partial) face expression from a predefined lexicon.

● <faceEmotion>: This behaviour shows a set of face expressions through single emotion.

GAZE BEHAVIOURS
● <gaze>: This behaviour causes the character to temporarily direct its gaze to the requested

target.

● <gazeShift>: This behaviour causes the character to direct its gaze to the requested target.
This changes the default state of the ECA: after completing this behaviour, the new target is
the default gaze direction of the ECA.

HEAD BEHAVIOURS

● <head>: Movement of the head, recalled from a gesticon by requesting the corresponding
lexeme.

● <headDirectionShift>: Orient the head towards a target referenced by the target attribute. Like
gazeShift with head as influence.

SPEECH BEHAVIOURS
● <speech>: Utterance to be spoken by a character. Realisation of the speech element generates

both speech audio (or text) and speech movement.

● <lg>: Utterance to be spoken by a character. It gives the url of the audio (and text) for speech
audio and movement.

GESTURE BEHAVIOURS
● <gesture>: Coordinated movement with arms and hands, recalled from a gesticon by

requesting the corresponding lexeme.

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 15 of 23

By default, the realizer updates the blink and saccades automatically, but they can be triggered at any
moment using the Gaze and Face Lexeme actions.

Further information about the description of each action and its possible values are provided in an
Annex, as chapter 7.

5 CONCLUSION
This deliverable has presented key aspects of the demonstrator of the proof of concept high-quality
virtual character player with a very high degree of integrability.
The system architecture uses two modules, a Planner and a Realiser, both based on the BML
interoperability specification; they can be used independently, through WebSocket connections
implemented, and the Planner integrated into applications, and, in particular, in the PRESENT reference
implementation, thus supporting UE as an offline realiser.

The Planner uses Hybrid Behaviour Trees, which are displayed as interactive and editable graphs, and
supporting a full workflow, to allow content creators to easily create and test behaviours.

The virtual character player proof of concept has already been tested and demonstrated on the RAO
and VC use cases, and to support University of Augsburg research. The proof of concept is also available
through web links. It will be provided in GitHub with full documentation.

6 ANNEX
6.1 BML action attributes

Here are the descriptions of each behaviour related to a specific BML tag.

6.1.1 FACE BEHAVIOURS

Shared face attributes:
Attribute Type Use Default Description

amount float optional 0.5 A float value between 0..1 to indicate the amount to which
the expression should be shown on the face, 0 meaning
’not at all’ and 1 meaning ’maximum, highly exaggerated’

shift boolean optional false A boolean value to indicate if the specified compound face
expression has to become the new BASE state of the ECAs
face. (<faceShift>)

Shared face sync attributes:

Attribute Description

start Beginning of face expression

attackPeak Maximum expression achieved

relax Decay phase starts, not for <faceShift> behaviours

end Face expression ended, not for <faceShift> behaviours

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 16 of 23

6.1.1.1 FaceLexeme

Attribute Type Use Default Description

type typeID require Value: faceLexeme

lexeme openSetItem require Member of a set of lexemes (See table below)

LIP_CORNER_DEPRESSOR

LIP_CORNER_DEPRESSOR_LEFT

LIP_CORNER_DEPRESSOR_RIGHT

LIP_CORNER_PULLER

LIP_CORNER_PULLER_LEFT

LIP_CORNER_PULLER_RIGHT

PRESS_LIPS

MOUTH_OPEN

LOWER_LIP_DEPRESSOR

CHIN_RAISER

LIP_PUCKERER

TONGUE_SHOW

LIP_STRECHER

LIP_FUNNELER

LIP_TIGHTENER

LIP_PRESSOR

BROW_LOWERER

BROW_LOWERER_LEFT

LOWER_RIGHT_BROW

LOWER_BROWS

INNER_BROW_RAISER

OUTER_BROW_RAISER

RAISE_LEFT_BROW

RAISE_RIGHT_BROW

RAISE_BROWS

UPPER_LID_RAISER

CHEEK_RAISER

LID_TIGHTENER

EYES_CLOSED

BLINK

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 17 of 23

WINK

NOSE_WRINKLER

UPPER_LIP_RAISER

DIMPLER

DIMPLER_LEFT

DIMPLER_RIGHT

JAW_DROP

MOUTH_STRETCH

Example of message:

{
 type: "behaviours",
 data: [{
 type: "faceLexeme",
 lexeme: "LIP_CORNER_DEPRESSOR",
 start: 0,
 attackPeak: 0.25,
 relax: 0.75,
 end: 1,
 amount: 0.5,
 shift: false
 }]

}

6.1.1.2 FaceEmotion

Attribute Type Use Default Description

type typeID require Value: faceEmotion

emotion openSetItem require Member of a set of emotions [HAPPINESS, SADNESS,
ANGER, SURPRISE, CONTEMPT, DISGUST, FEAR,
NEUTRAL]

Example of message:

{
 type: "behaviours",
 data: [{
 type: "faceEmotion",
 emotion: "ANGER",
 start: 0,
 attackPeak: 0.25,
 relax: 0.75,
 end: 1,
 amount: 0.5,
 shift: true
 }]

}

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 18 of 23

6.1.2 GAZE BEHAVIOURS

Shared gaze attributes:
Attribute Type Use Default Description

target openSetItem require CAMERA A reference towards a target instance that
represents the target direction of the gaze
[CAMERA, RIGHT, LEFT, UP, DOWN, UPRIGHT,
UPLEFT, DOWNLEFT, DOWNRIGHT]

influence openSetItem optional Determines what parts of the body to move to
affect the gaze direction. [EYES, HEAD, NECK.]

offsetAngle angle optional 0.0 Adds an angle degrees offset to gaze direction
relative to the target in the direction specified
in the
offsetDirection. Range recommended: [-25,25]

offsetDirection direction optional RIGHT Direction of the offsetDirection angle [RIGHT,
LEFT, UP, DOWN, UPRIGHT, UPLEFT,
DOWNLEFT, DOWNRIGHT]

6.1.2.1 Gaze
This behaviour causes the character to temporarily direct its gaze to the requested target. The
influence parameter is read as follows:

gaze attributes:

Attribute Type Use Default Description

type typeID require Value: gaze

gaze sync attributes:

Attribute Description

start gaze starts to move to new target

ready gaze target acquired

relax gaze starts returning to default direction

end gaze returned to default direction

Example of the message:

{
type: "behaviours",
data: [{

 type: "gaze",
 influence: "EYES",
 target:"UPRIGHT",

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 19 of 23

 offsetDirection: "LEFT",
 offsetAngle: 24.5,
 start: 0,
 ready: 0.33,
 relax: 0.66,
 end: 2.0

}]
}

6.1.2.2 GazeShift
This behaviour causes the character to direct its gaze to the requested target. This changes the default
state of the ECA: after completing this behaviour, the new target is the default gaze direction of the
ECA.

gazeShift attributes:

Attribute Type Use Default Description

type typeID require Value: gazeShift

gazeShift sync attributes:

Attribute Description

start gaze starts to move to new target

end gaze target acquired

Example of the message:

{
type: "behaviours",
data: [{

 type: "gazeShift",
 influence: "EYES",
 target:"UPRIGHT",
 offsetDirection: "LEFT",
 offsetAngle: 24.5,
 start: 0,
 end: 2.0

}]
}

6.1.3 HEAD BEHAVIOURS
6.1.3.1 Head

Movement of the head, recalled from a gesticon by requesting the corresponding lexeme.

head attributes:

Attribute Type Use Default Description

type typeID require Value: head

lexeme openSetItem require Refers to an animation or a controller to realise this
particular head behaviour. Minimum set offered by all

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 20 of 23

realizers: [NOD, SHAKE, TILT]

repetition int optional 1 Number of times the basic head motion is repeated.

amount float optional 0.0 How intense is the head nod? 0 means immeasurable
small; 0.5 means ”moderate”; 1 means maximally large

head sync attributes:

Attribute Description

start start of the preparation phase

ready end of the preparation phase

startStroke start of the stroke

stroke stroke of the head motion. Note that the meaning of this sync point becomes undefined if
repetition > 1

strokeEnd end of stroke

relax start of retraction phase

end end of the head motion

Example of the message:

{
type: "behaviours",
data: [{

 type:"head",
 lexeme: "NOD",
 repetition:1,
 start: 0,
 ready: 0.3,
 strokeStart: 0.3,
 stroke: 1,
 strokeEnd: 1.6,
 relax: 1.6,

end: 2.0
}]

}

6.1.3.2 HeadDirectionShift

Orient the head towards a target referenced by the target attribute. Like gazeShift with head as
influence.

headDirectionShift attributes:

Attribut
e

Type Use Default Description

type typeID require Value: headDirectionShift

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 21 of 23

target targetID require Target towards which the head is oriented [CAMERA, RIGHT,
LEFT, UP, DOWN, UPRIGHT, UPLEFT, DOWNLEFT, DOWNRIGHT]

headDirectionShift sync attributes:

Attribute Description

start Beginning of motion

end Reached desired direction; set this direction as new BASE state

Example of the message:

{
type: "behaviours",
data: [{

 type: "headDirectionShift",
 target: "DOWNLEFT",
 offsetDirection:"LEFT",
 offsetAngle: 10.0,
 start: 0,
 end: 2.0

}]
}

6.1.4 SPEECH BEHAVIOURS

Shared speech sync attributes:
Attribute Description

start Start of the speech

end End of the speech

6.1.4.1 Speech
speech attributes:

Attribute Type Use Default Description

type typeID require Value: speech

text string require Attribute that contains the text to be spoken.

Example of the message:
{

type: "behaviours",
data: [{

type: "speech",
 text: "Hi. How are you?",
 start: 0,
 end: 2.0
}]

}

6.1.4.2 Audio
audio attributes:

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 22 of 23

Attribute Type Use Default Description

type typeID require Value: lg

url string require Audio url that has to be reproduced. The audio has to be public,
that is, it has to be reproduced by putting the link on the
browser.

Example of the message:

{
type: "behaviours",
data: [{

type: "lg",
url:
"https://webglstudio.org/projects/present/audios/RAO/How%
20old%20are%20you.wav",
start: 0,
end: 2.0

}]
}

6.1.5 GESTURE BEHAVIOURS
6.1.5.1 Gesture
Coordinated movement with arms and hands, recalled from a gesticon by requesting the corresponding
lexeme.

gesture attributes:

Attribute Type Use Default Description

lexeme openSetItem require Refers to an animation or a controller to realise this
particular gesture. [WAVE, PRESENT]

repetition int optional 1 Number of times the basic head motion is repeated.

gesture sync attributes:

Attribute Description

start beginning of gesture

ready end of gesture preparation phase

startStroke start of the stroke

stroke gesture stroke

strokeEnd end of stroke

relax start of retraction phase

end end of gesture

Example of the message:

{

PRESENT_D6.6_WP6_Virtual Character Player Demonstration _04032022_UPF Page 23 of 23

type: "behaviours",
 data: [{
 type:"gesture",
 lexeme: "WAVE",
 repetition:0,
 start: 0,
 ready: 0.3,
 strokeStart: 0.3,
 stroke: 1,
 strokeEnd: 1.6,
 relax: 1.6,
 end: 2.0,
 amount:1

}]
}

	1 EXECUTIVE SUMMARY
	2 BACKGROUND
	3 INTRODUCTION
	3.1 Main objectives and goals
	3.2 Terminology

	4 Virtual Character Player
	4.1 System architecture
	4.2 Behaviour Realizer
	4.2.1 Web based
	4.2.2 Use cases tested

	4.3 Behaviour Planner
	4.3.1 Graph system
	4.3.2 Application modules
	4.3.2.1 Graph Editor
	4.3.2.2 Debugger
	4.3.2.3 Player
	4.3.2.4 Drive
	4.3.2.5 Publisher

	4.3.3 BP with other applications
	4.3.3.1 WebSocket connection
	4.3.3.2 Stand alone library
	4.3.3.3 Within reference implementation

	4.4 Message protocol and format
	4.4.1.1 BML actions

	5 CONCLUSION
	6 ANNEX
	6.1 BML action attributes
	6.1.1 FACE BEHAVIOURS
	6.1.1.1 FaceLexeme
	6.1.1.2 FaceEmotion

	6.1.2 GAZE BEHAVIOURS
	6.1.2.1 Gaze
	6.1.2.2 GazeShift

	6.1.3 HEAD BEHAVIOURS
	6.1.3.1 Head
	6.1.3.2 HeadDirectionShift

	6.1.4 SPEECH BEHAVIOURS
	6.1.4.1 Speech
	6.1.4.2 Audio

	6.1.5 GESTURE BEHAVIOURS
	6.1.5.1 Gesture

