
D5.5 Protocols and APIs Implementation

Grant Agreement nr 856879
Project acronym PRESENT

Project start date (duration) September 1st 2019 (36 months)
Document due: August 31st 2021

Actual delivery date August 31st 2021
Leader Framestore

Reply to Richard.Ollosson@framestore.com
Document status Submission Version

Project funded by H2020 from the European Commission

Project ref. no. 856879

Project acronym PRESENT

Project full title Photoreal REaltime Sentient ENTity

Document name Protocols and APIs Implementation

Security (distribution level) Public

Contractual date of delivery 31/08/2021

Actual date of delivery 31/08/2021

Deliverable name D5.5 Protocols and APIs Implementation

Type Other

Status & version Submission Version

Number of pages 18

WP / Task responsible Framestore

Other contributors all partners

Author(s) Theo Jones, Richard Ollosson

EC Project Officer Ms. Adelina Cornelia DINU -
Adelina-Cornelia.DINU@ec.europa.eu

Abstract This deliverable presents the overall structure of the
reference implementation as well as the protocols and
specifications developers can use to successfully contribute
components to the reference implementation project.

Keywords digital human, real-time, Unreal Engine

Sent to peer reviewer Yes

Peer review completed Yes

Circulated to partners No

Read by partners No

Mgt. Board approval No

Document History

Version and date Reason for Change

1.0 10/07/2021 Document created by Theo Jones

1.1 15/08/2021 Version shared for internal peer review

1.2 27/08/2021 Final version for submission

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 2 of 18

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY 4

2. INTRODUCTION 5

3. DOCUMENTATION 5
3.1 - How is the reference implementation structured? 5
3.2 - How is the content organized? 6
3.3 - Where are the elements in the Scene? 8
3.4 - How are components included and set up? 8
3.5 - How do components work together? 9
3.6 - How to use a DLL implementation? 11
3.7 - How can data be used in the reference implementation? 12

4. REFERENCE IMPLEMENTATION ACTORS 12
4.1 - Digital Human agent 12
4.2 - Reference Human 13
4.3 - Digital Human Processing 13
4.4 - Input Controls 13

5. PARTNER COMPONENTS OVERVIEW 15
5.1 - Emotional Assessment (University of Augsburg) 15
5.2 - Audio Processing (University of Augsburg) 15
5.3 - Action Response (UPF) 16
5.4 - Text to Speech (University of Augsburg) 16
5.5 - Motion Generation (Cubic Motion) 16
5.6 - Security Manager (InfoCert) 16
5.7 - BroadcastSportsAnalysis (Brainstorm) 17
5.8 - MultiAgent (Inria) 17

6. API DOCUMENTATION 17

7. CONCLUSIONS 18

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 3 of 18

1. EXECUTIVE SUMMARY

As part of the overall project architecture, as presented in D2.2 and D2.3, an approach
to component integration was agreed that utilises a reference implementation standard
in the form of an Unreal Engine project. This reference implementation project
provides a reference platform against which i) all input components can be tested and
validated and ii) provides a template for the integration of consortium partner
components.

This deliverable presents the overall structure of the reference implementation as well as
the protocols and specifications developers can use to successfully contribute
components to the reference implementation project.

A detailed breakdown of the various components within the reference implementation
project are also presented. This breakdown includes details of the placeholder digital
human and user representations and how these can be used for interface and testing
purposes.

Examples are also provided of the use case functionality that has already been
incorporated in the reference implementation in conjunction with the consortium
partners.

A help file with fully documented and commented code for all the plugins is included as
part of this deliverable and should provide collaborating developers with all the
information they need to contribute compatible code in the form of new plugins and
dll’s.

This document is written to accompany version 3.2.2 of the reference implementation.

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 4 of 18

2. INTRODUCTION

This deliverable outlines both the design and structure of the reference implementation
along with how-to information on adding new components and plugins to the project.

What is the reference implementation?

● It is an Unreal project that can be used to share code, data and services between
partners.

● The functionality of partners’ services are exposed in Unreal as separate
components that are implemented in different plugins.

● Partners can access each other’s services by simply calling functions in Unreal
blueprints.

● Each use case has its own map in Unreal and specific use case functionality can
be implemented in both C++ and blueprints.

The documentation below should provide all the information required to successfully
contribute new components and interface those components with functionality
contributed by other partners. This process has already been successfully undertaken
for a number of the use-cases present in the project, such as the Adam mirroring use
case and the Sports Broadcast Analysis use case.

3. DOCUMENTATION

3.1 - How is the reference implementation structured?

● There are three main elements in the project: The DigitalHuman, the
ReferenceHuman and the DigitalHumanProcessing. The diagram below shows
the relationships between these elements and the detail of the
DigitalHumanProcessing.

● The InputController handles user inputs from keyboard and mouse as a stub
implementation. It is aimed to give the user control of the camera(s) and the

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 5 of 18

reference human. This input can get replaced by specific use case input devices,
eg VR headset.

● The SpectatorCamera sees the scene from a third person point of view. It can be
controlled by keyboard / mouse or blueprints. It is possible to add multiple
spectator cameras and switch between them during runtime.

● The ReferenceHuman is a representation of the user. It has functions that can be
called by the InputController, or used by the DigitalHumanProcessing in a
particular use case.

● The DigitalHuman represents the main agent or several agents in a crowd
simulation. It receives events and function calls from DigitalHumanProcessing.

● The DigitalHumanProcessing contains all the components that define services,
code and data from the partners. It is the chief manipulator of the DigitalHuman
instances. The components are defined in separate plugins. The components can
internally contain a local C++ implementation, a DLL or a web service client.
The DLL or client code is not visible to the DigitalHumanProcessing, but
components expose functions that call the internal APIs.

3.2 - How is the content organized?

● The partner’s actor components are developed as plugins, so the content (i.e.
assets) for each component is located in the plugin content folder. (View
Options→Show Plugin Content)

● There are also case folders that contain assets for each use case. This could be
the main map, specific data assets or blueprints that are specific to that use case.
This helps facilitate data between partners.

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 6 of 18

● The current case folders are:
○ REFERENCE: Contains an example test map with all actors and a

DigitalHumanProcessing with all components. It is maintained by
Framestore.

○ BEHAVIOURTEST: Added as a way to test the communication between
UPF’s behaviour planner and InfoCert’s security module.

○ MIRROR: For the mirroring use case.
○ REGISTRATIONOFFICER: For the registration officer use case.
○ SPORTPRESENTER: For the sport presenter use case.
○ MULTIAGENT: For testing Inria’s crowd simulations.

● Each case folder has a map, a DigitalHumanProcessing and a DigitalHuman
(Agent) blueprint. The Processing blueprint contains the different components
that connect and communicate with the Agent. It has variables that give access
to the Agent, the main Spectator Camera and the Reference Human.

● If the use case is using any offline data assets (e.g. animations, audio, sequences)
these will also be stored in the case folder.

● Since version 3.2.0 the project contains multiple agent classes with different
resolutions.

○ The LowRes agent was the original (placeholder) rig and is kept in case
any partner wants to use it for any high-performance tests. It is currently
not used by default in any use case map.

○ The MidRes agent is produced and maintained by Cubic Motion. It is
currently used by default in all use cases. Animations can be triggered by
playing level sequences (produced offline).

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 7 of 18

○ The HighRes agent will be added in a later version and will be produced
and maintained by Framestore. It will share the rig structure with the
MidRes agent and should be able to use the same Motion Generation
component for controlling the motions (streaming animations).

3.3 - Where are the elements in the Scene?

● The World Outliner shows the elements (actors) in the map.

● The InputController is set up in the Game Mode in World Settings.

3.4 - How are components included and set up?

● The components are included in the DigitalHumanProcessing blueprints.

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 8 of 18

● The global options/settings for each component are in the project settings.

● The properties panel in the DigitalHumanProcessing blueprint exposes the
component’s properties. For example, a property can be the (mock) text
sentences used by the audio processing or the number of agents used in a crowd
simulation.

3.5 - How do components work together?

● The logic that connects components is in a single event graph (in the
DigitalHumanProcessing blueprints). It is structured this way to be easy to

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 9 of 18

maintain and integrate. The graph should be changed according to the particular
use case by using different services of the partners.

● The graph usually calls the components’ functions during start (BeginPlay),
update (EventTick) and when receiving events from the components like
OnUserSentenceReceived, OnAgentResponseReceived etc. These events are
fired by the components and they will be created according to partners
requirements. Events should generally be created when a message has been
received from a DLL or web server.

● Note that events triggered by received messages/responses (web services) or
callbacks (DLLs) are to be preferred over periodically checking if a state has
changed for performance reasons (with the exception of emotional values from
the EmotionalAssessment component as it has a steady stream of updates).

● The graph also has variables that can be used to call functions in other actors
(SpectatorCamera, ReferenceHuman and DigitalHuman). The functions in those
actors will be added according to partners’ requirements and can change
depending on use case.

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 10 of 18

3.6 - How to use a DLL implementation?

● Plugins that implement services by using a DLL have the following structure:

● The ThirdParty directory under Source contains a Visual Studio solution that
builds the DLL code. The result of the ‘Release’ build is in the x64 directory.
The build should also automatically copy the .dll file into the
Binaries/ThirdParty/Win64 directory. This copy is the one loaded by the
reference implementation. NOTE: The .dll file is only copied when building in
‘Release’ mode.

● A DLL implements global functions of the form:

● The reference implementation’s plugin (e.g.
Source/EmotionalAssessment/Public/ ThirdPartyEmotionalAssessment.h) wraps
the DLL functions and makes them accessible to blueprints.

● ThirdParty service functionalities are implemented in the DLL. The DLL and
plugins are built using Visual Studio 2019. Unreal must be closed before
building the DLL as the copy won’t work otherwise. Plugins can be built with

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 11 of 18

Unreal running but it is required to close and re-launch Unreal after the build, so
that the plugin can be reloaded.

3.7 - How can data be used in the reference implementation?

● Data can be added in two ways:
○ As a data asset in Unreal. For example animation and audio files

produced offline. This type of data will be added to the reference
implementation according to the requirements of the partners. If the data
needs to be read by the DLL or service code, then we will provide access
functions from Unreal to the third party code (red arrow below).

○ Data can be part of the DLL or web API. If the data is local, then it can
be added as part of the reference implementation. To access this type of
data in Unreal, the component will be changed to have read access
functions according to the requirement of the partner.

4. REFERENCE IMPLEMENTATION ACTORS

4.1 - Digital Human agent

The agent will exist in multiple resolutions maintained by different partners.

● LowRes agent
○ Placeholder agent used in the first versions of the reference

implementation.

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 12 of 18

○ It will be kept in the project for a while if any partner wants to use it for
high-performance tests. If no interest is shown after introducing the other
agents it will be removed once the MidRes & HighRes agents have been
stabilized.

● MidRes agent (since version 3.2.0)
○ Produced and maintained by Cubic Motion.
○ Use third party plugins Control Rig and Rig Logic. These need to be

enabled in the Unreal project for the face animations to work. This is
done by default in the Reference Implementation project but if any
partner wants to copy the assets to another project those plugins need to
be enabled before migrating the assets!

○ Body animations, face control rig animations and audio files are synced
up in level sequences which are produced offline. Sequences are
associated with a specific map and are added as data properties to the
DigitalHuman blueprint. Sequences are then identified by index when
playing them.

● HighRes agent (not released yet)
○ Produced and maintained by Framestore.
○ Will share the rig structure with the MidRes agent.
○ Should be able to use the same Motion Generation component to

generate animations and thus it should be possible to control it in the
same way as the MidRes agent.

4.2 - Reference Human

The reference human actor is a basic pawn that is meant to only be used as a visual
reference of where the user’s body and head are positioned. An “actor” in Unreal is any
object that can be placed in the scene and a “pawn” is an actor that can be controlled by
the user.

4.3 - Digital Human Processing

The processing actor does not have a visual representation in itself. Instead it has a
“debug sphere” for each actor component it contains which are visible during play. The
spheres indicate when the different components are active and what outputs they
produce. The spheres can be disabled in the project settings.

4.4 - Input Controls

By default it is possible to move both the Reference Human and Spectator Camera(s).

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 13 of 18

Reference Human controls:

● Move the ReferenceHuman horizontally with the arrow keys.
● Note that this should work regardless of which camera is used.
● When using the ReferenceHuman camera it can be panned and tilted by moving

the mouse.

Spectator Camera controls:

● Move the spectator camera horizontally with WASD and vertically with QE.
● Pan/Tilt the spectator camera by moving the mouse.
● Note that it is only possible to move the camera that is currently in use. If the

ReferenceHuman camera is in use then no input is propagated to spectator
cameras.

● Apart from user input it is also possible to use blueprint functions (e.g.
“SetLocation” and “SetLookAtTarget”) to set camera properties. The current
functionality is mostly a proof of concept. It can be improved or extended if
needed for a use case.

Moving the Digital Human:

● Basic movement:
○ By default the DigitalHuman should follow the ReferenceHuman with an

offset in most maps, including the reference map.
○ In a few case maps, e.g. the mirroring, it is not possible to move the

DigitalHuman at all during runtime.
○ When using the multi agent case map the crowd simulation should

control the position and orientation of all digital humans.
● Playing offline animations:

○ As of v3.2.0 all animations are produced offline and synced with audio in
level sequences.

○ The sequences are associated with a specific map and are added as data
properties in the digital human blueprints.

○ The sequences can be played by pressing the corresponding index
number key or by selecting in the drop down widget.

○ When a sequence has finished playing an idling sequence will start
automatically.

○ No blending is currently applied.
● Streaming animations:

● In v3.2.1 the first version of animation streaming was added for the
mirroring case map (logic also included in the reference case map).

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 14 of 18

● It uses python pickle files to map the emotional values to the face control
rig keys. Therefore PythonScripting and SequencerScripting plugins
need to be enabled.

● In the Digital Human blueprints there is a “Mirroring” function that
solves for the keys and sets the corresponding face controls.

● Streaming animations/control rig keys will be the primary way to move
the Digital Human in later versions of the project. However, the
implementation will be embedded in the Motion Generation component
instead of using python and blueprint functions.

5. PARTNER COMPONENTS OVERVIEW

This section gives a quick overview of the different actor components in the
DigitalHumanProcessing. The DigitalHumanProcessing is the connecting link between
all the components and is maintained by Framestore. It propagates messages and data
between all the plugins, the reference human, the camera(s) and the digital human(s).

5.1 - Emotional Assessment (University of Augsburg)

○ Purpose: Determine the current emotional state of the user
○ Input: Audio & Video (SSI_Pipeline - run as local service)
○ Output: Valence & Arousal (V&A, “Emotional Input”) of both user and

agent, both as continuous values (floats) and as discrete labels (strings).
■ Later: Expressiveness factor (how intense the emotions are)

(float)
○ Connections: Audio Processing, Action Response, Motion Generation,

Text to Speech
○ Integration: DLL, fetch values each frame through a UDP connection

■ Localhost, ports: 1111 (EmoSim)
■ Other ports in use: 2221, 2222, 8888, 9999

5.2 - Audio Processing (University of Augsburg)

○ Purpose: Convert user’s audio to text
○ Input: Audio (SSI_Pipeline - run as local service)
○ Output: User’s speech in text, Text Time Code (TC)
○ Connections: Action Response
○ Integration: DLL, checks for new sentences periodically via UDP

■ Localhost, ports: 1112 (EventBoard/Speech)

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 15 of 18

5.3 - Action Response (UPF)

○ Purpose: Find agent’s response in text. Convert all available information
to the agent’s body & facial behaviour. Register User & Agent with
security manager, periodically check security verification.

○ Input: V&A, User’s sentence (text), Text TC, Points of Interest (POIs)
○ Output: Agent’s response (text), Text TC, Targets (MoveTo, LookAt,

PointTo), Face expression, Body Gesture, Security requests
○ Connections: Text-to-Speech, Motion Generation, Security Manager
○ Integration: Web sockets, trigger events on received messages

■ wss://webglstudio.org/port/9002/ws/

5.4 - Text to Speech (University of Augsburg)

○ Purpose: Convert agent’s text response & emotional state to an audio
response.

○ Input: Agent’s response as text, V&A, Text TC
○ Output: Agent’s response as audio (SpeechData), Audio TC, Audio info

(e.g. text, phonemes, visemes)
○ Connections: Motion Generation
○ Integration: Not implemented

■ Will probably be a DLL and check for new results periodically.

5.5 - Motion Generation (Cubic Motion)

○ Purpose: Convert agent’s behaviour, audio response, emotions and
targets to an offline animation to play (with smooth blending transitions)
or a continuous animation stream.

○ Input: Agent’s response (audio + text), behaviour data, emotional values
& targets (MoveTo, LookAt, PointTo)

○ Output: Animation stream, event triggers.
○ Connections: Mid-res rig & High-res rig, BroadcastSportsAnalysis
○ Integration: To be defined.

■ Probably a direct integration in Unreal with local assets.

5.6 - Security Manager (InfoCert)

○ Purpose: Initial and continuous security authorisation for both Agent &
User.

○ Input: Initial and continuous verification requests.
○ Output: Authentication results.
○ Connections: Action Response
○ Integration: REST (HTTPS) API

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 16 of 18

■ Making REST requests to remote server:
https://present.etuitus.it/present/api/v1

5.7 - BroadcastSportsAnalysis (Brainstorm)

○ Purpose: Integration to Brainstorm’s InfinitySet software.
○ Input: Event triggers from InfinitySet & Motion Generation.
○ Output: Propagated events.
○ Connections: Motion Generation, InfinitySet
○ Integration: TCP communication between InfinitySet and the RefImpl

■ Localhost, ports: 5123
■ Web Remote Control (HTTP): 30010

5.8 - MultiAgent (Inria)

○ Purpose: Integration to Inria’s UMANS software.
○ Input: Crowd simulation data from the UMANS API.
○ Output: Position, orientation, trajectories and gaze targets for each of the

simulated agents.
○ Connections: Motion Generation, Agents (Digital Humans)
○ Integration: Locally built DLL.

6. API DOCUMENTATION

All classes and methods in the reference implementation have been documented with
Doxygen code block comments. For each released version the comments have been
generated to HTML files that are easy to view in any web browser. The files have also
been combined into a single Compiled HTML file that is included in the released zip
file. Unfortunately the formatting in the compiled HTML file is not as smooth as in the
original HTML files.

The compiled file can be searched or navigated through via class hierarchy or file list.
However, as the resulting file links to all the classes, structs and namespaces in the
project it can be difficult to find what you are looking for if you don’t already know the
answer. Therefore the most important classes have been added as separate “Modules”
that can be found on the main navigation toolbar. These module classes are the actor
components which in turn contain all the methods that are exposed in Unreal via the
blueprint graph in the DigitalHumanProcessing.

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 17 of 18

https://present.etuitus.it/present/api/v1

7. CONCLUSIONS

This deliverable clearly demonstrates that key milestones have been achieved for the
development of API’s and protocols within the reference implementation project and the
project's function in facilitating the interface of multiple partner contributed
components.

The project structure outlined in this document has already been used to successfully
deliver two M18 POC deliverables, featuring work contributed by multiple partners.
Thanks to the flexible structure, utlising native Unreal blueprint functionality to allow
for the configuration of multiple component interfaces, the reference implementation
project can be used to meet the needs of multiple varying use cases.

Work is ongoing to support additional components as they become available from
project partners but based on the experience so far and the specifications presented there
is no reason to believe the current structure will not be well suited to accommodate all
the anticipated needs.

PRESENT_D5.5_WP5_Protocols and APIs Implementation_2020.08.31_FS Page 18 of 18

