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1 GLOSSARY

Term Definition/Explanation

MDP Markov-Decision-Process is a class of decision
problems, for which only the current state is
relevant for the decision making

TDC “Linear temporal difference with gradient
correction” is a reinforcement learning algorithm
for linear function approximation

GTD2 “Gradient temporal difference” is a reinforcement
learning algorithm for linear function
approximation

BML Behavior-Markup-Language which is used as a
protocol for controlling the nonverbal behavior of
virtual agents

SSML Speech-Synthesis-Markup-Language which is used
as a protocol for controlling the speech
characteristics/content for TTS systems

TTS system System, which converts Text-to-Speech

2 EXECUTIVE SUMMARY

The deliverable 4.6 “Context Sensitive Agent Adaption Enabling” (R, PU, M30) presents
the final Socially-Aware Reinforcement Learning system. Since the PRESENT agent
aims at establishing engaging interactions, the adaption process is required to be as
unobtrusive as possible. Therefore, we use our social sensing pipeline for enabling
context sensitiveness and Socially-Aware Reinforcement Learning to adapt the agent.
To establish additional engagement and naturalness through empathy, the feedback of
the reinforcement learning is further processed by our emotion calculation system.

In this deliverable, we developed the final version for a Socially-Aware Reinforcement
Learning simulation as well as a live system. The system currently adapts the
backchannel behaviour to the personality preferences of the user and on this basis
outputs how intensely the emotions are expressed. Using our adapted version for linear
function approximation, the simulation modus is used to find the best parameter
configuration for our live system. We also show how this adapted backchannel
behaviour is then applied in an embodied agent.
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3 BACKGROUND

This deliverable contributes to the workpackage WP4 “Behavioural Sensitivity and
Responsiveness”. For the user-focused adaption to be enabled, we relied on the
previous work done in deliverable 4.1, 4.4 “Non-verbal Agent Behavior Enabling” for
the behaviour part and deliverable 4.5 “Agent Social Interpretation Enabling” for using
our sensing system to establish user-focused context. In this deliverable, we report on
the final version of our context-sensitive agent adaption system, which allows an
unobtrusive and user-focused adaption to behavioural aspects in the human-agent
interaction. This includes a continuously learning live system and the corresponding
final simulation system. To be able to learn continuously, we describe how we adapt
linear function approximation methods. Additionally, we present the implemented
reinforcement learning model for the backchannel style adaption used to establish
rapport with the user and show how the context sensitive adaption is enabled in an
embodied agent. We also report on experiments using our simulation, which are used
to determine efficient parameters for the final live learning process.

4 INTRODUCTION

Establishing rapport between the agent and the user requires an appropriate
application of the corresponding non-verbal behaviour (e.g. showing coordination,
positiveness). However, this kind of behaviour can sometimes be complex (e.g.
applying an appropriate backchanneling in the right situation), and scripting these
behaviours would be very time-consuming. Also, the agent doesn’t know which kind of
interaction the user individually prefers (e.g. extroverted vs introverted behaviour). The
agent can only find out by interacting with the user, which is the typical case for
applying reinforcement learning. Traditional approaches require mostly explicit
feedback, which is not desirable for agent-human interaction. By giving explicit human
feedback (e.g. pushing a button for liking/disliking), it can be tiring for the user in the
long run and even in the short run destroy the immersion with the agent. Hence, we
aim at retrieving a more unobtrusive way to gather feedback from the user, which is
satisfied by our Socially-Aware Reinforcement Learning approach. There we gather
feedback from social signals and learn appropriate behaviour.
In this deliverable, we will establish rapport with the user by combining personality
cues for extraversion with backchannel feedback to determine a backchannel feedback
style. The resulting different styles and our social sensing pipeline will then be used to
adapt unobtrusively the backchannel style of the agent to the user preferences.

The subsequent sections of the deliverable are structured in the following way. Section
4 introduces the main concepts on which our implementation is based. These
encompass Backchannel Feedback and the approach of Socially-Aware Reinforcement
Learning.
Section 5 introduces the algorithms used for implementing the user-focused adapting
live and simulation system. These encompass the Bandit, Q-Learning and with a special
focus on linear function approximation. Therein, we show how the function
approximation has to be adapted to be able to learn in a continuously ongoing,
nonstationary and nonlinear behaving environment. The output of this chapter
describes an algorithm that has been implemented by our live and simulation system.
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Section 6 first establishes the connection between personality adaption, where
extraversion cues are used to express the corresponding personality (discussed in
detail in deliverable 4.1), and backchannel feedback aiming at establishing rapport with
the user. This background is followed by presenting our reinforcement learning model
for adapting the backchannel style to the user preferences. Subsequently, we show
how the adapted behaviour is enabled with an embodied agent.
Section 7 presents the experiments that were conducted in our simulation system to
find the best performing algorithm in combination with the best parameter
configuration. The result serves as input for our live system.
Section 8 concludes the deliverable.

5 BACKGROUND

In this deliverable we will show how we implemented the user-focused personality
adaption of the agent with respect to social signals as interactional context. For
adapting the personality, we concentrated on the learning task of applying
backchannel feedback appropriately in accordance with the preferred personality.
Therefore, we will first do a short recap on the psychological background of
backchannel feedback. Since we used reinforcement learning for the user-focused
adaption, another section concludes our Socially-Aware Reinforcement Learning
approach. Both will be necessary to understand the implementation treated in the
residual deliverable.

5.1 Backchannel Feedback

Human conversation uses backchannel feedback as an unobtrusive listener response
addressing the content or situation of the interaction, which serves among others
communicational aims like showing attention (e.g. smiling) or acknowledgement (e.g.
nodding). Superficially, backchannel feedback can be categorized into verbal and
nonverbal types. The verbal backchannels can be among others categorized as its
interactive function. Since we only refer to reactive expressions in this deliverable, our
focus is on this verbal type. These occur often after a speaker's turn and serve as a
reaction to the spoken content. Which of these reactive expressions were implemented
for the backchannel style adaption can be looked up in section 6.2.1.

The non-verbal backchannel feedback is subdivided by the used modalities. Applying
gazing and smiling explicitly for backchanneling purposes has not been used in this
deliverable. Nodding and head shakes can either be used in isolation or combined with
verbal backchannel types. Additionally, the application is not restricted to a single
usage, also multiple follow-up applications are possible according to the literature.
Further details on the theory of backchannel behaviour can be looked up in deliverable
4.4 “Non-verbal Agent Behavior Enabling”.

5.2 Socially-Aware Reinforcement Learning

The basic idea of reinforcement learning is that an autonomous system (also called an
agent) learns stepwise via trial and error to take the correct actions in certain
situations. In order to make decisions, the agent must perceive the environment [1, p.
4] by abstracting it as states with features relevant to the application. Choosing and
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executing an action leads to the next step, where a new state and a reward for the
action execution is observed. This reward will be accounted for with the knowledge
available at this time step. The agent's overall goal is to maximize the reward [1, p. 48]
in the long run, for which it is accumulating a state-action value for each state-action
pair. For most approaches, these “learned” values are combined with a strategy (e.g.
always choosing actions with the high values) and serve as a basis to identify
appropriate actions in the corresponding situation. Therefore the agent has to find a
good tradeoff between choosing the highest value (exploitation of the knowledge) and
choosing randomly (exploration).

For interactions between humans and agents, it is not sufficient to request reward
explicitly from the user (e.g. keystroke ratings). This can become tiring over time,
destroy the immersion with the user, and hence bias the requested value. So it is
rather desired to get the information more unobtrusively by accounting social signals.
This can either refer to explicitly tracked values (e.g. laughter, gestures) or to values
combined from multiple tracked signals (e.g. engagement, emotions). Similarly, state
information can be retrieved by social signals and by accounting its features abstracted
to a state. Extending the basic ideas of reinforcement learning with unobtrusively
requested social information results in maintaining the immersion during human-agent
interactions. This approach is called Socially-Aware-Reinforcement Learning. An
example for this modified learning method is shown in figure 1.

Figure 1: Exemplary overview of Socially-Aware Reinforcement Learning

The example shows a scenario, where the user interacts with an agent. In each
timestep, the tracked user emotion is encoded to the agent’s state. Based on this
emotion and its current knowledge, the agent learns to mitigate bad emotions using
appropriate mitigation strategies encoded into the action space. Another example
would be a personality adaption, which we will address in this deliverable. More
information on the basic ideas of reinforcement learning or the Socially-Aware
Reinforcement Learning approach can be looked up in Deliverable 4.1.
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6 CONTEXT SENSITIVE AGENT ADAPTION ENABLING

To enable context-sensitive agent adaption, we implemented a system realizing our
Socially-Aware-Reinforcement Learning approach. In the next section, we will give an
overview of the implementation of this system, where we outline the architecture of
the live simulation system. Additionally, the working of each system and the realized
algorithms will be described. Another section will explain, how we establish rapport
through the personality adaption modifying the backchannel style, how the learning
problem has been modelled, how the behaviour actually has been enabled through our
live system and how well the implemented algorithms have been performed in
simulation experiments.

6.1 Reinforcement Learning System

To be able to adapt the agent unobtrusively to the user’s needs we implemented a
system for Socially-Aware Reinforcement Learning. This system can be used online for
live interactions or for simulation purposes. Both modes will be presented in the
following. Afterwards, we will present the different algorithms which we implemented
for our reinforcement learning system. The Socially-Aware scenario requires capabilities
to react to changes in the q* values because of user preference changes and therefore
continuous learning. Hence, our algorithms and configurations are selected to also
address the nonstationary behaviour of the environment. Additionally, it is known that
off-policy algorithms yield better results. Therefore, we restrict our implementation to
this class of reinforcement learning algorithms.

Live Modus:
The architecture of online learning is shown in figure 2.

Figure 2: Socially-Aware Reinforcement Learning live system architecture

Our Socially-Aware Reinforcement Learning system is one component of our overall
pipeline. To be able to consider social signals we rely on the social sensing system,
which already has been developed and described in Deliverable 4.5. Since our learning
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success will influence the agent affectively, we also included our emotion calculation
system, which has been described in Deliverable 4.4. In order to show an effect of the
personality adaption during the interaction, additionally a physical agent is used. The
exact realization with the agent is explained in section 6.2.3. To be independent from
other systems, we implemented the Reinforcement Learning system in a distributed
way, meaning that it communicates with all other components via the network. In the
following, we describe how the live and the simulation modus of our Socially-Aware
Reinforcement Learning system works.

The social sensing system is configured to output among others social signals, that are
defined by the learning task and the corresponding reinforcement learning modelling.
For the modelling in this deliverable, we use the valence value of the last user turn.
Therefore, we average all valence values from the user turn to one value on the
sensing system side, which is then sent to our Socially-Aware Reinforcement Learning
system.

On the RL System side, we receive all social signals from the social sensing system that
are relevant for the learning. This can range from continuously sent signals to single
values as the averaged valence value. One or more of the signals serve as a trigger
signal, which triggers one reinforcement learning step (in our case the single valence
value). For our learning task in this deliverable the averaged valence value serve as a
trigger signal and the emotions calculated from our emotion calculating system is also
sent to the RL system.
Within one triggered learning step, the agent usually infers a state, and a reward from
the social signals (see section 6.2.2 for our modeling). Because of our modeling it is
not necessary to assemble the reward. The calculated reward represents the current
learning success of the agent and is passed to a network component. The latter one
sends the feedback to the emotion calculation system, where the reward is accounted
to emotions. The reward and state are additionally used to update the agent’s
knowledge. Afterwards, the next action is chosen and executed by translating it to a
protocol which the agent supports (e.g. BML). The translated action is passed to
another network component, which sends commands to the physical agent (see
section 6.2.3 for more details). Then the physical agent then actually executes the
action. Once a new trigger signal is sent, the Socially-Aware Reinforcement Learning
system is idled until the next trigger signal.

Simulation Modus:
The simulation modus of our system omits any network component previously
mentioned. Hence, there is no connection to the outside for either the social sensing
system, emotion calculation system, or the physical agent. So the system doesn’t wait
for a trigger signal and runs directly with the specified input parameters. These
encompass, among others, the learning algorithm, α (learning rate), (in case of
gradients) β (second learning rate), γ (discounting factor), ε (exploration rate), the
number of episodes and steps. The episodes are equal to the number of different users
that will be simulated by one run. For each user, a random preference, sensor noise,
and user noise will be initialised. The sensor noise is used to simulate a
nondeterministic behaviour of the sensor for measuring the user’s social signals, which
leads to a bias in the rewards calculation. Similarly, humans tend to not behave the
same facing the same situation. So we also simulate this nondeterminism through the
specified user noise value, which likewise introduces a bias in the feedback. These
values altogether will contribute in calculating the reward in each step. A concrete
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instance from our experiments will be shown in section 6.2.2. Additionally, humans can
change preferences during the interaction. This can be simulated by specifiying
timesteps, where each user will change its preference to another random one during
the simulation. This will show, how fast the algorithm will “recover” from the
preference change. The architecture for our simulation is illustrated in figure 3.

Figure 3: Socially-Aware Reinforcement Learning simulation system
architecture

When the simulation has terminated, a graph for the simulation is plotted showing the
average reward for each step. This yields the performance of the corresponding
algorithm with respect to the passed parameters.

6.1.1 Q-Learning and K-Armed Bandit

We implemented the K-Armed Bandit, because in our scenario a simple modeling
already may be sufficient and in this case, the agent can benefit from this lightweight
approach. It abstracts from the full reinforcement learning approach in terms of states.
Hence, the agent can not distinguish different situations and approximates an averaged
value for each available action. Addressing our requirements of nonstationarity and in
contrast to the classic bandit, we chose the learning rates for the bandit to
be constant. This way more recent values are weighted higher than values gained at
more distant timesteps. The classical algorithm (without the modification of ), that
has been implemented, can be looked up in Sutton and Barto [1]. It can be derived
from the classical Q-Learning algorithm, when only one empty state occurs, the
learning rate averages the formula using an action counter for the updated action (e.g.

) and is chosen. To also enable state-based modeling with a tabular
based approach, this traditional Q-Learning algorithm is also implemented illustrated in
figure 4.
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Figure 4: Q-Learning Algorithm

Similiar to the Bandit implementation, we chose a constant , to also address the
nonstationary learning problem in case of including states.

6.1.2 Linear Function Approximation

Tabular reinforcement learning methods (like the ones previously introduced) are
appropriate for learning problems with a limited number of states. However, some
reinforcement learning problems have a very large or even an infinite state space (e.g.
infinite Markow-Decision-Problem (MDP)), where an infinite number of state-action
values would have to be learned using these tabular methods. Linear function
approximation addresses this problem by learning an infinite amount of states
concurrently with a finite effort. Additionally, some features in the state space can be
related to others (as in our use case the expressivity level of different features). Hence,
extending linear function approximation with a feature extraction method (e.g. Fourier
base as discussed later) enables learning also nonlinear dependencies among the
features despite using linear approximation methods.

Considering finite MDP’s the state value is calculated directly. However,
regarding infinite MDPs this would take a very long time, possibly even infinitely long,
since states could be entered infinitely often that had never been visited before, or
states that had already been visited could only reappear after infinite time. This would
change the behaviour of the agent only very slowly or not at all. In the context of
reinforcement learning, the idea of function approximation is to find an approximation

for the state value function . Thereby, a finite parameter vector - also called
approximator - is used to approximate the state values for all , so that

(see [2], [3], and [1]). Hence, the approximator determines
implicitely the shape of the approximated function . [2]–[5]

For simplicity, solely the approximator for the state value function will be discussed at
first. All explained concepts can be applied equivalently to the action value function,
which is why the corresponding algorithm is discussed only in section 5.1.2.6. The
overall learning goal is to minimize the error between the real state value and
the approximated value for all states. To achieve this, the gradient method (also
called steepest descent/ascent method) is used, since it is a meanwhile established
approach for the optimization problem with linear function approximation. A gradient is
a mathematical operator, which differentiates a function according to multiple variables
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concurrently. This enables to investigate the descend/ascent of a function in multiple
directions at once. Using this operator on an error measure can be used to search a
local minimum or maximum of a function regarding this measure.
Detailed derivations of the gradient and the algorithms would exceed the amount of
this deliverable, since the gradient always disappears through the derivation for
considered algorithms. So we reference chapter 9 of Sutton and Barto [1] for more
details.

Since off-policy (using different strategies for learning and generating behaviour)
algorithms usually perform better than on-policy approaches (using the same strategy
for both), we also restricted our selection of the linear function approximation to this
kind of methods. However, it is a nontrivial problem to use off-policy function
approximation in combination with bootstrapping (using approximations of other state
action pairs during the value update) and still guarantee the algorithm to converge
against the real values. Therefore, Sutton and Barto [1] suggest to minimise the error
between and by calculating the gradient of the Projected-Bellmann-Error
(PBE). The algorithms presented in the next two chapters will minimize this error
measure.
We implemented both gradient-based algorithms. To additionally apply a Fourier base
for learning dependencies among the features we present it in another section. In the
subsequent sections, we explain the adaption of both to be able to implement an
algorithm, that approximates the action-value function and converges.

6.1.2.1 TDC

Figure 6 shows an off-policy prediction algorithm for linear function approximation and
is similarly derived as the GTD2 algorithm. The parameter and working are also similar
to the GTD2. Since the performance seems to be better according to the literature [6],
we focus our experiments on the TDC algorithm. Every update of applies as follows:

Figure 6: TDC Algorithm

First, for correcting the error is computed. Next to learning the vector another
vector is learned using a second learning rate and accounting . Because of ’s
dependency on it is necessary for the convergence of the algorithm, that
applies. One step before updating , this second vector is used to update the vector
, which we are actually interested in.

As described in Busoniu and Sutton et al. [2]–[6], linear function approximation is
characterized by the linear combination of the parameter vector with the features

PRESENT_D4.6_WP4_Context Sensitive Agent Adaption Enabling_28022022_UAU Page 12 of 37

https://www.zotero.org/google-docs/?TaTN9G
https://www.zotero.org/google-docs/?FHjTHG
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cmathcal%7BV%7D_%7B%5Cpi%7D%20(s)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cmathcal%7BV%7D_%7B%5Cvec%7B%5Comega%7D%7D%20(s)#0
https://www.zotero.org/google-docs/?QrxG5a
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cvec%7B%5Comega%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cdelta#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cvec%7B%5Comega%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cvec%7B%5Ctheta%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cbeta#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cdelta#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cvec%7B%5Comega%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cvec%7B%5Ctheta%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cbeta%3E%5Calpha#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cvec%7B%5Ctheta%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cvec%7B%5Comega%7D#0
https://www.zotero.org/google-docs/?QsffGB
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cvec%7B%5Comega%7D#0


used to describe a state. Features are represented by a vector , where

applies and dim = dim must hold. Resulting from this definition, can be
calculated as follows:

6.1.2.2 Feature extraction

To also approximate non-linear functions and therefore, learn dependencies between
several features from the state, the literature proposes feature extraction methods
(e.g. Coarse Coding, Tile Coding, Polynomials, Fourier basis). We decided to use the
Fourier basis, since it seems to fit our use case and it has been shown by [4], [5]
despite its easy usage to be a powerful method. With the help of the Fourier basis
every function can be represented as a sum of trigonometric functions. In principle,
this corresponds to a linearization of the function, since parameters and features are
still multiplied and added linearly. It depends on the degree of transformation how
exact the approximation is. Although there exist also a univariate Fourier base, we
decided to use the Fourier base of multivariate functions to be more flexible in
learning. In contrast to univariate functions, these are functions, which depend on
more than one variable [4], [5]. The Fourier base of multivariate functions is defined as
follows:

Definition 1 (n-th Fourier base):
Let there be a single, normalized feature vector with ,
which represents a unique fix state . Furthermore, let there be a set of
coefficient vectors with . Then the Fourier basis of the

n-th order is defined by , whereas using
, and .

When combining the Fourier basis with a linear function approximation algorithm, the
Fourier basis is usually calculated for an input state, which outputs a new feature
vector representing the Fourier basis. This will then serve as the new feature vector,
which then serves as input to the corresponding algorithm.

6.1.2.3 Off-Policy Control using linear function approximation

To be able to learn an action value function using the TDC and GTD2, several
adaptions have to be made regarding , and the Fourier base calculation. All will be
introduced subsequently and finally the resulting algorithm will be presented. For
simplicity reasons only the modification of TDC will be shown. The GTD2 adaption
works accordingly.

Adaption of and :
It is known from the literature [6] that the usage of a decreasing for linear function
approximation leads to convergence for GTD2 and TDC. However, we want to
continuously learn and therefore use a constant learning rate. So several assumptions
have to be determined for these algorithms to converge. First experiments have
shown, that too big values for and individual ’s lead to divergence of the
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algorithm, because the resulting is increasing and alternating. This leads to
overcorrecting the weights in the opposite direction for every update and in the end to
an alternating divergence.

One reason is, that even with an appropriately chosen , each influences also the
size of the update. Hence, for convergence each should not be truly bigger than 1
or truly smaller than -1. This can be achieved either by the modeling of the problem
itself or an intermediate step, which scales all to a value . For our
implementation we decided to directly encode all features to values between 0 and 1.
For the usage of the Fourier basis this even is a crucial input condition. The feature
vector output of the Fourier basis contains always values restricted to , so
the convergence condition remains satisfied.

Another reason for this is that the algorithms don’t consider the size of the feature
vector. The bigger the size of the feature vector becomes through feature selection
(e.g. Fourier basis or manually), the smaller the individual weights have to be to

lead to the same state value. This can be restricted by choosing , wheras k is
the size of .

Adaption of Fourier base:

Using all possible coefficients for a Fourier base of the n-th order, will be in most cases
too exhaustive. So we introduced in our algorithm the possibility to restrict these
coefficients by a coupling parameter. The coupling determines how many values in
each coefficient vectors are allowed to be unequal to 0. Hence, using coupling of 1
and an order of 2, a vector like (0,1,1) or (2,1,0) are not allowed, whereas vectors like
(1,0,0) or (0,0,2) are included.
Until now the Fourier basis has been defined for state-describing feature vectors. In
general, however, the feature vector should be able to differentiate actions in each
state to be able to learn for each action how good it is in the current state. So we have
extended the Fourier base. The state action attribution remains unique learning for
every action an own state-parameter vector mapping. We have defined this as follows:

Definition 2 (Action differentiating Fourier base):

Let be a k-dimensional feature vector which encodes an arbitrary state as
a Fourier base and let be a finite set of possible actions. Then the
action differentiated Fourier base is defined by:
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Off-Policy Control algorithm:
As suggested by [6], for our application the parameter has been set with in
relation to the learning rate. Subsequently the off-policy control algorithm with the
above presented modifications will be presented. We assume that the feature vector
is normalized at each point in time, since otherwise the Fourier basis is not unique
anymore. Figure 7 depicts the complete pseudocode for the algorithm, which is
subdivided into 3 procedures.

The first is as usual the updating procedure update, to which the old state s, the
executed action a, the new state s’ and the obtained reward r is passed. Similar to the
original algorithm first the delta is calculated. Therefore, the function qvalue is used
returning the current state action value. At first, the state is transformed to its Fourier
base and subsequently, the resulting vector is multiplied with the parameter vector
(procedure qvalue, line 29-36). The Fourier base is calculated as shown before
(procedure fourier, line 14-28). The first loop (line 17-19) calculates the state basis
according to the predefined coupling, whereas the second loop outputs the action
differentiated Fourier basis (line 20-26). Thereby, we assume that the array has been
initialized with 0’s. The lines 6-12 are nearly equal to the original algorithm. The only
exception is that we use the previously generated Fourier base to update the
parameter vector and the vector for correcting the error. The procedure update is
called always after executing an action. The selection of the action is solved with the
-greedy policy, which chooses the currently best action to a probability of .
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Figure 7: Off-Policy Control TDC Algorithm
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6.2 Context Sensitive Personality Adaption

In the following, we will show the relation between personality adaption, backchannel
feedback and rapport, on which our context sensitive adaption is founded. Another
section will explain the reinforcement learning modeling for the live as well as the
simulation modus of our realized application. The subsequent section explains how we
implemented the context sensitive agent adaption physically through an embodied
agent.

6.2.1 Background

One of our overall goals is to establish rapport between the user and the agent.
Rapport is usually perceived as a harmonic connection between participants. This is
often also described as good interpersonal chemistry or as it has “clicked”. Literature
suggests that this psychological phenomena evolves from different nonverbal cues
communicated during conversations, which shows at least one of the three columns of
rapport:

● Positiveness emerges from a positive presence of the interlocutor, either
nonverbally (e.g. by smiles, nodding) or verbally using positive speech, which
communicates a friendly and caring aura

● Mutual attentiveness is connected to showing mutual engagement through
nonverbal cues (e.g. turning towards the other interlocutor) or verbally
referring to aspects in the conversation

● Coordination is achieved by establishing a bidirectional syncronicity with other
interlocutors using nonverbal behaviour (e.g. appropriately applied backchannel
feedback) [7]

As shown in Deliverable 4.1, personality adaption to the preferences of the user (either
similarity or opposite attraction) has an influence on measures like engagement.
Therefore, expressing and adapting the personality appropriately also contributes to
establishing rapport with the agent. Since extraversion is most salient, our
implementation of the personality adaption focuses to this trait. Personality is
expressed through cues of different modalities, Figure 8 shows the extraversion cues
relevant for our behaviour adaption. Their implementation in our scenario is explained
in section 5.2.3.

Figure 8: Extraversion cues
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To express an adapted personality we combined these cues with backchannel feedback
types, which will be used by the agent to show that it is an active listener. Figure 9
shows all relevant backchannel types. The modeling for adapting the backchannel style
will be presented in the next chapter, its implementation with an agent will be
explained in section 5.2.3.

Figure 9: Extraversion cues

As a result, the agent is adapting to the user’s personality by modifying its backchannel
style with respect to extraversion cues, that match the current preferences and hence,
the preferenced personality of the agent. By showing an attention, coordination and
positiveness through appropriate backchanneling, the agent establishes rapport with
the user. Figure 10 graphically illustrates this underlying idea.

Figure 10: Establishing rapport through personality adaption using
backchannels and emotional expressivity

For more information on personality adaption see Deliverable 4.1, more detailed
insights on rapport and backchannel feedback can be found in Deliverable 4.4.
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6.2.2 Modelling

In this section we present the reinforcement learning modelling for the backchannel
style adaption of the agent. Several behaviours can be inferred from the state, which
will be explained subsequently.

States and Actions:
As shown in Figure 11, we modelled the state as a binary vector subdivided into 3
sectors which indicate how to apply backchannels. Regarding the second sector (digit
2-4), the position of the 1 indicates how to apply the lexical backchannel. If it is at the
left most position, no lexical backchannel is applied. In the middle the lexical
backchannel is uttered slowly and with soft volume, whereas on the right most position
the lexical backchannel will be loud and fast. The third section works similarly
combining the nodding backchannel with the corresponding extraversion cues
regarding gestures (left: no nodding, middle: nodding with low movement range and
slow, right: nodding with high movement range and fast). The first section solely
consisting of the first digit indicates whether the combination of the other two sections
will be applied once (equals 0) or twice (equals 1).

Figure 11: States and actions of the reinforcement learning

Since the actions of the physical agent are encoded into the state space, we modelled
the reinforcement learning actions to move the 1 of the corresponding section. With

respect to the example lexical_style moves the 1 of the second section to the right.
Hence, the original 1 turns to 0 and moves one place to the right. To reduce
complexity, actions without effect are not available in the corresponding state. As an

example, repetition would be not available in the example state of figure 11. To be
able to learn one of the user preferences for a particular backchannel style, we
additionally added the action stay, which let the state to remain unchanged. A fully
trained agent is desired to choose stay most of the time (e.g. except exploring).
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Live Modus Reward: To enable a context-sensitive agent adaption using an
unobtrusive feedback from the user, we defined the reward to equal the valence of the
last user turn. This will be used to rank the last applied backchannel feedback of the
agent and measure, whether the emotions of the user after applying the backchannel
are good.

Simulation Reward: At the begin of the simulation a random user preference is
initialized. Assuming this is for example the preference of figure 11 (0 010 010), then a
user is simulated, which prefers a soft/slow uttered lexical backchannel combined with
a low range/slow nod. Considering the first digit, the whole backchannel combination
would be preferred to be applied only once.
Since no social signals are available to assemble the reward, we calculate a base
reward, which is then biased to be more realistic. We assume, that in the live mode the
user would always show positive valence, if the last action is moving “towards” the
preferenced state, and shows negative valence otherwise. Hence, we simulate these
reactions by calculating a distance from the current state to the actual preference state
of the simulated user. In other words, the distance estimates, how many actions
through a optimal action selection are required to reach the optimal state.
The base reward is calculated by finding out, whether the last action increased the
distance to the preference. In this case, a reward of -1 is given. If the distance is
decreased, a base reward of 0.5 is returned. If the distance is unchanged, we check
whether we stayed in the preferenced state. In this case, a base reward of 1.0 is
retrieved. Otherwise the agent would stay in a not preferenced state, where we give a
reward of -0.5. The distance of a state to the preference is calculated by counting how
much actions would be needed to reach it, when the agent would have chosen the
immediate way to the preference.
Additionally, we have to simulate, that the underlying reinforcement learning task is
non-deterministic. On one hand real sensors contain noise to a certain degree, on the
other hand humans can also slightly show altered behavior (e.g. through distraction or
mood). Hence, we bias the base reward to a realistic reward using the noise
probabilities previously presented. According to both of the noise probabilities a

random value is added to the base reward.

Inferred behaviour:
There are a few special cases, where additional behaviour can be inferred for the
agent. If no lexical style and gesturing style should be applied, then the agent will omit
the backchannel for this turn. Otherwise, if the state brings the agent to omit nodding
(1 is at the most left place), but apply a lexical backchannel, then the agent chooses
randomly between the other backchannel types previously presented. It can choose
between all types except the acknowledgement backchannel. Both special cases are
illustrated with figure 12. The X in the state space stands for a wildcard in the state,
for which both a 0 and a 1 is possible.
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Figure 12: Special cases, from which additional behaviour can be inferred

To additionally adapt the emotional expressivity, we also infer how intensely the agent
should express the current emotion it retrieves from the emotion calculation system.
Therefore we calculate an expressivity level for each timestep by involving the lexical
expressivity and the gestural expressivity from our state encoding. Figure 13 shows an
overview for every possible configuration. Let the lexical section equal to 001 (the
maximum expressivity regarding extraversion) and let the gestural section be also 001
(also the maximum expressivity), then the expressivity function would return a high
expressivity level for this step. This resulting expressivity level is then used to trigger
either a smooth or an intense emotion (matching the emotion retrieved from the
calculation system).

Figure 13: Inferring emotional expressivity from the state

The context-sensitive adaption has been introduced in this section through the
reinforcement learning model. This context sensitive adaption will be enabled through
our implementation in the live system considering the speech, nonverbal gestures and

PRESENT_D4.6_WP4_Context Sensitive Agent Adaption Enabling_28022022_UAU Page 21 of 37



emotional expressivity. How we enable this behaviour will be shown in the subsequent
section.

6.2.3 Agent behaviour enabling

To show the progress of the current learning process in terms of adapted backchannel
behaviour, our live system has to enable the corresponding behaviour for a certain
virtual agent. We decided to implement our system with the UPF Agent, because it
supports all important BML commands necessary to realize the nodding and showing
emotions with a certain degree of intensity. To be also able to implement different
speech expressivity levels, we decided to use the State-of-the-Art TTS System
Cerevoice. How we combined them to enable the behaviour adaption, will be shown
subsequently.

Emotional Expressivity generation
After executing the chosen Reinforcement Learning action to alter the state, we
assemble the agent behaviour from the state. First, the emotional expressivity is
calculated as presented in the preceding chapter and then further accounted to a float
for a BML command. If a value of 0 is returned, the expressivity is set to 0.0. If 1 is
returned the expressivity is weak and therefore set to 0.6. If it equals 2, this strong
expressivity leads to a value of 1.0. Based on the agent emotion, which is read out by
our Emotion Calculation System, and this intensity level for this emotion, a complete
BML command uniting both is generated. An example is shown in Figure 14. The
additional attribute shift triggers the emotion until another emotion is triggered by our
calculation system or the reinforcement learning system. We decided to trigger it over
a longer period because otherwise, its perceivability suffers.

Figure 14: BML command for triggering happiness

Nodding style generation
Depending on the state entries, an additional JSON entry for the data array is
generated. No nodding would be previously catched by the special case, where no
JSON entry is added. If the state indicates low nodding expressiveness a low
expressive nodding is generated, otherwise a high expressive version. Both can be
looked up in figure 15.
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Figure 15: Left:low expressive nodding, Right: high expressive nodding

Linguistic style generation
In the special case that no nodding is applied, it is chosen to generate one of the
repetition, audio and reactive backchannels. Subsequently, for the selected
backchannel one instance is also randomly chosen and then embedded into a SSML
command. This command depends again on the expressivity, where the rate attribute
implements the speech rate and the volume attribute realizes the audio volume of the
speaker uttering the corresponding backchannel. This SSML command is then passed
to Cerevoice generating a wav file with this backchannel and prosodic expressivity.
Figure 16 gives an overview for this process and the different instances of repetition,
audio and reactive backchannels.

Figure 16: SSML for low and high expressive backchannels

This figure also shows the instances for the acknowledgement backchannel, which is
only applied if nodding is present.

Enabling the agent behaviour

After generating emotions, nodding and linguistic backchannels, we enable this
behaviour by triggering the corresponding behaviours. First the emotion and if
available the nodding is triggered by sending the BML command to the agent. In case
of emotions one of the 6 basic emotions anger, disgust, fear, happiness, surprise or
sadness is triggered. If no emotion has been available a neutral face will be triggered.
Each of the basic emotions with the corresponding weak and strong instances are
depicted in figure 17.
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Figure 17: Each of the 6 emotions with its weak and strong form

In case of the nodding, either the weak or strong form is triggered. To align the speech
with the nonverbal backchanneling, we wait until the nodding reached the half way of
the stroke phasis. Subsequently the audio backchannel (if available) is played with the
corresponding prosodic expressivity cues. After that, the program waits until the audio
and nodding both ended. Depending on the repetition entry in the state, this procedure
either repeats at step 1 or terminates. In case of terminating, the agent will idle, until
the next trigger signal for the next reinforcement learning step will be sent. This whole
procedure is visualized by figure 18.

Figure 18: Procedure of behaviour enabling

6.3 Simulation Results

To enable the context-based backchannel style adaption most efficiently in the live
modus of our application, we aimed to find the best configuration in terms of algorithm
type and corresponding parameters for our simulated agent. Figure 18 shows all
parameter configurations used.

We addressed the tradeoff between learning fast, where should be not too big, and
learning despite precisely on the long term, hence also shouldn’t be too big. So we
chose it to be in a range of . The gradient is a special case, because
according to literature should be defined in dependence of . Additionally, both

should be (as described previously) not exceed (with k as the number of features).
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So we chose and to depend on it with the corresponding factors. Also a
tradeoff between exploration and exploitation has to be chosen appropriately, where
we defined . To investigate how far the agent should consider future
rewards, we decided to set gamma to a narrow (0.5), middle (0.7) and wide sight (0.9)
for all state based algorithms.

Figure 18: Parameter configurations for the experiments

Each possible permutation within one algorithm has been conducted as an experiment,
resulting in 9 experiments for the Bandit, 27 experiments for the Q-Learning and 27
experiments for the gradient algorithm.

As previously stated, every experiment starts with a random initialization for the
preference of the simulated user and is conducted with 4 noise probabilities. These are
are uniformly assigned for the sensor and the user noise. For both, we introduced the
noises to occur never (0.0), rarely (5%, 10%) and frequently (30%). Since our learning
environment is nonstationary and therefore is able to change in terms of preference
changes, we additionally applied a preference change in the middle of each
experiment. This reveals the ability of the configuration to recover from preference
changes. As performance measure we chose the average reward, which equals the
average reward the agent has obtained in step x over all episodes. So for each
datapoint in our plots we average over all episodes to get the average reward (for an
example see the following chapters).

6.3.1 Bandit

Since the state based model encodes the actions to be applied by the agent in the
state and Bandits lacks states, we encoded each state permutation of the states from
the state based agent as one action. This results in e.g. an action derived from “0 001
100” meaning 1 repetition, high expressive linguistic backchanneling and no nodding.
In total, the agent chooses between 18 different actions. Using this modelling, we
additionally had to adapt our reward computation for the bandit only. If the last action
matches the preference +1 is given, otherwise -1. We simulated 100 steps over 30
episodes.
The best configuration is in our opinion the agent with . Although
higher learning rate is expected to be less accurate, no such effect has been observed.
However, a higher (e.g. 0.3) in combination with this exploration rate of 0.05 is
performing better at the beginning and also after preference change, than the other
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learning rates. The other configurations with show a worse performance
because of the exploration frequency. Although this can help recovering the agent after
a preference change, on the long run the agent performs worse. Figure 19 shows the
plot for our preferenced configuration.

Figure 19: Most performant K-Armed Bandit

The x axis stands for the steps done for each simulated user. The y axis shows the
average reward that has been calculated over all the episodes for the corresponding
step. The graph shows that the agent is rapidly adapting to the preference in the
beginning and after the preference change. Despite the noise the graph stays relatively
stable, although a slight correlation between the amount of noise and the alternating
graph can be observed (e.g. 30% noise compared to 10%). The graphs from the other
Bandit experiments can be looked up in the appendix.

6.3.2 Q-Learning

The Q-Learner is as previously described state based and is using the presented
reinforcement learning model. In contrast to the Bandit, the agent is now restricted to
alter one style dimension at once. This leads to the advantage of a more unobtrusive
behaviour adaption and therefore presumably more consistent behaviour since the
agent isn’t allowed to jump between 2 backchannel styles altering multiple dimensions
anymore (e.g. from “apply no linguistic backchannel and nod strong expressively” to
“apply strong expressive linguistic backchannel and no nod”). For the Q-Learning
experiments we simulated 200 steps over 30 episodes.

For all experiments it can be observed that (independently of other parameters) the
lower the is, the better the agent performs especially after a preference change. We
assume that this lies in the fact that the future values are higher weighted. However,
this future value is based on an approximation, which is temporarily false after a
preference change. So the higher the , the more the agents accounts these false
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approximations and this presumably is the reason why it struggles recovering with high
values. From these considerations we assume a of 0.5 to be the best

configuration. Similar to the Bandit, a higher value than introduces too much
random behaviour. Hence, we consider again to be the best value. There can
no difference between the learning rates with respect to the accuracy be observed,
however the fastest recovering learning and on the long run best performing learning
rate is again . Hence our best configuration is the .
The plot is depicted in figure

Figure 20: Most performant configuration for Q-Learning

Similarly to the Bandit, the Q-Learner is relatively stable once it learned the preference.
Despite the more consistent behaviour through the state model, there are also
downsides with this approach. As can be seen in the graph, first the agent needs more
steps to reach a nearly stable behaviour. This also counts for recovering from the
preference change. Additionally, noise has a larger impact on the agent than it had for
the K-armed Bandit.
Both issues presumably are based in the fact that the agent has to return to the
preference state, once he left it (as it is the case for e.g. noise and exploration). Since
the positive rewards are only given when reducing the distance, this positive value first
has to propagate across the different state-action approximations, before it can take a
perceivable effect (in this case returning or staying at the preference state). Hence,
choosing between the Q-Learning and K-Armed Bandit for context sensitive agent
adaption enabling it has to decided, whether the performance or the consistent
behaviour is valued higher. The other Q-Learning experiments can be looked up in the
appendix.

6.3.3 TDC

Since the literature (see Sutton et al. [6]) proposed that TDC is more performant than
GTD2, we chose this algorithm for our experiments. This algorithm similarly to the
Q-Learning agent is state based and therefore expected to introduce a consistent
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behaviour. The usage of function approximation introduces additional parameters.
Because of convergence issues we chose , whereas k equals the size of the
feature vector (as previously described). Our features could be directly the state vector,
since its values all equal 0 or 1. However, we decided to apply a fourier base on the
state to additionally learn dependencies between the features. Since the agent has to
adapt quickly online and presumably only has to approximate a linear function, we
chose a simple fourier base of order 1 and a couling of 1. For nonlinear functions also
a more complex base can be chosen. Regarding our experiments we chose 1000
episodes, each having 1000 steps.

Similar to the Q-Learning agent and for the same reasons, we observed a to
be the best and an . However in contrast to the other algorithms, the smallest
learning rate is considered to be the best. This is presumably resulting from
the function approximation in general, that the adaption concerns all weights and
therefore has to be small to not overestimate other values, which are perhaps already
well approximated. The resulting plot is depicted by the following figure.

Figure 21: Most performant TDC configuration

Overall, the algorithm learns to adapt to the user preferences, but comparatively
slowly. Whereas the algorithm relatively quickly learns to adapt in the beginning, it has
a slow recovery time after preference change. Another issue is that it’s similar to the
Q-Learner more prone to noise than the K-armed Bandit. We account for the same
reason as for the Q-Learner, that the agent has difficulties in returning to the
preference state and staying there (in noise and exploration cases). Beyond this, the
linear function approximator has an additional complexity, because it learns all states at
once for an action. So it is additionally difficult to find back to the correct preference
state.
The strength of TDC is its generalisation capabilities, which can increase accuracy and
speed of learning compared to the previously presented algorithms. Although the state
dimensions of linguistic and nodding expressivity have potential for generalisation using
a fourier base, the overall problem contains less possibilities for learning dependencies.
So we assume that this problem may not be complex enough and the algorithm too
heavy to take use of the actual capabilities of the gradient based reinforcement learner.
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Choosing another fourier base would give rise to an even worse problem, because it is
already chosen to be as simple as possible and would just introduce more heaviness to
the learning problem. The linear function approximation has more potential than the
q-learner to learn a complicated problem, but therefore the learning task needs more
underlying generalization capabilities.

7 CONCLUSION

In this deliverable, we presented the final version of our Social-Aware Reinforcement
Learning system together with its live and simulation mode. After adapting the linear
function approximation and fourier base, we conducted experiments to find the best
algorithm configuration using the K-Armed Bandit, Q-Learning and TDC algorithm for
the backchannel style adaption.

Based on the state-based modelling previously presented, the Q-Learner and TDC
algorithm both performed best using , since this way the agent
explores but doesn’t behave randomly too often. Additionally, as we presumed, the
agent has also difficulties because of temporarily false approximations to find its way
back to the preferences state after preference changes, where it seemed advantageous
to choose a tendentious small . For versions without states we directly encoded the
different styles as actions. This K-Armed Bandit performed in many ways better than
the state based versions.

Despite the longer time for finding the preference, using states also introduced a more
consistent behaviour because the agent maximally alters one modality of the
backchannel style at once. Which version should be chosen depends on the
preferences for the system. If consistent behaviour is more important than the duration
for finding the preference we recommend the Q-Learner over the others. This is
because it is more lightweight for the learning task at hand than the TDC gradient. For
the live system of the PRESENT agent we however rather use the K-Armed Bandit. On
one hand it performs better with higher noises, on the other hand it matches the
preference faster, which then leads faster to the preferenced behaviour. We assume the
user not to change his preference too often, so this will also lead relatively fast to a
consistent behaviour.

To be easily accessible to all partners and also to be as generic as possible, we
implemented the finalized Reinforcement Learning as a network component. So for
future behaviour modelling additional social signals can be added. Also the other
components can independently be improved, which also will improve the reinforcement
learning component.
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9 APPENDIX

Appendix figure 1: K-Armed Bandit experiments
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Appendix figure 2: Q-Learning experiments ( )
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Appendix figure 3: Q-Learning experiments ( )
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Appendix figure 4: Q-Learning experiments ( )
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Appendix figure 5: TDC experiments ( )
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Appendix figure 6: TDC experiments ( )
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Appendix figure 7: TDC experiments ( )
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