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1 EXECUTIVE SUMMARY  

The deliverable D4.4 - Non-verbal Agent Behaviour Enabling - (R, PU, M24) reports on the 

components that were developed in order to enhance the PRESENT virtual agent with behavioural 
capabilities that are necessary to allow for an authentic and engaging interaction between user 

and agent. 

UAu took multiple modalities into account to meet the posed requirements.  

First, different strategies for backchannel feedback were deployed. On the one hand, a causal 

model to predict correct interpersonal agent behaviour based on analysis of the human 
interlocutor is presented. On the other hand, a system for the generation of adaptable human 

laughter was implemented in order to model a specific example for realistic human -like 

backchannel feedback. 

Second, the agent was enhanced with an internal emotion calculation system. By doing so, the 
agent has not only the possibility to react to the userôs affective state, but is further equipped 

with the possibility to take its own emotions into account, allowing the agent to be perceived 

more naturally by interlocutors.  

Further, components were built to shape the agentôs affective speech capabilities. As speech is a 

crucial factor for experiencing an authentic conversation, it is necessary for the agent to be able 
to express affective states such as emotions or intentions through changes in paralinguistic 

prosody. To address this topic, UAu has followed two separate approaches. On the one hand, an 

existing Text-to-Speech (TTS) engine was enhanced with a framework of stacked voice 
conversion models. By doing so, the speech of the agent can be altered in a modular way, while 

not having to care about the verbal semantics of the spoken sentences. On the other hand, UAu 
deployed an extended affective TTS approach, in which a collaborative human feedback loop is 

used to create prototypes of emotional speech. These prototypical emotional speech can then be 

used to synthesize affective speech from text. 

All in all, the work reported in this deliverable, by enhancing the virtual agent with non -verbal 

behaviour, sets the foundation for further adapt ation and personalization of the agent behaviour.  

 

2 BACKGROUND 

 
The deliverable at hand reports the finalization of components to enable and enhance the non -

verbal behaviour of the agent, allowing the PRESENT project partners to make use of the 
implemented concepts in order to shape the interaction with the agent in a realistic, natural and 

authentic way. 
Work presented within this deliverable is part of WP4 - Behavioural Sensitivity and 
Responsiveness. 
Within this document, we describe and evaluate the components that UAu implemented in 
order to address different aspects of non-verbal behaviour. 

By introducing the deployed components, UAu enables the other project partners to apply the 
PRESENT system to use-cases and scenarios that rely on behavioural context. In particular, the 

implemented components can be used to build the agent behavioural adaptation system, 

allowing the PRESENT system to take individual needs of the user into account. 
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3 INTRODUCTION  

 

The design of virtual agents is a challenging task. 
A crucial factor here is the fact that such an agent must not only be visually appealing and highly 

realistic, but that in addition to graphic characteristics, social components also play a major role 
in anthropomorphism. 

In order to addre ss this aspect sufficiently, it is essential not only to visually design the agent at 

the highest level, but also to enable it to display natural and human behaviour.  
This behaviour, which is characterised by verbal and non-verbal abilities, must be enabled on a 

conceptual and technical level. 
The focus of the work reported in this deliverable is to equip the agent with non -verbal 

behavioural capabilities. 
For this purpose, different components are presented, which have been designed and developed 

by UAu within the PRESENT project and included in the PRESENT scope. 

Since human behaviour in general is a vast and difficult field to completely cover, the focus was 
placed on a certain representative sub-areas that are of particular importance for the context of 

the project.  
 

 

4 Psychological Background  

The nonverbal behavior enabling in the following deliverable is based on different psychological 

theories. To understand how we thereby enhance the quality of interaction first it has to be 
understood what rapport is  and how it can be established. One way of enhancing the interactional 

communication is endowing the agent listener abilities. To understand how good listening in 

interaction is conducted we present the research to backchannel feedback, where the different  
types are distinguished and how they are applied in interaction.  

 

4.1  Rapport  

 

Sometimes interlocutors perceive a harmonic connection to each other, which is according to the 
folk theory explained as having a good chemistry or as it ñclickedò between the participants. This 

psychological phenomenon is called rapport.  
According to Tickle-Degnen and Rosenthal [1]  it is only occurring during interpersonal interaction 

and emerges from different (non -)verbal aspects assembled and communicated by the 
interlocutors. They define rapport as ña dynamic structure of three interrelating components: 

mutual attentiveness, positivity, and coordination.ò. For mutual attentiveness the interlocutors 

have to show engagement by focusing each other with respect to nonverbal cues (e.g. mutual 
gaze) or referring verbally to the spoken content. Combining this trait with cues for the closely 

related positiveness (e.g. smiling, nodding) emits a caring, friendly feeling and the refore 
contributes to rapport between the individuals. Coordination is mostly described as being in 

mutual synchronicity with other individuals. This induces some kind of predictability and 

regularization of behavior between interactants, which occurs by a pplying e.g. backchannel 
feedback or turn taking, but also mirroring.  

 
They additionally propose that mutual attentiveness, positivity, and mutual coordination 

encompass a temporal component, where the importance of each trait develops differently with 

respect to the closeness of the interpersonal relationship. As depicted by figure 1, positiveness is 
more important in initial stages of relationships than coordination to emit high feelings of rapport. 

A justification for this constellation is, that in the b eginning the interlocutors acknowledge the 
lack of coordination to some degree because of the missing familiarity with each other, whereas 

positivity doesnôt require familiarity and will therefore implicitly be claimed. Once the relationship 
develops the values will be inverted to create high rapport in interaction. The mutual attention is 

https://www.zotero.org/google-docs/?c0gY4L
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important in the beginning to show interest, but also remains crucial to show unity of dyad 

interlocutors. 
 

 

 
Figure 1: Influence of time on the main traits of rapport [1] . 
 

 

Similarly Cassel et al. [2]  differentiate between short - and long-term rapport. The first creates 
rapport instantly. The latter one encompasses the development of behaviors along with the 

relationship. In this deliverable only short -term rapport will be regarded.  
 

4.2  Backchannel Feedback  

Human communication relies on sending and receiving messages between interlocutors. One way 
to exchange information in conversations is using explicit messages which contain the actual, 

textual message. However according to the literature [3]  the mere textual content has only a 
small proportion on the successful negotiation of messages. A significantly larger part is 

contributed by non-verbal signals encompassing gaze behavior, facial expressions and prosodic 

features, postures and gestures.  
In dyadic interactions, next to environmental influences, social norms and goals of the dialogue 

partners, some messages determine the progression of the conversation. These messages are 
influenced by the behavior of all interlocutors and vice v ersa influence how the interlocutors will 

adapt their speaking or listening behavior. These so-called interpersonal cues are communicated 

in a reciprocal way between speaker and listener. For instance, during his turn the speaker is 
signalling engagement in the form of smiling, whereas the listener has several ways to respond 

to the conveyed message. One way of responding is to give feedback to the speaker. This can 
for example be achieved by mirroring the engagement through the usage of multimodal social 

cues. This section will focus on backchannel feedback as a reciprocal response to the speaker. 
 

According to Ward and Tsukahara  backchannel feedback ñresponds directly to the content of an 

utterance of the otherò, it ñis optionalò and ñdoes not require acknowledgement by the otherò 
([4] , p. 1182). Therefore the dialogue shares two conversation channels that can be used 

simultaneously. One is used by the speaker, who is ñholding the floorò while performing his turn. 
The other channel can be used by listening interlocutors to unobtrusively send a response to the 

speaker [5] . This other channel can be used at multiple points in time, e.g. during or after the 

speakers turn (as suggested by [6] ). However according to Heldner et al. [7]  in real conversations 

https://www.zotero.org/google-docs/?t6ZhEf
https://www.zotero.org/google-docs/?B65gRO
https://www.zotero.org/google-docs/?Q2hCaG
https://www.zotero.org/google-docs/?JPyDad
https://www.zotero.org/google-docs/?3sxs2s
https://www.zotero.org/google-docs/?LPM3Rw
https://www.zotero.org/google-docs/?JMjbUN
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usually not every opportunity for giving backchannel feedback is used. Therefore some occasions 

will be left out, because the backchannel is with respect to the time subsequently too narrow .  
 
Giving an unobtrusive response to the floor holding speaker is the main appl ication purpose for 

backchanneling, however not the only one. Researchers found 15 different functions for applying 
backchanneling, the main ones serve expressing agreement [8] , showing disagreement or 

missing comprehension [9] , displaying attention [10]ï[12] , indicating participation [10] , 

acknowledging the current content of conversation [13], [14]  or implicitly steering t he 
development of a conversation depending on the kind of backchannel feedback used [15] . 

Backchanneling can even serve as a turn taking pattern, if a backchannel of a listening interlocutor 
is followed by a consecutive back-backchannel resulting in a loop sequence [16] . 

In interaction backchannel feedback can be subdivided into verbal and nonverbal backchannel 

responses. Both will be presented in the subsequent sections along with their subtypes. 
 

4.2.1  Verbal backchannel feedback  

Verbal backchannel responses consist of short lexical or auditive expressions that are used by 

non-speaking listeners to give to the floor -holding speaker. However research has not entirely 
clarified the extent to which backchannel responses count as self-contained turns. In extreme 

cases, even several phrases can still be considered as backchannel feedback [17] . Therefore in 

this deliverable we restrict verbal backchannel feedback to at least one single-word utterance and 
at most 1 short sentence. 

However the extensibility of the backchannel feedback is not only determined by its sentence 
structure completeness. According to Duncan [18]  extremely short utterances ñyeahò, rightò, etc. 

and even Kendons [8]  verbalizations like ñsurelyò, ñI seeò and ñthatôs trueò can range from single 

application to a multiple concatenation of the single element (e.g. ñyeah yeahò, ñI see, I seeò). 
 

In total verbal backchannel feedback is superficially classified with respect to its interactional 
functionality by the literature. This results in the main classes of ñcontinuersò and ñreactive 

expressionsò. Table 1 gives an overview to these main classes showing subtypes, the literature 
and examples for the corresponding backchannel feedback. 

 

 
 

Interactive 
backchannel 

type 

Subtype Characterisation Author Examples 

Continuer   Short Auditive or 

lexical utterances 

Schegelhoff 

[12]  
 

Auditive: 

ñuh huhò 
Lexical: 

ñokò, ñyeahò 

Clancy et 

al. [19]  

ñhmò, ñhuhò, ñohò, 

ñmhmò, ñuh huhò 

Gardner 

[20], [21]  

ñmm hmò 

 

 
 

 

Backchannel Non-lexical audio 

expressions 

Clancy et 

al. [19]  

ñhmò, ñhuhò, ñohò, 

ñmhmò, ñuh huhò 

Reactive 
expression 

 Short lexical, 
phrase/word 

Clancy et 
al. [19]  

ñoh really/reallyò, 
ñyeahò, ñgeeò, ñokayò, 

https://www.zotero.org/google-docs/?0zg2Ar
https://www.zotero.org/google-docs/?ZC19Su
https://www.zotero.org/google-docs/?xXoA8q
https://www.zotero.org/google-docs/?L2gDrE
https://www.zotero.org/google-docs/?2Xcb14
https://www.zotero.org/google-docs/?Ml46LZ
https://www.zotero.org/google-docs/?ZxN8JC
https://www.zotero.org/google-docs/?RUYjay
https://www.zotero.org/google-docs/?Af39uh
https://www.zotero.org/google-docs/?mrSXg0
https://www.zotero.org/google-docs/?CQjP2w
https://www.zotero.org/google-docs/?nmEOYG
https://www.zotero.org/google-docs/?tQREUv
https://www.zotero.org/google-docs/?aeJWIb
https://www.zotero.org/google-docs/?41bevv
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Reactive 

expression 

ñsureò, ñexactlyò, 

ñallrightò, ñmanò, ñshitò, 
ñhellò 

assessm
ent 

Lexical utterance Schegelhoff 
[12]  

 

ñgosh, really?ò and ñoh 
wowò 

 

Gardner 

[20], [21]  

ñwowò 

Collaborative finishes Turn completion  Clancy et 
al.  [19]  

Gardner 

[20], [21]  
Duncan 

[18]  

Speaker: ñThat schoolò 
Listener: ñ...is very 

popularò 

Repetition Repetition of parts of 

the turn  

Clancy et 

al. [19] , 
Duncan 

[18]  
 

Speaker: ñI buy 110 

per year!ò 
Listener: ñ110ò 

Resumptive openers Prefixed non-lexical 
sound + short break 

before own turn 
(turn -taking) 

Clancy et 
al. [19]  

 
Gardner 

[20], [21]  

ñohò + pause + turn 

Brief questions Brief questions Gardner 

[20], [21]  

see phrasal 

backchannels 

Short request for 

clarification 

Duncan 

[18]  

ñDid you mean XY?ò 

Acknowledgement Acknowledging 
utterances 

Gardner 
[20], [21]  

óóYeahôô, óóMm hmôô 

 
Table 1: Backchannel feedback categorized by interactional function. 

 

 
According to Schegelhoff [12]  one of these feedbacks returning backchannel responses are 

continuers which are signaling that the speaker is allowed to continue until the full turn is done. 

This kind of feedback is normally expressed by using short auditive feedback (e.g. uh-huh) or  
short lexical utterances (ñokò, ñyeahò). 

 
According to Clancy et al. [19]  the actively listening function of backchannels can be further 

subdivided by so-called reactive tokens  (as stated by Iwasaki [16]  such reactive expressions 
can be only interpreted as such retrospectively when the speaker in contrast to continuers 

stopped responding on its communication channel).  

The reactive tokens encompass among others backchannels , which refer to non -lexical, vocalic 
tokens serving as continuers or indicators of understanding/interest. In the case of the english 

language this results in the tokens ñhmò, ñhuhò, ñohò, ñmhmò, ñuh huhò. Another reactive token 

https://www.zotero.org/google-docs/?8wigCX
https://www.zotero.org/google-docs/?Ndu5b1
https://www.zotero.org/google-docs/?XDvWZ4
https://www.zotero.org/google-docs/?rAgbNG
https://www.zotero.org/google-docs/?jQLNAJ
https://www.zotero.org/google-docs/?6kyJQe
https://www.zotero.org/google-docs/?rDMLxu
https://www.zotero.org/google-docs/?KXHOIL
https://www.zotero.org/google-docs/?yYau6F
https://www.zotero.org/google-docs/?0N4kK0
https://www.zotero.org/google-docs/?TSLV6w
https://www.zotero.org/google-docs/?iG1jnZ
https://www.zotero.org/google-docs/?SLfZjJ
https://www.zotero.org/google-docs/?Gy6MzD
https://www.zotero.org/google-docs/?WpABkN
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is the reactive expression , which resembles a short lexical, non-turn-taking phrase/word. 

Examples are ñoh really/reallyò, ñyeahò, ñgeeò, ñokayò, ñsureò, ñexactlyò, ñallrightò, ñmanò, ñshitò, 
ñhellò. One subclass of reactive expressions has been defined before by Schegelhoff [12] , where 

backchannel feedback can also be used to assess aspects of the speakers turn. Using these 

assessments the listener contributes in constructing the conversation by adding a reaction 
through utterances like ñgosh, really?ò and ñoh wowò. Other reactive tokens used by the listener 

are collaborative finishes  (where the speaker's turn is finished by the listener), repetition (a 
proportional utterance of the speaker is repeated) and resumptive openers . The latter one is 

a short, non-lexical, vocalic token with an own intonation which is used at the beginning of a turn 

followed by a short break (e.g. ñohò). In contrast to the other backchannels, resumptive openers 
simultaneously show engagement and act as a turn taker. 

 
Another classification of verbal backchannel feedback is done by Gardner [20], [21] , who 

identifies 8 mono- and bi-syllabic types of response tokens. They use similar terms for continuers 
(ñmm hmò), assessments (ñwowò) and collaborative completions (equal to the collaborative 

finishes). The ñnewsmarkersò resembles the resumptive openers as a turn-taking prefix for a turn 

(ñohò). They additionally define acknowledgements (ñyeahò), ñbrief questionsò and ñrepairò as 
response tokens. 

 
Similar to the other authors Duncan [18]  regards short expressions like ñm-hmò, ñrightò, ñyeahò 

as verbal backchannel feedback. Brief questions requesting clarification of the previous telling, 

sentence completions and repetition of previous statements are also suggested by Ducan as 
backchanneling components. 

 
So far the verbal backchannel feedback has been categorized by their interactional impact, 

however Iwasaki introduces additionally a distinction to the backchannel types with respect to 

the linguistic form.  
 

 
 

 

Backchannel Type Characterisation Examples 

Non-lexical ƀ canned, phonetic unit 
ƀ small amount of referential semantics 

ƀ mostly ñcontinuersò 

"uh-huh", 
"hmm" 

ñYesò 

Phrasal ƀ canned linguistic unit 

ƀ stereotypic, sometimes inventive  
ƀ richer in terms of content  

ƀ mostly ñreactive expressionsò 

"I see what you mean!",  

"You are kidding?", 
"Really?", 

"I donôt believe it!", 
"Is that right?",  

"Serious?", 

"How ridiculous!",  
"Serious?", 

"Are you serious?" 
"I see"  

Substantive ƀ not stereotypic 
ƀ referential sentence(s) 

ƀ crucial: supportive usage (otherwise the 
utterance canôt be distinguished from 

an usual utterance because of the 

shape equality) 

Repetition, 
Summary, 

Clarifying question referring to 
the last/concurrent turn  

 

https://www.zotero.org/google-docs/?yPMbzm
https://www.zotero.org/google-docs/?4vtuMI
https://www.zotero.org/google-docs/?eqjZWX


  
  

 
PRESENT_D4.4_WP4_Non-verbal Agent Behaviour Enabling_20210831_UAU                         Page 10 of 34 

ƀ mostly ñreactive expressionsò 

 
Table 2: Backchannel feedback categorized by linguistic shape [16] . 

 

 
 

Despite the interactional functionality and the linguistic shape are independent from each other, 
both are correlated in a strong way and attributed accordingly by the corresponding recipient. 

Usually non-lexical backchannel responses are seen as continuers, because they are mostly used 

for an affirmative response. This unobtrusive affirmation does not require the speaker to answer, 
so the speaker is allowed to continue. In contrast phrasal and substantive backchannel (especially 

the ones in a question shape) responses normally are interpreted as reactive expressions, because 
mostly they intrinsically need the speaker to have stopped talking before the backchannel and to 

give an answer afterwards.  
However these functional attributions can be easily substituted by the recipient of the 

backchannel feedback. For instance, the phrasal backchannel response ñI seeò is mostly 

interpreted as an reactive expression. Deviating from this common treatment the response can 
alternatively be read as a continuer, where the speaker continues his talk. As a result the linguistic 

form of the backchanneling just serves as an indication, but not as a reliable way to infer an 
interactional category for a backchannel from the linguistic shape. Similarly this applies for the 

non-lexical and substantive backchannels. [16]  

 

4.2.2  Nonverbal backchannel feedback  

The previously presented verbal backchannel feedback is one way to give the primary speaker 
(mostly) unobtrusively feedback during his turn. Another way can be applying this feedback 

nonverbally or even combine both variants to a multimodal feedback, e.g. uttering ñuh-huhò and 

nodding concurrently [11], [17] . According to Dittman and Llewellyn [11]  the nodding especially 
accompanies the verbal backchanneling, when the user has prepared his answer. According to 

interpersonal conventions the non-floor holding interlocutor has to let the floor holding one finish 
speaking. To unobtrusively indicate that the listener is able to comment on the current telling, he 

can nod in addition to the backchannel.  
 

Gaze: Kendon mentions that gazing at the speaker ñduring listening indicated agreementò ([8] , 

p. 36). Kendon and other researchers [22,23]  additionally suggest gaze as a backchannel 
feedback inviting cue. By gazing at the listener dur ing his turn the speaker requests feedback for 

the telling. However the studies suggest that this isnôt the only marker of backchanneling. 
 

Head:  Duncan [18]  suggests that next to head nods, also head shakes can be used as stand-

alone backchannel feedback or combined with verbal feedback. Additionally they state (similar to 
the verbal pendant) that the application of these head gestures can range between one and 

multiple consecutive nods or shakes. Shaking head is also restated by Kubota [17]  as a 
backchannel signal. As stated before Dittman and Llewellyn also suggest nodding as a nonverbal 

backchannel feedback. In addition to head nods, Dittman and Llewellyn suggest that the feedback 
can also be applied by gestures, shoulder shrugs, gaze direction and gaze changing [11] . 

In terms of head nods as a form of nonverbal acknowledging backchannel feedback Poggi et al.  
[24]  suggest different behavior styles depending on the degree of confirmation. This ranges from 
slight ñconfirmation of following the speakerò using one large and two or more rhythmic, short 

downwards directed nods; over ñtaking noteò using fast repeated and brief nods with a gaze 
directed to the floor holding interlocutor; to ñagreementò with a normally single emphasized nod 

(gazing and possibly frowning to the speaking interlocutor). However according to Helweg -Larsen 

et al. [25]  it seems to depend on interactional status and gender how frequently nodding is used 
as backchannel feedback in conversation. 

 

https://www.zotero.org/google-docs/?6HAM3o
https://www.zotero.org/google-docs/?HInh6d
https://www.zotero.org/google-docs/?tHnz3o
https://www.zotero.org/google-docs/?npgFtU
https://www.zotero.org/google-docs/?tIxljp
https://www.zotero.org/google-docs/?Ba0URc
https://www.zotero.org/google-docs/?Ba0URc
https://www.zotero.org/google-docs/?Ba0URc
https://www.zotero.org/google-docs/?pfYiyD
https://www.zotero.org/google-docs/?54FVwX
https://www.zotero.org/google-docs/?ciiWXJ
https://www.zotero.org/google-docs/?ZmI2JS
https://www.zotero.org/google-docs/?vGkPDQ
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Face:  Even smiling can be used as backchannel feedback during conversation. Similarly to the 

verbal pendants the listener can thereby express his understanding or agreement [26] , desire to 
continue with the current talk [27]  and positive attitude towards the floor -holding interlocutor 

[9] . According to Duncan et al. [28]  the listener's frequency to respond with a smile tends to 

increase, the more the speaker is smiling while holding the floor. The smile isnôt necessarily 
instantly conducted (counting as mirroring), but can also occur a few seconds later. In case of 

explicitly mirroring Dimberg and Thunbergôs [29]  reaction time between 0.3 -0.4s for using the 
Zygomatic major muscle to smile can serve as a lower bound for responding. 

Similar to smiling laughter can also be applied for backchanneling. Jensen [30]  observes that 

smiles tend to occur 5 times more frequently as a backchannel response than laughter. The study 
also showed that varying smiling and laughing used as backchannel responses is restricted to a 

few styles, which in case of smiling results in predominantly two ways of expression. One version 
lifted the mouth corners just slightly, another one was nearly equal but included showing teeth.  

Additionally he observed a significant mean time of duration of 2.36 seconds for smiling as  
backchannel feedback compared to the duration of 3.21 seconds for smiling used for other 

purposes (e.g. for being friendly during the greeting). Though the backchannel feedback smiles 

are predominantly using only the Zygomatic major muscle, the smile is i n contrast to non -
backchannel ones despite similarly stylized as the Duchenne smile [31]  (this smile reveals 

unconsciously the inner emotional state, additionally the orbicularis oculi is used).  
These findings suggest that it is culturally defined, which and how backchannel feedback is used 

in communication. This influences how obtrusive and variable smiling and laughter is used on its 

own (e.g. in swedish related cultures both are delivered shor t, decently and similar to the learned 
one). Furthermore this determines how frequently each backchannel feedback is used. People 

with swedish similar background prefer use smiling as a backchannel than laughter, because of 
its more unobtrusive nature. Oth erwise this could in this culture be regarded as an impolite try 

to take the turn. However the style of using backchannels can also depend from the individual 

communication style of a person. 
 

5 Nonverbal Agent Behavior Enabling  

Each of the following subsections address how we enhance the agent with engaging  behavioural 

capabilities for a more authentic interaction between user and agent. First we describe our 

approach of calculating internal emotions to be conveyed by the agent. Next we explain how we 
enabled the agent to play the part of an active listener during interaction by  applying backchannel 

feedback. Finally we present our approaches, which enable the agent to act more naturally 
through the application of its voice.  

  

5.1  Internal Emotion Calculation  

 
In D4.5 - Agent Social Interpretation Enabling we describe the final PRESENT social sensing 

system. Here, audiovisual observations of the user are processed to assess the current affective 
state of the user in the dimensional valence and arousal emotion space [32] . These assessments 

form the input for several connected modules - among others the internal calculation of the 

agentôs default emotional state. 
 

The default emotion can be interpreted as a suggested reactive behaviour which can e.g. be used 
in non-scripted or idle states of the avatar. Reaction and empathy to user emotions and feedback 

is a crucial part to this simulation, so there are several connections depicted within the  schematic 

overview of figure 2 that link the sensing system with the simulation component.  
 

https://www.zotero.org/google-docs/?Pt0xI3
https://www.zotero.org/google-docs/?5GMa2a
https://www.zotero.org/google-docs/?ADjT3q
https://www.zotero.org/google-docs/?oBZPfL
https://www.zotero.org/google-docs/?daoaU4
https://www.zotero.org/google-docs/?xzeG3k
https://www.zotero.org/google-docs/?qTbM2Z
https://www.zotero.org/google-docs/?ZhPnNO
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Figure 2: Schematic overview of the PRESENT social sensing system, its logical and practical 
connections to agent emotion simulation and socially aware adaption systems. All relevant 
information is streamed to an always accessible and continuously updated interface in the game 
engine.  

5.1.1  Affective Elements  

We have introduced in D4.1 - Interim Report on Non -verbal Agent Behaviour Enabling affective 
elements that were planned to influence our emotional state calculation method. As the emotion 

calculation is by now finalized, we can (also for the sake of completeness) again refer to these 

concepts and how they influence the process: 

Personality: We integrated the Big Five Model (Openness, Conscientiousness, Extraversion, 

Agreeableness and Neuroticism; see chapter 4.1.1.1) to define all personality traits, which will 
influence all calculations within the emotion simulation, e.g. the emerging emotions and therefore 

the resulting core affect. The personality traits can be entered into the system as options as 
continuous value. Their influence on various parts of the simulation calculation is derived from 

literature [33] . 

Mood: The mood (or core affect) is a middle -term affective element, which reflects mult iple 
subjective emotions. In our simulation the core affect is mainly calculated from the defined 

personality trait values of the agent and are then influenced by more short -termed emotional 

events. 

Emotions: In contrast to personality and mood these are s hort-term affective elements, which 

arise in response to a specific event. In our simulation, we model these as the reaction to any 
kind of feedback received from the user or an event in the application. The reaction to a category 

of events is altered by the agentôs personality and the agentôs memory. 

https://www.zotero.org/google-docs/?k3gJGX
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Empathy: Affective states of other individuals can elicit an emotional reaction from individuals. 

This affective response is generally considered as empathy. Based on the agentôs influence, its 

mood is influenced by the current valence and arousal values he perceives from the user. 

5.1.2  Internal Emotion Calculation System  

Figure 3 shows the inner workings of the emotion simulation. It consists of a Personality block on 
the right which holds the set of pre -defined personality values. These dictate the core affect which 

will be the starting condition as well as the resting position to which the current affective state of 
the agent will trend towards if no influencing events are received. The speed and amplitude in 

which changes of the core affect are possible again depends on personality values (mainly 

Openness, Extraversion and Neuroticism). 
 

On the Reactive Layer we see the perception of the agent, which is given by the social sensing 
system (D4.5). This input of the userôs affective state is offset with personality values (mainly 

Agreeableness and Openness) and afterwards affects the core affect. This models the empathy 
of the agent towards the user.  

 

The final block in Figure 3 is the Reflective Layer. The idea is, that the agent is able to experience 
a habituation effect in a sense that the agent can get used to categories of feedback (e.g. positive 

or negative) and over time reacts differently to it. As an example, imagine the agent is receiving 
negative feedback from an unhappy user all the time. Based on his personality, he might first get 

angry (i.e. trend towards high arousal and negative valence) but over time react with growing 

indifference (i.e. trend towards low arousal and negative valence). For this effect to happen, we 
keep a memory of past feedback events we received and from this calculate an habituation score 

for feedback categories. Again, the calculation is influenced by personality traits (mainly 
Conscientiousness and Neuroticism). 

 

Figure 4 shows the running simulation in combination with the PRESENT sensing system and a 
placeholder avatar that depicts the final simulated mood.  

 
 

 

Figure 3: Schematic overview of the emotion simulation consisting of the agents Personality, as 
well as the Reactive and Reflective Layer. 
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Figure 4: Real-time emotion simulation for the agent in combination with the PRESENT sensing 
system and a placeholder avatar that depicts the final simulated mood.  

 

5.2  Causal Models for interpersonal behaviors  

We aim to improve the quality of interaction with the agent by establishing a connection to the 
user via the main columns of rapport. In section  4.2  we already presented the different forms 

of backchannel feedback, which contribute to establishing rapport during interpersonal 
interactions. Based on this research we endowed the agent with a causal model to apply 

backchannels appropriately for a believable interaction experience. 

 

5.2.1  Causal Backchannel Feedback  

For building a causal model of backchannel feedback we have to determine the timing, the context 
and the type of response to be applied. Our social signal sensing pipeline (see D4.2 - Interim 
Report on Agent Social Interpretation Enabling) encompasses among others a voice activity 
detection (VAD) separating speech parts from silence or background noise, and a continuously 

conducted sentiment analysis of the user (e.g. whether he is happy). Both can be used to 

determine the points in time at which the agent is abl e to respond as a listener.  
In terms of the VAD we base one part of our backchannel prediction on the observation of Poppe 

et al. [6], that many backchannels are placed after a speakerôs utterance and a small break. So 
one time related precondition for applying verbal backchanneling is that the user has quit 

speaking followed by a pause of 400ms (as suggested by Poppe). After this predicted point in 

time, we apply one of the following backchanne ls randomly according to a gauss distribution, 
additionally the corresponding conditions have to be matched. Both the agentôs speech in general, 

and verbal backchannel utterances are implemented with the TTS-System Cerevoice: 

 

https://www.zotero.org/google-docs/?4ICnDR
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1.  Lexical acknowledgements an d reactive expressions  

In this case we first randomly choose between the backchannels ñyeahò, ñyesò, ñokayò, 
ñrightò or ñI seeò. Since the research suggested these elements to be used as a canned 

component or repeatedly concatenate the same short utterance, we apply the chosen 

backchannel correspondingly. To avoid being too obtrusive by applying multiple 
concatenations too often, we chose to restrict this with probabilities. So we chose a 

probability of 10% for concatenating the backchannel 3 times, a proba bility of 20% for 
concatenating the previously chosen backchannel twice and at a probability of 70% we 

simply apply the single utterance. To sound less static we additionally insert a short break 

between every 2 concatenated utterances before speech synthesis, randomly chosen 
between 50-150ms. 

 
2.  Lexical reactive expressions  

This class of expressions refers to short audio backchannel utterances. The TTS-System 
used for implementing the verbal backchannels supports so called voice gestures, which 

can in some cases be used to implement the corresponding backchannel. Currently we 

donôt have to choose between different variants, because just one lexical audio 
expression is supported (voice gesture ñg0001_013ò resulting in  ñhmò). How often this 

gesture is applied is decided with the same concatenation probabilities and breaks as 
with the expressions before. 

 

3.  Resumptive openers  
For the resumptive opener we apply the vocal gesture ñg0001_037ò resulting in ñohò. 

 
4.  Repetition  

For the repetition the agent has to refer to parts of the user turn. Therefore first the 

speech data of the user has to be accessed, which will be extracted by our social sensing 
pipeline. To get access to the textual part of the turn, we convert the speech data to text 

using the SST component deepspeech (see deliverable D4.5 Agent Social Interpretation 
Enabling). To implement the actual repetition of certain turn parts, we additionally 

process the text with the POS tagging from NLTK. Since every complete sentence should 
contain at least one noun, we extract the last noun of a sentence. This noun is then 

repeated by the agent.  

 
After applying the chosen backchannel feedback, a break follows, which is randomly chosen 

between 500-1000ms, the next agent turn is uttered. All these implemented verbal backchannel 
feedback contribute to establishing rapport with the user. All of them signal that the agent is an 

attentive listener and coordinates its unobtrusive responses with the speaking flow of the user.  

 
Another part of our backchannel prediction is based on the continuously conducted sentiment 

analysis. Since smiling is a common answer to the happiness of an interlocutor, the agent smiles 
back if the user is smiling.  In order to appear not too moody, the current own emotion retriev ed 

from our internal emotion calculation system (see section 5.1.2 ) serves as an additional condition. 
Therefore a smile as backchannel is predicted only if the user is happy and the agent has a 

valence over -0.2.  

After predicting an appropriate timing h as to be chosen. According to the literature the smiling 
can either be instantly mirrored or occur a few seconds later. Dimberg and Thunbergôs [29]  

reaction time between 0.3 -0.4s for using the Zygomatic major muscle can serve as a lower bound 
smiling back. Since also a few seconds later are valid, it is chosen by a probability of 50% whether 

the smile is mirrored after 0.4 seconds. If it is not mirrored instantly, an additional time, randomly 

chosen between 1000-2000ms is added to the lower bound of Dimberg and Thunberg. According 
to Jensen [30]  the smiles in swedish similar cultures should be short, unobtrusive, low deviation 

from learned ñstandardò. So it is sufficient to apply just one smiling style. 

https://www.zotero.org/google-docs/?9272Jk
https://www.zotero.org/google-docs/?B2qIpt
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Smiling back as a backchannel feedback also addresses the main columns of rapport, even all of 

them. The agent is coordinating its smile with the happiness of the user, which shows some s ort 
of attentiveness and empathy at an appropriate point in time. Since smiling is a positive facial 

expression this even contributes to being perceived positively. So with these backchannels we 

addressed all columns of the rapport establishing theory.  
 

5.3  Affective Speech  

 

In order to enable the non -verbal behaviour of a virtual agent, it is not only necessary to calculate 
which affective state it should be in. For the interaction between human and agent, it is also of 

great importance that the affective sta tes of the agent are also communicated to the user in an 
appropriate and convincing way.  

In the context of the PRESENT project, the incorporation of these states in the form of visual 
aspects (facial expressions, gestures, etc.) is obvious. However, in order to enable a convincing 

interaction, the consideration of auditory features is also indispensable, as a virtual agent consists 

not only of a visual representation, but also of the speech with which it communicates.  
The adaptation of non-verbal behaviour in the context of speech thus refers to the question of 

how the agent can be equipped with affective speech capabilities. 
To address this, UAu has tried different approaches, which are explained in this section. 

 

 

5.3.1  Voice Conversion  

Text-To-Speech (TTS) systems address the problem of generating speech from textual 
information. Such systems can therefore be seen as domain transfer models that transfer 

information from the text domain to the speech domain. In order to equip a virtual agent 

with the ability to speak, these systems are the state-of-the-art way to go.  
Modern TTS algorithms work with deep learning methods. Thus, during the training 

process, the underlying neural network is shown numerous example pairs of text and 
corresponding speech output while the algorithm attempts to model the relation of these 

modalities. However, the fact that the speech domain is by no means homogeneous is 
problematic.The sound of speech is defined by a myriad of properties, such as pitch, 

intonation, speech rate, and so on.  Different combinations of these properties result in 

the voice being automatically classified into certain clusters by humans. For example, 
voices with a lower pitch are intuitively assigned to the Male cluster, while voices with a 

higher pitch are perceived as Female. Conceptually, such different clusters can also be 
seen as domains, i.e. Domain of male speech, Domain of happy speech, Domain of 

speech of very old people, Domain of the voices of the authors of this Deliverable. It is a 

triviality that thes e domains are by no means disjoint, but rather result from the definition 
of different domain models. There is an infinite number of domain models that can be 

defined that can be relevant for the design of virtual agents and virtual agentsô voice, 
where each domain model can be seen as one capability that the agentsô voice could 

have. The list of relevant domain models among others includes affective states and 
speaker identity but could be continued indefinitely. While the domain model of Gender 

could include speech subdomains as Male Speech and Female Speech, one could also 

define the domain model of Personality, which could be defined by speech domains that 
each contain speech of a certain personality. If needed, the agentôs voice should be able 

to be shifted to one of these domains, i.e., the designer of the virtual agentôs voice should 
have the ability to give the voice one particular personality. In that sense, the domain 

model Personality could, if desired, even be split up into more detailed domain mo dels 

such as (inspired by the Big Five model) the domain models of Openness, 
Conscientiousness, Extraversion, Agreeableness and Neuroticism. Here, the designer of 

the virtual agentôs voice should for instance be able to shift the agentôs voice to be part 
of a domain that contains speech of a low extraversion degree.  
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In TTS, however, this paradigm is not taken into account. The entirety of the speech is, 

at least predominantly, considered as one domain. If one wants to obtain a TTS system 
that produces speech of a very specific sub-domain, the training data set may traditionally 

only consist of this sub-domain. Addressing different domain models significantly reduces 

the number of available training data, which has a substantially negative effect on the 
performance of such neural network-based systems. Some approaches exist that address 

this problem. For example, there are approaches to process training data already 
annotated according to emotions in the training process in order to specifically obtain 

different emotional speech colourings. However, already during the design of the dataset, 

a certain modelling is committed, which cannot be changed afterwards, and again only 
one domain model is taken into account (in that case, Emotions). Further, it has to be 

noted that the main focus of all TTS systems is to model the verbal characteristics, i.e., 
the language itself. It is therefore only natural to divide up the complex task of feature -

based speech generation so that TTS systems can focus on what they are incredibly good 
at: Converting text into the higher -level, general domain of Speech.  

For the controllability of individual non -verbal features, such as emotion, age, gender or 

voice identity, downstream methods of voice conversion that can be attached to the  
output of TTS systems are a good choice. Voice conversion offers the important 

advantage that the technical domain speech is retained. More generally spoken, voice 
conversion algorithms are a sort of domain transfer systems, which are able to shift voice 

from one speech sub-domain to another. An important point is, that by staying in the 

same technical domain, voice conversion algorithms can be stacked on top of each other, 
giving the possibility to build cascaded pipelines of voice conversion systems. This allows 

domains and domain models to be redefined at any point in time, and to move from sub -
domains to other sub-domains iteratively, and, which is the crucial advantage, the 

overlapping of different domains does not have a cascading influence on the tra ining data 

set of these voice conversion algorithms, i.e., only the domains of one single voice 
conversion step have to be disjoint, while they can overlap with the domain definitions 

of the following voice conversion step. Thus, speech can be modified as often as desired, 
where each modification is done by transforming the speech to be part of another 

domain. The key point is that each single Voice Conversion module can model another 
domain model. So letôs say you have an existing TTS model that works perfectly, but only 

models a single male speaker and does not include any emotional colouring. It is now 

possible to run a voice conversion algorithm that converts this emotionally neutral speech 
into sad speech. Thus, the domains that we consider relevant for  this particular step are 

the domain of neutral speech and the domain of sad speech.  
For the training of this voice conversion algorithm, only some data of neutral speech and 

some data of sad speech are necessary, without this speech having to fulfil other feature 

restrictions. If we want the sad speech to sound feminine, we can apply another voice 
conversion algorithm to the result of the emotional colouring, which has been trained to 

convert from masculine to feminine speech. Again, to train this voice c onversion 
algorithm, one only needs data from male and female speech, without any other 

restrictions. These cascaded voice conversion steps can now, in theory, be performed 
many more times in different domains, and by doing so the resulting voice can be fi ne-

tuned to oneôs own preferences. The remarkable thing is that the individual voice 

conversion models are independent of each other. This implies that they can be trained 
independently, but also that whole frameworks can always be extended with new voice 

conversion modules. Another voice conversion algorithm can be trained at any time, 
which converts desired features into each other. The result is a modular system in which 

a single TTS system provides the entry point to unlimited adaptability through nesti ng 

and cascading of voice conversion algorithms.  
In the scope of the PRESENT project, UAu has conducted multiple experiments to convert 

speech into different domains. 
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Figure 5: Schematic overview on the principle of cascaded voice conversion. Text is 
converted to neutral speech by a conventional TTS approach. This resulting speech is 
subsequently fed to two voice conversion algorithms, where each model is responsible for 
converting one single interpretable voice characteristic. 

 
Therefore, a stack of two voice conversion models was built. The entry point to that stack 

is a conventional, existing TTS model. To this end, UAu chose the CereVoice engine by 

CereProc, as this TTS system is able to create high quality speech of neutral emotion.  
To create affective voice of certain emotions, we trained voice conversion algorithms to 

perform transformations of emotion -neutral voice to emotional sounding voice. As 
training dataset, we chose the Emotional Voices dataset [34] , which contains recordings 

of various actors speaking a wide range of sentences in different emotions. In order stick 

to the principle of cascaded voice conversion to allow a single model to cover only one 
task, we selected one speaker out of the dataset and performed the emotional voice 

conversion only of this speaker, so that the emotional voice conversion model does not 
have to learn properties that are necessary to also conduct a speaker identity conversion 

task. However, as that emotional voice conversion model is only trained on one speaker, 

it has to be made sure that also during inference the speech stems from that training 
speaker. As the CereVoice engine does not contain the respective speaker, we trained 

another voice conversion algorithm to transform the speaker identity of the CereVoiceô 
voice to the voice of the training dataset that we used for the training of the emotional 

voice conversion model. Thus, that speaker identity conversion model also has to model 
only one single task. In total, the whole pipeline is designed as follows:  

 

1. CereVoice TTS engine to convert text to speech of neutral emotion 
2. Voice Conversion model 1 to convert neutral speech of the CereVoice engine to 

neutral speech with the speaker identity of the  databaseôs actor 
3. Voice Conversion model 2 to convert neutral speech of the databaseôs actor to 

emotional speech of the databaseôs actor. 

 
 

 
 

https://www.zotero.org/google-docs/?l22Mb7
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5.3.1.1  Voice Conversion with CycleGANs  

 
As voice conversion algorithm, we chose to use CycleGANs, a model architecture that is 

based on adversarial learning. The concepts of adversarial voice conversion, especially 

CycleGANs, are described in this section.  
Adversarial voice conversion is based on the use of generative adversarial networks 

(GANs), first introduced by Goodfellow et al. [35] . The basic principle of GANs is that two 
neural networks, called the generator and the discriminator, learn opposing tasks and 

thus improve each other (hence the name adversarial). The generator attempts to modify 

a random noise distribution to produce new, very realistic data that looks or sounds as if 
it came from a particular training dataset. The discriminator, on the other hand, tries to 

expose the data produced by the generator as fake data.  In other words, it tries to 
distinguish between real data from the training data set and fake data. The trained 

generator can then be used to produce deceptively genuine examples from random noise 
vectors. From a speech research perspective, these genuine examples can have the 

technical structure of audio. The goal of a GAN can be formulated mathematically as 

follows: 
 

 
 
where G is the generator network, D is the discriminator and z is the input noise.  

 
Of course, these original GANs cannot be called voice conversion algorithms because they 

do not convert audio to audio, but unstructured noise to audio.  Extensions to the original 

GANs address this problem by replacing the noise input with real data.  The learning goal 
changes to not constructing new data from noise vectors, but constructing new data from 

existing data, which is quite close to the concept of voice conversion.  Approaches that 
implement the above learning goal in the form presented can be found primarily in the 

field of image processing [36] .  This means that during training we have to give the 

network concrete pairs of data that differ only by the feature to be converted. Using 
emotion conversion as an example, this would mean that we would need a large number 

of data pairs that do not differ in any feature except emotion. For example, the data pairs 
would have to contain the same sentence, be spoken by the same speaker, be recorded 

in the same environment, to nam e just a few constraints, which makes the overall goal 
of easy extensibility of speech for virtual agents absurd. Fortunately, further modifications 

of the original GAN framework have been developed that overcome this problem. A 

prominent example of this i s the so-called Cycle-consistent GANs (CycleGANs) [37] . 
CycleGANs consist of two individual GANs that in turn play against each other. Let us 

assume in general that we want to perform a transfor mation between domain A (DNA) 
and domain B (DNB).  The goal of the first GAN (G1) would then be to convert data from 

DNA to DNB , while the second GAN (G2) converts data from DNB to DNA. If we now take 

a sample SDA, which belongs to DNA, and transform it w ith the help of G1 , we get 
G1(SDA), which should ideally be perceived as belonging to DNB. If we now transform 

this result using G2, then G2(G1(SDA)) should again be part of DNA. This is the key factor 
for CycleGANs to work, because now G2(G1(SDA)) can be compared to SDA. Ideally, the 

two conversions have now only converted the desired features back and forth, while the 
uninvolved features have remained the same, which is why the difference between these 

two data points can be used directly to teach the Cy cleGAN. This so-called cycle 

consistency loss can be defined mathematically as follows, where x is an image from DNA 
and y an image from DNB:  

 

https://www.zotero.org/google-docs/?ofj3M5
https://www.zotero.org/google-docs/?Hr5kUU
https://www.zotero.org/google-docs/?4w5Sba
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This mechanism causes the two networks to allow convergence between domains without 
the need to use a paired data set in combination with the formulations for the two 

integrated GANs, the the complete loss function L of a CycleGAN is defined as follows. 

 

 
 

where DA and DB are the discriminators of the two GANs and Ȉ is a factor to weight the 
effect of the cycle consistency loss Lcycle. LGAN is the adversarial loss that can be derived 

from the original GAN objective. 

 
Figure 6: Schematic overview on the architecture of (a)  an original GAN and (b) a 
CycleGAN, as UAu used for the conversion of affective voice. 

 

 

Since the operating principle of CycleGANs enforces that only speech features that are 
important for the actual domain transfer are changed, it provides the optimal b asis for 

building modular speech conversion systems for virtual agents.  This becomes particularly 
clear when one realises that Cycle-GAN is designed for binary domain transfer. In terms 

of modularity, it can be argued that binary conversion problems conce ntrate the entire 

capacity of the learning process on a small, defined part of the overall problem, thus 
simplifying it and making it more efficient.  This is particularly important in terms of 

training effort and the need for training data.  It is quite c onceivable that the concept of 
modular, cascaded, CycleGAN-based speech conversion is a viable way to realise fine-

grained and easily extensible adaptation and individualisation of virtual agents, which is 

why UAu chose the CycleGAN architecture for the implementation of the voice conversion 
pipeline. 
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The results of the voice conversion models are promising, however, with every voice 

conversion step, noise is added to the speech, decreasing the perceived quality of the 
audio data. In general, the field of v oice conversion still leaves a lot of room for 

improvement to be addressed by the research community. As the PRESENT project aims 

for high-quality results, UAu decided to additionally implement an affective speech system 
that is not based on a cascade of voice conversion, but works with end -to-end speech 

synthesis. These implemented concepts are explained in the following section. 
 

 

5.3.2  Speech Synthesis  

 
Figure 7: Overview of the conducted Gibbs Sampling with People Experiment.  

 

 
In the last decade, the quali ty of text -to-speech (TTS) has been significantly improved 

by the introduction of neural vocoders combined with end -to-end TTS models such as 
Tacotron [38], [39] . More recently, models capable of producing expressive speech have 

been proposed, such as Tacotron with Global StyleTokens (GST Tacotron) [40] , Mellotron 

[41]  and Flowtron [42] . While these models can produce prosodically varied and realistic 
human-like speech, it is unclear how prosody can be meaningfully altered to perform 

https://www.zotero.org/google-docs/?azfvv9
https://www.zotero.org/google-docs/?QK42XV
https://www.zotero.org/google-docs/?8bSBm1
https://www.zotero.org/google-docs/?IVPaRw
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paralinguistic functions, such as communicating attitudes, intentions or emotions, as it is 

required for the PRESENT project. 
To find these prosodic representations, one has to search the latent space of the model 

efficiently. This is an increasingly difficult task with high -dimensional spaces, as not all 

combinations can be tried in a reasonable amount of time. There are several 
psychological paradigms that can sample from such spaces using human participants, 

such as inverse correlation [43] , Markov Chain Monte Carlo with People (MCMCP) [44]  
and Gibbs Sampling with People (GSP) [45] . GSP is a particularly new paradigm that uses 

a continuous sampling task instead of the binary selection task used in the other methods.  

This leads to a larger number of information per trial and thus speed s up the parameter 
search. To enhance the PRESENT agent with affective speech, UAu used GSP to search 

the latent prosodic space in a trained GST-Tacotron model to investigate prototypes of 
emotional prosody, leading to a model configuration that is capable  of generating speech 

of certain emotions. UAu could successfully publish that conducted work on this yearôs 
Interspeechô21 conference [46] . 

 

5.3.2.1  Background  

There are two main challenges in synthesising prototypes of emotional prosody.  First, a 

stimulus space must be defined that includes parametric manipulations of the sound.  
One way to define the stimulus space is to construct a set of hand -crafted features that 

capture important aspects of prosody perception, such as pitch slope, tremor and mean 

intensity. Previous work [45]  has shown that a simple hand-crafted feature space is 
sufficient to produce characteristic, easily recognisable prosody prototypes of emotions.   

However, this approach is fundamentally limited because (i) it makes strong assumptions 
about which acoustic manipulations are relevant, (ii) not all potentially relevant 

manipulations can be made to the sound, since changing a single feature (e.g. pitch 

contour) can result in unnatural and distorted speech regardless of other features with 
which it is correlated (e.g. the spectral properties of the sound), and (iii) when modifying 

existing speech recordings, we are essentially changing continuous time series such as 
pitch or intensity over time. Conventional hand -crafted features such as pitch slope and 

pitch range can struggle to capture the full expressive power of unconcealed pitch or 
intensity contours. 

Alternatively, t he stimulus space can be created in a data-driven way.  One solution is to 

use TTS models that split audio into separate text and prosody representations.  GST 
Tacotron [40]  is one of the best-known examples of such TTS systems and is an extension 

of Tacotron, a sequence-to-sequence model that learns the TTS task solely on pairs of 
recordings and transcripts.  In GST Tacotron, some components are added to Tacotron.  

A reference encoder [47]  is added, which compresses the Mel spectrogram into a fixed-

length embedding. This embedding is then passed to what is called the "style token 
layer".   This layer consists of a multi -head attention mechanism, where the attention 

assigned to the head is a similarity measure between the reference embedding and a 
bank of global style tokens, and a weighted average of global style tokens is calculated 

based on the assigned attention weights, called style embedding.  Together with the text, 
the style embedding is passed to the Tacotron model, which produces the predicted 

spectrogram. 

With this architecture, varied speech can be produced, but control over prosody is 
relatively coarse because the global style tokens are of fixed length.  Recent 

developments such as Mellotron [41]  and Flowtron [42]  aim to improve prosodic control, 
which is a prerequisite for the transmission of speech and song.The second challenge is 

to identify regions of this space that are associated with specific emotional prototypes.   

A naïve approach is to manipulate individual dimensions independently and assess the 
consequences for emotion perception. However, this assumes that the underlying 

dimensions contribute independently to the assessment of emotions, which is usually 
impossible to prove.  GSP offers a way to overcome this independence assumption: It 

https://www.zotero.org/google-docs/?g80Nap
https://www.zotero.org/google-docs/?m9rH0f
https://www.zotero.org/google-docs/?phdBCb
https://www.zotero.org/google-docs/?C7SyPc
https://www.zotero.org/google-docs/?b97LC5
https://www.zotero.org/google-docs/?x1DtKt
https://www.zotero.org/google-docs/?ASZc80
https://www.zotero.org/google-docs/?2Cc4cW
https://www.zotero.org/google-docs/?QMvPL8
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uses a well-established algorithm from communication statistics (Gibbs sampling) to 

identify regions of stimulus space associated with specific semantic labels, avoiding any 
independence assumption [45] . 

 

5.3.2.2  Methods  

Below we describe the methods and models that UAu used for its implementation, 

experiments and evaluation. 

5.3.2.2.1  GSP 

GPS is an adaptive procedure in which many participants work together to explore a high -

dimensional sample space. Participants' responses are organised into iteration sequences 
called "chains". A given iteration in a given chain has fixed values for all but one 

dimension of the space, leaving the remaining dimension to manipulation by the 
participants.  In each trial, the participant is assigned a given iteration in a given chain 

and presented with a randomly initialised slider that manipulates the free dimension with 
real-time audio feedback. The participant is instructed to change the stimulus until it 

maximally resembles the target concept (e.g., sad). In UAuôs implementation, 5 different 

participants contribute to trials of a particular iteration in a particular chain, and their 
responses are aggregated by finding the median. This aggregated value is then carried 

forward to the next iteration, where a different dimension is then manipulated. This 
process is repeated several times, going through each of the dimensions of the sample 

space. The resulting process can be interpreted as a Gibbs sampler, a well-known 

algorithm from computational statistics for sampling from high -dimensional probability 
distributions [45] .In the c urrent experiment, participants change the attentional 

weighting of one of the 10 global style tokens. Participants are asked to adjust a slider 
so that the speaker sounds like a particular emotion. The range of all dimensions is limited 

to [ -0.24, 0.38], which corresponds to a 94% confidence interval of the attentional 

weights reported by the model in the training data, to minimise bias. Each slider contains 
32 equally spaced slider positions. Since the synthesis of the stimuli must be done in real 

time during the experiment, UAu used a Griffin Lim vocoder for the synthesis, which 
proved to be a good compromise between quality and speed. Each chain is initialised to 

0 for each dimension, as extreme slider values can lead to disturbances of the signal. 
 

5.3.2.2.2  Synt hesis Model  

We trained the model for 380,000 epochs using the same corpus (Blizzard Challenge 
20131) and the same hyperparameters as in the original paper [40] .  When 

synthesising from the model, we set the attentional weights directly from the current 
position of the relevant GSP chain in the sample space, generating an output for each 

of the 32 po ssible slider positions. The participants then used the slider to select from 

these different outputs.  

5.3.2.2.3  Material  

We used three phonologically balanced and semantically neu-tral sentences from the 
Harvard sentence text corpus [48]  and investigate three emotions: Anger, Happiness 

and Sadness. When initialising the experiment, each chain is assigned a single 
sentence and emotion, so that each sentence and emotion occurs equally often and is 

balanced across chains. 

5.3.2.3  Experiments  

130 US participants (61 female, 1 does not wish to give details, 68 male) took part in 

the experiment. The age ranged from 18 to 59 years (M= 36, SD= 10).  Prior to the 

 
1
 https://www.synsig.org/index.php/Blizzard_Challenge_2013 
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https://www.zotero.org/google-docs/?zoM3CM
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experiment, participants begin with three practice trials to  familiarise themselves with 

the task. 48 hours after the end of the experiment, 39 of the 45 chains were full (20 
iterations). In a separate validation experiment, participants (N= 82) rated how well 

the patterns corresponded to each emotion on a four -point scale (see figure below, 

subfigure A).  
The validation includes stimuli generated in the 39 complete chains of the first 

experiment (i.e. the chains in different iterations of the experiment) and 18 random 
samples.  We created 156 transfer stimuli by applying the mean attention weights of 

the last GSP iteration to four new sentences from the Harvard sentence corpus.  

These stimuli were also scored during validation. On average, each stimulus was rated 
4.5× for each emotion.  

 

5.3.2.4  Acoustic Analysis  

To compare the current results with original GSP work [45] , UAu calculated a similar set 
of acoustic features manipulated in the previous experiment. Duration and pitch -related 

slider positions were well reconstructed from the acoustic signal, which was not the 

case for the applied jitter and tremolo effect. UAu extracted duration, F0 slope, mean 
and range4, as well as shimmer (local) and jitter (ddp). All features were extracted 

using Praat [49]  via a Python wrapper [50] .  To complement this manually created 
feature set, UAu also computed the larger standard feature set (eGeMAPS) developed 

for emotion recognition in speech [51], [52] . 

 

5.3.2.5  Results

 

Figure 8: (A) Example validation trial. Audio plays automatically and user is prompted to 
answer. (B) Average ratings for the initial  sample (iteration 0), binned iteration 1 ï4, 5ï8, 
9ï12, 13ï16, 17ï20, the rating for the transfer and random samples (95% confidence 
intervals). (C) Contrast between ratings (95% confidence intervals). (D) Principal 
Component Analysis on style embeddings of 39 chains at iterations 9ï20. (E) Development 
over iterations in PC style embedding space at iteration 0ï5. (F) Comparison between 
related work (changing specific acoustic features with Praat [45] ) and the current study 
(using GST Tacotron). 
 
 

The ratings for the intended emotions steadily increase over the iterations, while the 

ratings for the unintended emotions plateau or decrease.  In addition, there appear to 

https://www.zotero.org/google-docs/?841DJ9
https://www.zotero.org/google-docs/?O1EurT
https://www.zotero.org/google-docs/?qRQtVz
https://www.zotero.org/google-docs/?8uISIA
https://www.zotero.org/google-docs/?BJzpfi
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be imbalances in the ratings of the baseline and random samples that represent some 

perceived biases (e.g., iteration 0 sounds happy rather than sad).  To control for these 
imbalances, we calculate the "contrast" between the ratings, which is the mean of the 

ratings for the intended em otions minus the mean of the ratings for the unintended 

emotions.The contrast shows that the intended emotions reliably receive higher ratings 
than the unintended emotions. Consistent with the previous results, the contrast 

increases steadily across iterations, but is close to 0 for the random samples and the 
first sample (iteration 0).  

Figure 8 above also shows the average ratings for stimuli created by applying the 

derived attention weights to new sentences. These stimuli receive high ratings, 
indicating that this transfer process worked remarkably well (see supplementary 

materials for audio examples). 
To investigate whether the emotional sentences cluster in the latent TTS space, UAu  

performed a principal component analysis for all style embeddings of all stimuli in the 
experiment. The figure above shows the first two principal components for citation 9 -

20. The figure shows that the three emotions differ moderately well from each oth er on 

these two components.  This grouping occurs relatively early, which further supports 
the early convergence of the GSP process (which also can be seen in the figure above). 

 

5.3.3  Generating Human Laughter as Backchannel Feedback  

As described earlier in this deliverable, backchannel feedback is an important step 

towards a authentic non-verbal behavior of virtual agents. Thus, UAu implemented a 
concept to allow for adaptable generation of auditive backchannel feedback. Therefore, 

the task of generating personalizable laughter was addressed. 
In order to do so, a Generative Adversarial Network (GAN) was enhanced with an 

evolutionary algorithm framework. GANs are a great approach to generate highly realistic 

artificial audio. Original GANs have the capability to transform random noise vectors to 
new data that resembles the training domain that the GAN was trained on. Further, slight 

changes in the input noise vector also lead to slight mutations in the output audio. Thus, 
GANs represent a very promising framework for generating auditive backchannel 

feedback such as human laughter, while maintaining the possibility to shape the resulting 
audio according to the userôs needs, allowing for the personalization of the generated 

data. 

5.3.3.1  Background  

Original GANs, although theoretically providing the possibility to modify the output by 

modifying the input noise vectors, lack the possibility to control single characteristics of 
the generated sounds in a targeted and interpretable way, as the original idea of GANs 

was limited to the generation of new random data similar to the training domain.  Several 

authors proposed modifications to extend the original concept of GANs to include the 
possibility of controlling the output.  Mirza et al. [53]  presented a system called 

"Conditional Adversarial Networks" that extends the noise input of G with another vector 
containing information about arbitrary feature values of the processed data.  During 

training, the generator G receives the concatenation of z (the input noise vector) and y 
as input, while the discriminator D is fed with G(z|y). The generator is thus conditioned 

on the information represented by y. In this way, the trained generator can produ ce 

outputs that can be controlled by selecting y according to the desired feature values.  
There are many applications, modifications and extensions of conditional GANs, mainly 

focused on the image domain [36], [54] ï[57] . Conditional GANs have also achieved 
sufficient results in the audio domain [58] . However, a major drawback of this approach 

is that the entire system must be re -trained when new controllable features are sought. 

While this does not have a major impact for image data, training GAN -based systems for 
audio data takes much longer, resulting in a major lack of flexibility. In addition, sound 

https://www.zotero.org/google-docs/?lme5lW
https://www.zotero.org/google-docs/?QLTJQH
https://www.zotero.org/google-docs/?VrPABK
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generation systems based on the CGAN idea also need to evaluate and optimise the 

network structure when defining new features, which is caused by the inclusion of feature 
processing in the neural network.  

Thus, UAu strived for a more flexible way to modify the generated backchannel feedb ack 

in order to allow for an adaptation to the ongoing interaction between human and virtual 
agent. A concept that is fitting the desired requirements is the principle of Latent Variable 

Evolution (LVE). The idea of LVE is to enhance a GAN with an evolutionary algorithm, 
allowing it to search through the latent input space of the GAN in a controlled way.  

Evolutionary Algorithms follow the principles of Darwinôs Theory of Evolution. Analogously 

to nature they are based on the idea to select the best individu als of a given population 
and expand these individuals to a new generation of individuals by applying techniques 

of recombination and mutation. The following listing briefly shows the steps that are 
performed by an evolutionary algorithm [59] : 

 
1. An initial population of individuals is generated, mostly by means of a random 

distribution.  

2. The individuals of the current population are evaluated by applying a fitness 
function to the individuals. The b est individuals are selected, all other individuals 

are dropped. 
3. The selected individuals are being expanded by applying recombination and 

mutation. Hereby, recombination can be seen as a merge of different individuals, 

whereas mutation means a slight alteration of the individuum.  
4. If the individuals of the current population are sufficient enough, the process 

terminates here. If not, the procedure continues with step 2. An important thing 
to consider when dealing with evolutionary algorithms is the distinct ion between 

ñphenotypesò and ñgenotypesò. While phenotypes refer to the observable 

characteristics of an individual, genotypes can be seen as an encoding of the 
individual. While mutation and recombination methods are applied to the 

genotypes of the individuals, the fitness function is commonly applied to the 
phenotypes. 

 
Latent Variable Evolution (LVE) is a method for finding specific outputs in a trained GAN 

and was first introduced by Bontrager et al. [60] . LVE makes use of the fact that a trained 

generator of a GAN takes a latent noise vector represented as a float vector as input and 
therefore can easily be interpreted as a genotype of an individual that has the output of 

the GAN as phenotype. This phenotype of every instance of such a noise vector can be 
evaluated by any fitness function that is suited for the specific application. Such a fitness 

function can be used for evolving latent noise vectors whose phenotypes are maximizing 

the fitness function. In other words, LVE enables searching through the input GAN space 
in order to find noise vectors which result in exactly the audio output that is strived for.  

The concept of LVE was first used by Bontrager et al. [60]  to generate images of 
fingerprints to fool fingerprint -based biometric systems. Volz et al. [61]  and Giacomello 

et al. [62]  adapted the idea to create levels of video games.  Zaltron et al. [63]  developed 
a system for generating facial composites based on LVE. While evolutionary algorithms 

have been shown to be sufficient for tackling audio generation tasks, most existing work 

in this area is limited to applying evolutionary computational methods to parameter 
optimization problems for conventional synthesiser configurations [64]ï[66]  or frequency 

modulation operators [67] . 
 

5.3.3.2  Applying LVE to GANs for audio generation  

In the following, UAuôs system to generically control GAN implementations for sound 
generation with respect to arbitrary features will be explained, where the features do not 

need to be specified before training the GAN.  As mentioned earlier, our main objective 
is to present a system that allows defining and controlling features of the produced audio 

https://www.zotero.org/google-docs/?kiQEdQ
https://www.zotero.org/google-docs/?0XK94T
https://www.zotero.org/google-docs/?DaIrBo
https://www.zotero.org/google-docs/?p9UDN8
https://www.zotero.org/google-docs/?I9iCm1
https://www.zotero.org/google-docs/?bBq5NU
https://www.zotero.org/google-docs/?xBbtiO
https://www.zotero.org/google-docs/?tHrNcR
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data without the need to know these features before training the GAN, in order to allow 

maximum flexibility when adapting the virtual agentôs backchannel feedback. Therefore, 
we have divided our system into four d ifferent stages, which are briefly described below.  

 

5.3.3.2.1  GAN Training  

The first stage comprises the training of a GAN. The goal of this step is to obtain a trained 

generator network that is able to produce new audio data that sounds similiar to the data 
contained in the training dataset. It is worth to mention that the specific GAN architecture 

does not matter for the functionality of the succeeding steps, as they only rely on the 

generator network as a tool to map genotypes to phenotypes, where genotypes are 
represented as noise vectors and phenotypes are audio samples. Thus, the only 

requirement to the generator architecture is that itôs first layer takes a float noise vector 
as input. The rest of the network architecture can be chosen and optimised as it is desired 

for the specific training domain without concerning about any features that shall be 
controlled after the training. For UAuôs experiments for generating backchannel feedback, 

the problem was set in the context of human laughter generation. To generate those 

sounds, UAu used the WaveGAN implementation developed by Chris Donahue et al. [68] , 
as the authors showed that the system is capable of generating realistic sounding audio 

data. Its main concepts follow the basic idea of Deep Convolutional GANs (DCGANs) [69] , 

which are a modification of the original GANs and allow modelling of data with even higher 

complexity by including convolutional layers in both the generator and discriminator 

networks.  Since the DCGAN was developed for image generation, several parts of the 

DCGAN are slightly modified by WaveGAN to allow processing of audio data. For 

example, the two-dimensional up-and downsampling filters are replaced by their one-

dimensional counterparts (i.e. kernels of size nxn become kernels of size n). A 

combination of three different existing datasets was used as the training dataset. Firstly, 

the OxVoc database [70]  was used. This dataset contains, among other audio files, 
examples of human laughter. Furthermore, parts of the ESC-50 dataset were used [71] . 

This dataset contains several audio examples of various sounds, among which are 40 
examples of human laughter. The length of these examples is 5 seconds each. Further, 

the AVLaughterCycle dataset was used. [72]  This dataset consists of 24 audio files, each 

between 10.5 and 14 minutes long. The examples contain audio recordings of people 
who were stimulated to laugh by various modalities. This results in the fact that the 

recordings only partly contain laughter, while a large part of the audio material contains 
silence. If such data were used to t rain a GAN, the discriminator would quickly learn that 

silence is an essential part of the original domain. The generator could be tricked into 

producing only silence instead of laughter. To counter this problem, a deep learning 
approach developed by Ryokai et al. [73]  was used to extract laughter from the data set. 

From the AVLaughterCycle dataset, 341 examples of laughter with a length of between 
1.1 and 24.5 seconds were extracted. 

 

5.3.3.2.2  Defining the features  

After the training of the GAN, controllable features have to be defined. The only 

requirement to the features is the ability to measure them in any way. While basic audio 
features like energy, pitch or MFCCs can be gauged by common standard algorithms, 

more complex and domain specific features may require additional work to find 
appropriate measurement systems. In UAuôs experiments, the intensity of laughter was 

considered. While UAu deployed a deep learning based approach to measure the intensity 

of laughter, extensive listening tests revealed that the pure energy of the resulting audio 

https://www.zotero.org/google-docs/?yzz3x2
https://www.zotero.org/google-docs/?6KJG88
https://www.zotero.org/google-docs/?XxmOw0
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https://www.zotero.org/google-docs/?fCr4sy
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is already a good measure to capture the intensity of laughter, which is why we used this 

metric for the fitness function of the succeeding evolutionar y algorithm.  
 

5.3.3.2.3  Evolutionary Algorithm Training  

Having defined features that are measurable allows to use the measurement systems to 
judge the fitness of samples with respect to specific feature values. In contrast to existing 

implementations that use LVE in the image domain, we do not train our evolutionary 
algorithm to find samples that exactly fit desired feature values. We rather search for 

samples that represent certain points in the chosen feature space. These samples serve 

as pivot points for an interp olation algorithm that we later use to find the samples that 
show the desired feature values. 
 

5.3.3.2.4  Interpolation  

This last stage comprises the generation of new samples that show the desired feature 

values, i.e., the desired laughter intensity. We use the samp les of the previous stage as 
pivot points for an interpolation algorithm, i.e. we examine which of the pivot points have 

the smallest feature distance two the desired sample and interpolate between those 
points until we find a sample that fits our needs. B y performing this step instead of 

searching for the target samples directly by the evolutionary algorithm, we get rid of the 

need to train the evolutionary algorithm for every new sample that we want to find. Only 
searching for pivot points allows us to complete the whole training process of both the 

GAN and the evolutionary algorithm to be completed before generating new personalized 
samples. Thus, the final generation process can be performed in constant time. 

 

UAu trained the system as described above and as such is able to generate human laughter 
sounds of adaptable intensity. Those sounds can be used to enhance the backchannel capabilities 

of the agent as described in Section 4.2. 
 

 

6 CONCLUSION  

In this document, we gave an overview of the components that  UAu implemented to address the 

non-verbal behaviour of the PRESENT agent.  

We have described the concepts and implementations of the different modules. Further, we 

argued why the components that we built represent necessary and useful building blocks of t he 

PRESENT system. 

We divided our contributions into three main parts:  

ƀ A causal model for interpersonal behaviours to enhance the agentôs capabilities regarding 
the expression of backchannel feedback 

ƀ An internal emotion calculation system in order to equi p the virtual agent with the 

capability to express its own emotions, as well as to take its own affective state into 
account when interacting with a user  

ƀ The agentôs enhancement with affective speech capabilities in order to be able to express 

intentions and emotions in an auditive dimension. 

The components were implemented independently from each other, so that they can be used 
according to the respective use-cases and scenarios that are addressed by different partners in 

the PRESENT project. Particularly, the findings of this work will be of major relevance for the 

upcoming deliverable D4.6 - Context Sensitive Agent Adaption Enabling (WP4). Here, different 
implementations that were presented in this work will be of importance in order to allow for a 

personalized adaptation of the virtual agent.  
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