Signals and Systems #09: First-order systems

Giovanni Geraci Universitat Pompeu Fabra, Barcelona

Some of the images in this presentation are from "Signals and Systems", A. V. Oppenheim, A. S. Wilsky, and S. H. Nawab, 2nd ed. Pearson.

Outline

- **#01 Continuous-time signals**
- #02 Continuous-time systems
- #03 Fourier series of periodic signals
- **#04 Fourier transform of aperiodic signals**
- #05 Fourier transform of periodic signals
- #06 Basic properties of the Fourier transform
- #07 Convolution property
- #08 Multiplication property
- #09 First-order systems
- #10 Second-order systems

Magnitude-phase representation of the frequency response

The Fourier transform is a complex function of ω

 $X(j\omega) = |X(j\omega)| \ e^{j \triangleleft X(j\omega)}$

 $|X(j\omega)|$ describes the frequency content of a signal

 $\triangleleft X(j\omega)$ describes the relative phase of the complex exponentials

The Fourier transform is a complex function of ω

 $X(j\omega) = |X(j\omega)| \ e^{j \triangleleft X(j\omega)}$

 $|X(j\omega)|$ describes the frequency content of a signal

 $\triangleleft X(j\omega)$ describes the relative phase of the complex exponentials

For an LTI system: $Y(j\omega) = H(j\omega) \cdot X(j\omega)$

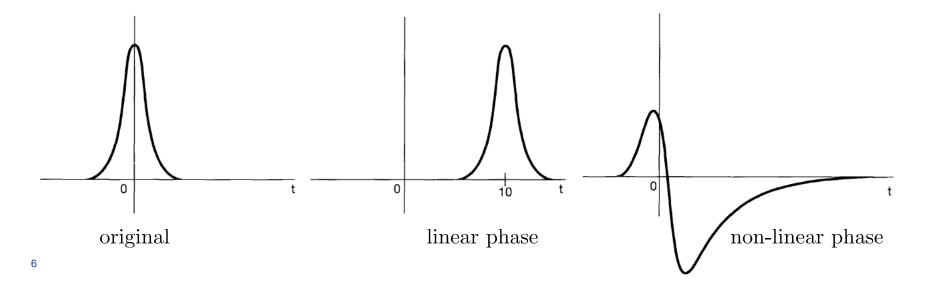
 $|H(j\omega)|$ scales the magnitude of $X(j\omega)$

 $\triangleleft H(j\omega)$ introduces a phase shift on $X(j\omega)$

A linear phase shift corresponds to a delay (no distortion)

$$H(j\omega) = e^{-j\omega t_0}, \qquad |H(j\omega)| = 1 \qquad \triangleleft H(j\omega) = -\omega t_0$$
$$h(t) = \delta(t - t_0) \qquad \Rightarrow \qquad y(t) = x(t - t_0)$$

a non-linear phase causes distortion



Bode plots

Plotting the magnitude of the Fourier transform in logarithmic scale:

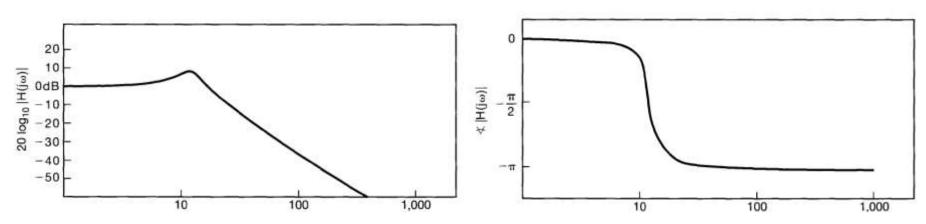
- spans a wider range and highlights value in the stopband
- one can simply obtain $\log |Y(j\omega)| = \log |H(j\omega)| + \log |X(j\omega)|$

Plotting the magnitude of the Fourier transform in logarithmic scale:

- spans a wider range and highlights value in the stopband
- one can simply obtain $\log |Y(j\omega)| = \log |H(j\omega)| + \log |X(j\omega)|$

We typically use a $20 \log_{10}$ scale (*decibels* or dB) =

$$\Rightarrow \begin{cases} 1 \times = 0 \mathrm{dB} \\ 10 \times = 20 \mathrm{dB} \\ 0.1 \times = -20 \mathrm{dB} \\ 2 \times \approx 6 \mathrm{dB} \end{cases}$$



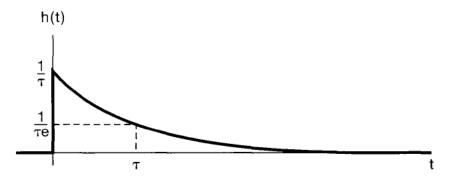
First-order systems

Differential equation:

$$\tau \frac{d y(t)}{d t} + y(t) = x(t) \qquad \tau > 0$$

frequency and impulse response:

$$H(j\omega) = \frac{1}{j\omega\tau + 1} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad h(t) = \frac{1}{\tau} e^{-t/\tau} u(t)$$

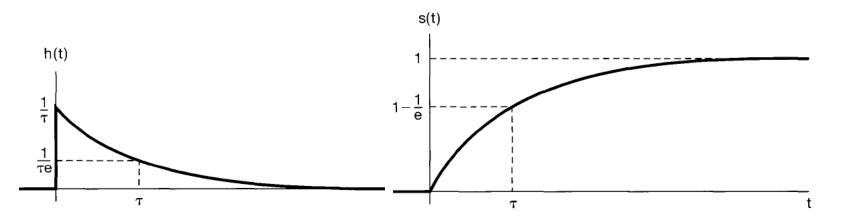


Differential equation:

$$\tau \frac{d y(t)}{d t} + y(t) = x(t) \qquad \tau > 0$$

frequency and impulse response: $H(j\omega) = \frac{1}{j\omega\tau + 1} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad h(t) = \frac{1}{\tau} e^{-t/\tau} u(t)$

step response:
$$s(t) = h(t) * u(t) = \left(1 - e^{-t/\tau}\right) u(t)$$



smaller $\tau \Rightarrow$ faster response

Magnitude of the frequency response:

$$20\log_{10}|H(j\omega)| = 20\log_{10}\left|\frac{1}{j\omega\tau + 1}\right| = 20\log_{10}\left[\frac{1}{\sqrt{1 + (\omega\tau)^2}}\right] = -10\log_{10}\left[1 + (\omega\tau)^2\right]$$

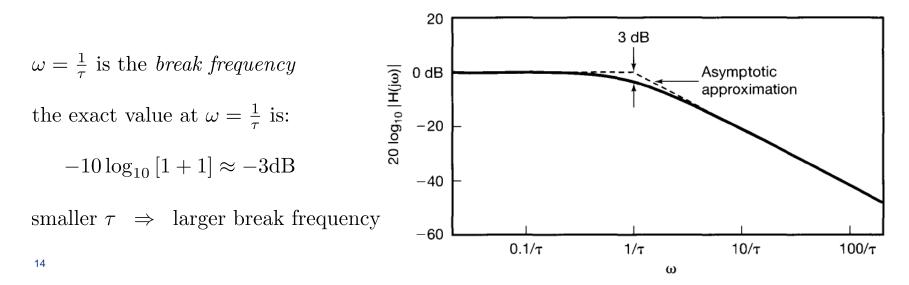
- For $\omega \ll \frac{1}{\tau}$ $20 \log_{10} |H(j\omega)| \approx 0$
- For $\omega \gg \frac{1}{\tau}$ $20 \log_{10} |H(j\omega)| \approx -20 \log_{10} \omega \tau = -20 \log_{10} \omega 20 \log_{10} \tau$

Magnitude of the frequency response:

$$20\log_{10}|H(j\omega)| = 20\log_{10}\left|\frac{1}{j\omega\tau + 1}\right| = 20\log_{10}\left[\frac{1}{\sqrt{1 + (\omega\tau)^2}}\right] = -10\log_{10}\left[1 + (\omega\tau)^2\right]$$

• For
$$\omega \ll \frac{1}{\tau}$$
 $20 \log_{10} |H(j\omega)| \approx 0$

• For $\omega \gg \frac{1}{\tau}$ $20 \log_{10} |H(j\omega)| \approx -20 \log_{10} \omega \tau = -20 \log_{10} \omega - 20 \log_{10} \tau$



Phase of the frequency response:

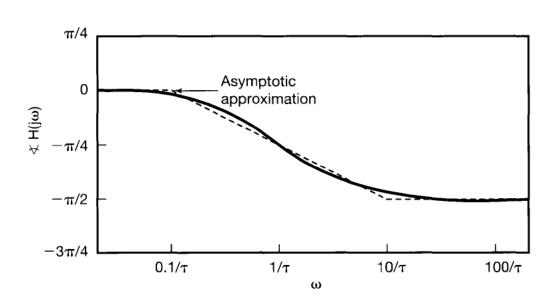
$$\triangleleft H(j\omega) = -\tan^{-1}\omega\tau \approx \begin{cases} 0 & \omega \ll \frac{1}{\tau} \ (\text{e.g.}, \, \omega < \frac{0.1}{\tau}) \\ -\pi/2 & \omega \gg \frac{1}{\tau} \ (\text{e.g.}, \, \omega > \frac{10}{\tau}) \end{cases}$$

Phase of the frequency response:

$$\triangleleft H(j\omega) = -\tan^{-1}\omega\tau \approx \begin{cases} 0 & \omega \ll \frac{1}{\tau} \ (\text{e.g.}, \, \omega < \frac{0.1}{\tau}) \\ -\pi/2 & \omega \gg \frac{1}{\tau} \ (\text{e.g.}, \, \omega > \frac{10}{\tau}) \end{cases}$$

between $\frac{0.1}{\tau} < \omega < \frac{10}{\tau}$ we can use a linear approximation

the exact value at
$$\omega = \frac{1}{\tau}$$
 is:
 $\triangleleft H(j\omega) = -\pi/4$



Outline

- **#01 Continuous-time signals**
- #02 Continuous-time systems
- #03 Fourier series of periodic signals
- **#04 Fourier transform of aperiodic signals**
- #05 Fourier transform of periodic signals
- #06 Basic properties of the Fourier transform
- #07 Convolution property
- #08 Multiplication property
- #09 First-order systems
- #10 Second-order systems