Signals and Systems #03: Fourier series of periodic signals

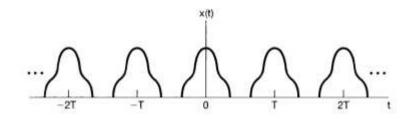
Giovanni Geraci Universitat Pompeu Fabra, Barcelona

Some of the images in this presentation are from "Signals and Systems", A. V. Oppenheim, A. S. Wilsky, and S. H. Nawab, 2nd ed. Pearson.

Outline

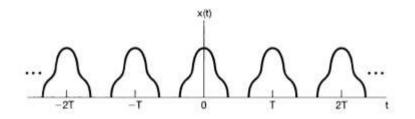
- **#01 Continuous-time signals**
- #02 Continuous-time systems
- #03 Fourier series of periodic signals
- **#04 Fourier transform of aperiodic signals**

Recall a periodic signal $x(t) = x(t+T) \ \forall t$ $T_0 = \min T$ fundamental period $\omega_0 = 2\pi/T_0$ fundamental frequency



Recall a periodic signal $x(t) = x(t+T) \ \forall t$ $T_0 = \min T$ fundamental period $\omega_0 = 2\pi/T_0$ fundamental frequency

Recall the complex exponential $x(t) = e^{j\omega_0 t}$ The set of harmonically related exponentials is: $\Phi_k(t) = e^{jk\omega_0 t} = e^{jk\frac{2\pi}{T}t}, \quad k = 0, \pm 1, \pm 2, \dots$ each with fundamental frequency multiple of ω_0 each periodic with period T

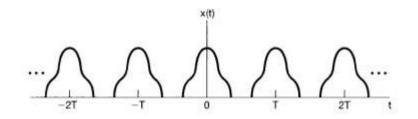


Recall a periodic signal $x(t) = x(t+T) \ \forall t$ $T_0 = \min T$ fundamental period $\omega_0 = 2\pi/T_0$ fundamental frequency

Recall the complex exponential $x(t) = e^{j\omega_0 t}$ The set of harmonically related exponentials is: $\Phi_k(t) = e^{jk\omega_0 t} = e^{jk\frac{2\pi}{T}t}, \quad k = 0, \pm 1, \pm 2, \dots$ each with fundamental frequency multiple of ω_0 each periodic with period T

Construct a linear combination like:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{jk\frac{2\pi}{T}t}$$
 Fourier series representation



$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
 we want to determine the Fourier series coefficients a_k

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
 we want to determine the Fourier series coefficients a_k

Multiply both sides by $e^{-jn\omega_0 T}$ and integrate in [0, T]

$$\int_0^T x(t)e^{-jn\omega_0 t}dt = \int_0^T \sum_{k=-\infty}^\infty a_k e^{jk\omega_0 t}e^{-jn\omega_0 t}dt$$
$$= \sum_{k=-\infty}^\infty a_k \int_0^T e^{j(k-n)\omega_0 t}dt \stackrel{(a)}{=} T \cdot a_n \Rightarrow a_n = \frac{1}{T} \int_0^T x(t)e^{-jn\omega_0 t}dt$$

where (a) follows from $\int_0^1 e^{j(k-n)\omega_0 t} dt = \begin{cases} T & k=n\\ 0 & k \neq n \end{cases}$ (integral over one period)

Therefore we have

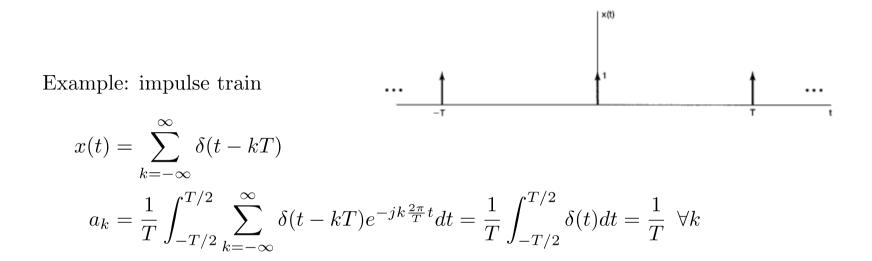
$$\begin{aligned} x(t) &= \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{jk\frac{2\pi}{T}t} \\ a_k &= \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk\frac{2\pi}{T}t} dt \quad \text{(the integral is on any period } T\text{)} \end{aligned}$$

 a_k are the Fourier series or *spectral* coefficients the coefficients a_k exist and the series converges for a large class of signals

In particular

$$a_0 = \frac{1}{T} \int_T x(t) dt$$
 is the average of $x(t)$

8



All the Fourier series coefficients are identical

Example: sine wave

 $x(t) = \sin \omega_0 t \quad \text{we can use the formula or simply note that}$ $x(t) = \frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{2j} = \frac{1}{2j}e^{j\omega_0 t} - \frac{1}{2j}e^{-j\omega_0 t}$

Thus $a_1 = \frac{1}{2j}$, $a_{-1} = -\frac{1}{2j}$, and $a_k = 0$ otherwise

Example: periodic square wave

$$\begin{aligned} x(t) &= \begin{cases} 1 & |t| < T_{1} \\ 0 & T_{1} < |t| < T/2 \\ a_{0} &= \frac{1}{T} \int_{-T_{1}}^{T_{1}} dt = \frac{2T_{1}}{T} \\ a_{k} &= \frac{1}{T} \int_{-T_{1}}^{T_{1}} e^{-jk\omega_{0}t} dt = \frac{e^{-jk\omega_{0}t}}{-jk\omega_{0}T} \Big|_{-T_{1}}^{T_{1}} = \frac{e^{jk\omega_{0}T_{1}} - e^{-jk\omega_{0}T_{1}}}{jk\omega_{0}T} = \frac{2}{k\omega_{0}T} \sin(k\omega_{0}T_{1}) \\ &= \frac{\sin(k\omega_{0}T_{1})}{k\pi} \quad \text{for } k \neq 0 \\ \underbrace{\cdots \right]_{-2T} \quad \underbrace{\cdots }_{-T} \quad \underbrace{\cdots }_{-\frac{T}{2}} \quad \underbrace{\cdots }_{-T, -\frac{T}{2}} \quad$$

11

Example: periodic square wave

$$\begin{aligned} x(t) &= \begin{cases} 1 & |t| < T_1 \\ 0 & T_1 < |t| < T/2 \end{cases} \\ a_0 &= \frac{1}{T} \int_{-T_1}^{T_1} dt = \frac{2T_1}{T} \\ a_k &= \frac{1}{T} \int_{-T_1}^{T_1} e^{-jk\omega_0 t} dt = \frac{e^{-jk\omega_0 t}}{-jk\omega_0 T} \Big|_{-T_1}^{T_1} = \frac{e^{jk\omega_0 T_1} - e^{-jk\omega_0 T_1}}{jk\omega_0 T} = \frac{2}{k\omega_0 T} \sin(k\omega_0 T_1) \\ &= \frac{\sin(k\omega_0 T_1)}{k\pi} \quad \text{for } k \neq 0 \end{cases}$$

Outline

- **#01 Continuous-time signals**
- #02 Continuous-time systems
- #03 Fourier series of periodic signals
- **#04 Fourier transform of aperiodic signals**