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Continuous-time systems
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Basic system properties



Linearity, i.e., the property of superposition
Let y1(t) and y2(t) be the responses to x1(t) and x2(t), respectively
A system is linear if:

1. the response to x1(t) + x2(t) is y1(t) + ya(t)

2. the response to axi(t) is ayi(t), Va € C

Combining those we have:
azry(t) + bxa(t) — ayr(t) + by2(t), Va,be C

Also note that a zero input produces a zero output.



Time invariance, i.e., the behavior of the system is fixed over time

A time shift in the input results in an identical time shift in the output

z(t) = y(t) = x(t —to) — y(t — to)

We denote LTI a system that is both:
1. Linear

2. Time invariant

Our focus will mostly be on the analysis of LTI systems, as many real systems
possess these properties.



LTI systems
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Let us represent a signal in terms of impulses through an approximation

staircase approximation:

sum of scaled and shifted versions of da () j E E
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Let us represent a signal in terms of impulses through an approximation

P 0 otherwise

i(t) = i r(kA)oa(t — kA) A | where Ja(t) = {% 0<t<A

and V¢ only one term in the sum is nonzero X(1)

staircase approximation: |
sum of scaled and shifted versions of da () j | E
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Z(t) is a sum of scaled and shifted versions of Ja ()

y(t)—the response of a linear system to Z(¢)—will be the superposition of the
responses to scaled and shifted versions of da ()




Z(t) is a sum of scaled and shifted versions of da ()

y(t)—the response of a linear system to Z(¢)—will be the superposition of the
responses to scaled and shifted versions of da ()

Let hya(t) be the response to da(t — kA), then

0o x(1)

g(t) = > w(kA) hpa(t) A

k=—oc0
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As A — 0, (t) — =(t) and its response y(t) — y(t)

y(t) = lim g(t) = lim x(kA) hpa(t) A

k=—oc0

— / z(T)h(t —7)dr = z(t) * h(t) convolution integral
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As A — 0, 2(t) — =(t) and its response §(t) — y(t)

y(t) = lim g(t) = lim r(kA) hpa(t) A

k=—oc0

— / x(T)h(t —7)dT = z(t) * h(t) convolution integral

where h(t — 7) is the response to 6(t — 1)

h(t) is the impulse response, i.e., the response to §(t)
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The LTT system is completely characterized by h(t)

Example: h(t) = d(t —tg) (time shift)

oo

x(t)xh(t) =x(t) * 0(t — tg) = / x(7)6(t — 7 — to)dT = x(t — to)

— o0

Example: h(t) = u(t —tg) (integrator)

(1) # h(t) = 2(t) * ult — to) = /OO 2(F)ult — 7 — to)dr = /  (n)dr

— 0o — 0o



Properties of LTI systems
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Commutative
0@}

x(t) * h(t) = h(t) x z(t) = / h(T)x(t — 1) =dr

— OO
e A system w/ input x(¢) and impulse response h(t)

produces the same output as

e A system w/ input hA(t) and impulse response x(t)
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x(t)

Distributive

x(t) * [h1(t) + hao(t)] = x(t) x he(t) + z(t) * ha(t)

—>1 hy(1)

y1(t)

=

—>( hy(t)

yalt)

y(t)

X( 1) m—

hy(t) + hy(t)

—> ¥(t)
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Associative

x(t) * [h1(t) * ha(t)] = [x(t) x hy1(t)] * ha(t)
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Memory

A system is memoriless if its output at any time depends only
on the value of the input at the same time

For LTT systems:
h(t)=0 Vt+#0

y(t) = ka(t) and h(t) = ko(t)
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Invertibility

An inverse system exists that, when connected in series with the original system,
produces an output equal to the input of the first system:

system h(t), inverse hq(t), h(t)*hqi(t) =4(t)

Example: time shift h(t) = &(¢ — o)
y(t) = z(t) % 6(t — to) = z(t — to)
to invert, use hq(t) = 8(t + to)
B(t) * ha(t) = 8(t — to) * 5(t + to) = 6(¢)

X(t) | Di(t)

y(t)

Ny(t)  frm—— W(t) = x(t)

X () |

Identity system
B(t)

]
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Causality
The output depends only on the present and past values of the input

For LTI systems:

h(t)=0 Vt<O0

Example:

time shift h(t) = d(t —tg) is causal if ¢5 >0
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Stability

Every bounded input produces a bounded output, i.e.,

If |z(t)] < B Vt, then

|_V w(t — 7)dr

_/_ h(r )|\x(t—7)\dT<B/_Oo Ih(7)|dr < oo

For LTI systems, stability is equivalent to the condition:

/ |h(t)|dt < oo (impulse response absolutely integrable)

S S S S
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