Signals and Systems 2

Giovanni Geraci - Universitat Pompeu Fabra, Barcelona

Tutorial \#5: Laplace transform

1. Consider a system with transfer function $H(s)=\frac{1}{s^{2}+3 s+2}$. It is possible to build such system as a cascading of two first-order filters $H_{1}(s)$ and $H_{2}(s)$, or as the parallel of two first-order filters $H_{3}(s)$ and $H_{4}(s)$. Determine the transfer functions of the four filters.
2. Determine the Laplace transform of $x(t)=e^{-a|t|}$, by considering the signal as a sum of two symmetric subsignals $x_{1}(t)=e^{-a t} u(t)$ and $x_{2}(t)=e^{a t} u(-t)$. Plot a zero/pole diagram and the region of convergence of $X_{1}(s), X_{2}(s)$ and $X(s)$.
3. Determine the Laplace transform of the following signals. Plot the corresponding zero-pole diagrams, including the regions of convergence.
(a) $x(t)=3 e^{-2 t} u(t)-2 e^{-t} u(t)$
(b) $x(t)=e^{t} \sin (2 t) u(-t)$
4. Consider the transfer function $H(s)=\frac{1}{(s-1)(s+3)}$. Sketch all the possible regions of convergence. For each case, reason whether:
(a) The impulse response is right-sided, left-sided or bilateral.
(b) The system is causal.
(c) The system is stable.
5. Determine the magnitude of the Fourier transform of $H(s)=\frac{s^{2}-s+1}{s^{2}+s+1}, \operatorname{Re}\{s\}>-\frac{1}{2}$.
6. Consider a continuous, causal and stable LTI system, whose input $x(t)$ and output $y(t)$ are related by the differential equation: $\frac{\mathrm{d} y(t)}{\mathrm{d} t}+5 y(t)=2 x(t)$. Determine its step response $s(t)$.
7. Consider an RLC circuit in which the relation between input and output is given by the differential equation: $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+\frac{R}{L} \frac{\mathrm{~d} y}{\mathrm{~d} t}+\frac{1}{L C} y(t)=\frac{1}{L C} x(t)$. Determine the relation between R, L and C , so that the step response of the system does not present any oscillation.
8. For each of the following second-order differential equations describing causal and stable LTI systems, determine the transfer function $H(s)$ and whether the impulse response is underdamped, critically damped or overdamped.
(a) $\frac{\mathrm{d}^{2} y(t)}{\mathrm{d} t^{2}}+4 \frac{\mathrm{~d} y(t)}{\mathrm{d} t}+4 y(t)=x(t)$
(b) $5 \frac{\mathrm{~d}^{2} y(t)}{\mathrm{d} t^{2}}+4 \frac{\mathrm{~d} y(t)}{\mathrm{d} t}+5 y(t)=7 x(t)$
(c) $\frac{\mathrm{d}^{2} y(t)}{\mathrm{d} t^{2}}+20 \frac{\mathrm{~d} y(t)}{\mathrm{d} t}+y(t)=x(t)$
(d) $5 \frac{\mathrm{~d}^{2} y(t)}{\mathrm{d} t^{2}}+4 \frac{\mathrm{~d} y(t)}{\mathrm{d} t}+5 y(t)=3 \frac{\mathrm{~d} x(t)}{\mathrm{d} t}+7 x(t)$
9. The signal $y(t)=e^{-2 t} u(t)$ is the output of a causal all-pass system for which the system function is $H(s)=\frac{s-1}{s+1}$.
(a) Find and sketch two possible inputs $x(t)$ that could produce $y(t)$.
(b) What is the input $x(t)$ if it is known that $\int_{-\infty}^{\infty}|x(t)| d t<\infty$?
