Signals and Systems 2

Giovanni Geraci — Universitat Pompeu Fabra, Barcelona

Tutorial #4: Sampling/reconstruction and modulation/demodulation

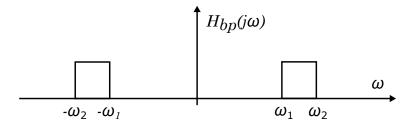
- 1. Consider two signals $x_1(t)$ and $x_2(t)$, bandlimited so that $X_1(j\omega) = 0, |\omega| \ge \omega_1$ and $X_2(j\omega) = 0, |\omega| \ge \omega_2$. Both signals are multiplied, so that $w(t) = x_1(t) \cdot x_2(t)$, and then sampled by a periodic impulse train $p(t) = \sum_{n=-\infty}^{+\infty} \delta(t-n \cdot T_s)$. Determine the maximum sampling period T_s so that w(t) can be perfectly reconstructed by an ideal LPF.
- 2. Determine the Nyquist rate of the signals below:
 - (a) $x(t) = 1 + \cos(2000\pi t) + \sin(4000\pi t)$ (b) $x(t) = \frac{\sin(4000\pi t)}{\pi t}$ (c) $x(t) = (\frac{\sin(4000\pi t)}{\pi t})^2$
- 3. Consider a signal x(t) such that its Nyquist rate is ω_0 . Determine the Nyquist rate of the signals below:
 - (a) x(t) + x(t-1)(b) $x^{2}(t)$ (c) $x(t) \cdot \cos(\omega_{0}t)$
- 4. Consider a signal x(t) such that $X(j\omega) = 0, |\omega| \ge \omega_b$. The signal is modulated by multiplication with a carrier $p(t) = \cos(\omega_p t)$, resulting in $x_m(t)$. If we sample $x_m(t)$ with an impulse train of period T_s , determine the maximal value of ω_p so that we can perfectly reconstruct $x_m(t)$.

- 5. Determine whether the following statements are true or false:
 - (a) The signal $x(t) = u(t + T_0) u(t T_0)$ can be sampled correctly (without aliasing) with an impulse train if the sampling period is $T_s < 2T_0$.
 - (b) The signal with Fourier transform $X(j\omega) = u(\omega + \omega_0) u(\omega \omega_0)$ can be sampled correctly (without aliasing) with an impulse train if the sampling period is $T_s < \frac{\pi}{\omega_0}$.
 - (c) The signal with Fourier transform $X(j\omega) = u(\omega) u(\omega \omega_0)$ can be sampled correctly (without aliasing) with an impulse train if the sampling period is $T_s < \frac{2\pi}{\omega_0}$.
- 6. Consider a signal x(t) satisfying $X(j\omega) = \begin{cases} \neq 0, & \omega_1 \le |\omega| \le \omega_2 \\ 0, & \text{otherwise} \end{cases}$, where $\omega_1 > \omega_2 \omega_1$. Such signals, named *passband signals*, can be perfectly reconstructed after sampling with an impulse train with sampling frequency ω_s below the Nyquist rate, by using a recontent of A, $\omega_a \le |\omega| \le \omega_b$

struction filter
$$H(j\omega) = \begin{cases} A, & \omega_a \ge |\omega| \ge 0\\ 0, & \text{otherwise} \end{cases}$$

Determine ω_a, ω_b , and the range of ω_s so that perfect reconstruction is possible.

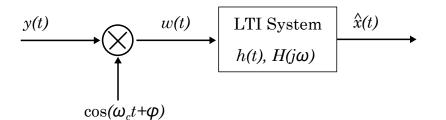
7. Consider the ideal bandpass filter (with unitary amplitude) shown below:



Show that its impulse response, $h_{bp}(t)$, can be represented as any of the following three ways:

- (a) A cosine-modulated lowpass filter: $h_{bp}(t) = A \frac{\sin(\omega_{co}t)}{\pi t} \cos(\omega_0 t)$ (Note: determine A, ω_{co} , and ω_0).
- (b) The difference of two ideal lowpass filters: $h_{bp}(t) = \frac{\sin(\omega_2 t)}{\pi t} \frac{\sin(\omega_1 t)}{\pi t}$.
- (c) Convolution of the impulse responses of an ideal highpass filter and an ideal lowpass filter: $h_{bp}(t) = \left[\delta(t) \frac{\sin(\omega_1 t)}{\pi t}\right] * \frac{\sin(\omega_2 t)}{\pi t}$.

8. Consider the demodulation system below:

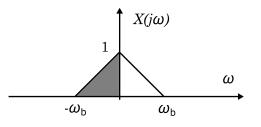


where

$$H(j\omega) = \begin{cases} 2, & |\omega| \le \omega_{co} \\ 0, & \text{otherwise} \end{cases}$$
(1)

We have shown that when $\phi = 0$, if we apply this system to the modulated signal $y(t) = x(t)\cos(\omega_c t)$, we can recover the original signal x(t) (i.e., $\hat{x}(t) = x(t)$), provided that x(t) is bandlimited and the frequencies ω_{co} and ω_c are properly chosen.

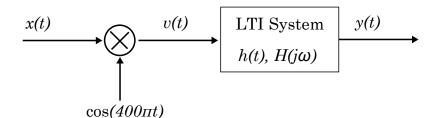
Assume that x(t) has the following bandlimited Fourier transform representation:



and that $\omega_c > \omega_b$.

- (a) For $\phi \neq 0$, use Euler's formula to show that: $w(t) = \frac{1}{2}x(t)\cos(\phi) + \frac{1}{2}x(t)\cos(2\omega_c t + \phi)$.
- (b) Use the result in part (a) to obtain $W(j\omega)$ and plot it.
- (c) Assuming $\omega_{co} = \omega_b$, plot $\hat{X}(j\omega)$.
- (d) Obtain an equation for $\hat{x}(t)$ in terms of x(t) and ϕ .

9. Consider the amplitude modulation system below:



and the bandlmited input signal x(t) of exercise 8 with $\omega_b = 100\pi$. Assume that the LTI system has the frequency response of an ideal bandpass filter:

$$H(j\omega) = \begin{cases} 1, & 300\pi < |\omega| \le 400\pi\\ 0, & \text{otherwise} \end{cases}$$
(2)

- (a) Plot $H(j\omega)$ and $V(j\omega)$.
- (b) Use the plots in part (a) to plot $Y(j\omega)$. Note that the negative frequency portion of $X(j\omega)$ is shaded. Mark the corresponding regions in your plot of $V(j\omega)$ and $Y(j\omega)$.
- (c) The output signal is called a "single-sideband" signal. Justify this terminology.
- (d) How could you recover x(t) from the single-sideband signal y(t)? Draw a block diagram of the system that recovers the original signal.
- 10. Consider the signal x(t) as in exercise 8, with $\omega_b = 80\pi$. We sample the signal x(t) at frequency ω_s , and then we reconstruct it with a filter that has the following frequency response:

$$H_r(j\omega) = \begin{cases} T, & |\omega| \le \pi/T_s \\ 0, & \text{otherwise} \end{cases}$$
(3)

- (a) Choose the value of ω_s so that it is equal to the Nyquist rate and plot $X_s(j\omega)$.
- (b) If $\omega_s = 2\pi/T_s = 100\pi$, plot $X_s(j\omega)$ and use that to plot $X_r(j\omega)$. What do you observe?