Signals and Systems 2

Giovanni Geraci — Universitat Pompeu Fabra, Barcelona

Tutorial #1: Signals and systems

1. Write two formulas for the signal below, one as a sum of step functions, another as a product of step functions.

$$x(t) = \begin{cases} 1, & a \le t \le b \\ 0, & \text{otherwise} \end{cases}$$

- 2. Simplify the following signals, using the properties of the basic signals. Be careful and distinguish between multiplication and convolution.
 - (a) $\delta(t-10) * [\delta(t+10) + 2e^{-t} u(t)]$ (b) $\cos(100\pi t) [\delta(t) + \delta(t-0.02)]$ (c) $\frac{d}{dt} [e^{-2(t-2)} u(t-2)]$ (d) $\int_{-\infty}^{t} \cos(100\pi\tau) [\delta(\tau) + \delta(\tau-0.02)] d\tau$ (e) $\delta(t-1) * \delta(t-2) * \delta(t)$ (f) $e^{-(t-4)} u(t-4) \delta(t-5)$ (g) $\int_{-\infty}^{t-5} \delta(\tau-1) d\tau$ (h) $e^{-4t} u(t) [\delta(t+1) + \delta(t-1)]$ (i) $\int_{-\infty}^{\infty} e^{-4\tau} u(\tau) \delta(t-\tau) d\tau$
- 3. Use the convolution integral to calculate the output of the system y(t) = x(t) * h(t) for each case:
 - (a) x(t) = h(t) = u(t)(b) $x(t) = h(t) = e^{-at} u(t)$ (c) $x(t) = e^{-at} u(t), h(t) = e^{-bt} u(t), a \neq b$ (d) $x(t) = \begin{cases} 1, & 0 \le t \le a \\ 0, & \text{otherwise} \end{cases}, h(t) = \begin{cases} 1, & 0 \le t \le b \\ 0, & \text{otherwise} \end{cases}, a < b$

- 4. Determine h(t) such that: $e^{-(t-4)} u(t-4) * h(t) = 2e^{-t} u(t)$
- 5. Consider a system with impulse response $h(t) = \begin{cases} e^{-0.1(t-2)}, & 2 \le t \le 12\\ 0, & \text{otherwise} \end{cases}$
 - (a) Reason whether the system is stable or not.
 - (b) Reason whether the system is causal or not.
 - (c) Determine the output y(t) for an input $x(t) = \delta(t-2)$
- 6. Consider an input signal x(t) = u(t) 2u(t-4) + u(t-6) fed into a system with impulse response $h(t) = \begin{cases} t+1, & -1 \le t < 0\\ t-1, & 0 < t \le 1\\ 0, & \text{otherwise} \end{cases}$. Without determining the output y(t):
 - (a) Determine y(0)
 - (b) Determine all the values of t for which the output is y(t) = 0
 - (c) Determine the value of t for which y(t) has the largest negative value.
 - (d) Reason whether the system is stable or not.
 - (e) Reason whether the system is causal or not.
- 7. Consider a system defined by the input/output relation: $y(t) = \int_{t-2}^{t+2} x(\tau) d\tau$
 - (a) Determine h(t)
 - (b) Reason whether the system is stable or not.
 - (c) Reason whether the system is causal or not.
- 8. Consider three subsystems: $h_1(t) = u(t+3)$, $h_2(t) = u(t-5)$, $h_3(t) = \delta(t-t_d)$, and an overall system comprised of parallel $h_1(t) h_2(t)$ in cascade with $h_3(t)$.
 - (a) Determine the impulse reponse of the overall system.
 - (b) Determine the values of t_d for which the overall system is causal.
 - (c) Reason whether each subsystem and the overall system are stable or not.