Signals and Systems 2

Giovanni Geraci - Universitat Pompeu Fabra, Barcelona

Tutorial \#1: Signals and systems

1. Write two formulas for the signal below, one as a sum of step functions, another as a product of step functions.

$$
x(t)= \begin{cases}1, & a \leq t \leq b \\ 0, & \text { otherwise }\end{cases}
$$

2. Simplify the following signals, using the properties of the basic signals. Be careful and distinguish between multiplication and convolution.
(a) $\delta(t-10) *\left[\delta(t+10)+2 e^{-t} u(t)\right]$
(b) $\cos (100 \pi t)[\delta(t)+\delta(t-0.02)]$
(c) $\frac{d}{d t}\left[e^{-2(t-2)} u(t-2)\right]$
(d) $\int_{-\infty}^{t} \cos (100 \pi \tau)[\delta(\tau)+\delta(\tau-0.02)] \mathrm{d} \tau$
(e) $\delta(t-1) * \delta(t-2) * \delta(t)$
(f) $e^{-(t-4)} u(t-4) \delta(t-5)$
(g) $\int_{-\infty}^{t-5} \delta(\tau-1) \mathrm{d} \tau$
(h) $e^{-4 t} u(t)[\delta(t+1)+\delta(t-1)]$
(i) $\int_{-\infty}^{\infty} e^{-4 \tau} u(\tau) \delta(t-\tau) \mathrm{d} \tau$
3. Use the convolution integral to calculate the output of the system $y(t)=x(t) * h(t)$ for each case:
(a) $x(t)=h(t)=u(t)$
(b) $x(t)=h(t)=e^{-a t} u(t)$
(c) $x(t)=e^{-a t} u(t), h(t)=e^{-b t} u(t), a \neq b$
(d) $x(t)=\left\{\begin{array}{ll}1, & 0 \leq t \leq a \\ 0, & \text { otherwise }\end{array}, \quad h(t)=\left\{\begin{array}{ll}1, & 0 \leq t \leq b \\ 0, & \text { otherwise }\end{array}, \quad a<b\right.\right.$
4. Determine $h(t)$ such that: $e^{-(t-4)} u(t-4) * h(t)=2 e^{-t} u(t)$
5. Consider a system with impulse response $h(t)= \begin{cases}e^{-0.1(t-2)}, & 2 \leq t \leq 12 \\ 0, & \text { otherwise }\end{cases}$
(a) Reason whether the system is stable or not.
(b) Reason whether the system is causal or not.
(c) Determine the output $y(t)$ for an input $x(t)=\delta(t-2)$
6. Consider an input signal $x(t)=u(t)-2 u(t-4)+u(t-6)$ fed into a system with impulse response $h(t)=\left\{\begin{array}{ll}t+1, & -1 \leq t<0 \\ t-1, & 0<t \leq 1 \\ 0, & \text { otherwise }\end{array}\right.$. Without determining the output $y(t)$:
(a) Determine $y(0)$
(b) Determine all the values of t for which the output is $y(t)=0$
(c) Determine the value of t for which $\mathrm{y}(\mathrm{t})$ has the largest negative value.
(d) Reason whether the system is stable or not.
(e) Reason whether the system is causal or not.
7. Consider a system defined by the input/output relation: $y(t)=\int_{t-2}^{t+2} x(\tau) \mathrm{d} \tau$
(a) Determine $h(t)$
(b) Reason whether the system is stable or not.
(c) Reason whether the system is causal or not.
8. Consider three subsystems: $h_{1}(t)=u(t+3), \quad h_{2}(t)=u(t-5), \quad h_{3}(t)=\delta\left(t-t_{d}\right)$, and an overall system comprised of parallel $h_{1}(t)-h_{2}(t)$ in cascade with $h_{3}(t)$.
(a) Determine the impulse reponse of the overall system.
(b) Determine the values of t_{d} for which the overall system is causal.
(c) Reason whether each subsystem and the overall system are stable or not.
