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The detection of directional couplings between dynamics based on measured spike trains is a crucial problem in
the understanding of many different systems. In particular, in neuroscience it is important to assess the connectivity
between neurons. One of the approaches that can estimate directional coupling from the analysis of point processes
is the nonlinear interdependence measure L. Although its efficacy has already been demonstrated, it still needs to
be tested under more challenging and realistic conditions prior to an application to real data. Thus, in this paper
we use the Hindmarsh-Rose model system to test the method in the presence of noise and for different spiking
regimes. We also examine the influence of different parameters and spike train distances. Our results show that the
measure L is versatile and robust to various types of noise, and thus suitable for application to experimental data.
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I. INTRODUCTION

The detection of a dependence between the dynamics from
experimental signals is very important for the understanding of
a wide variety of systems. For instance, one of the fundamental
problems in the study of brain dynamics is the reconstruction of
networks from some measured signals [1]. These signals can be
at the macroscopic level, including the electroencephalogram
(EEG) and the magnetoencephalogram (MEG) [2–4]. In this
work, we are interested in the neuronal level, testing a method
applicable to recordings of spiking activity of individual
neurons [5,6].

Many different approaches have been developed for the
detection of the driver-response relationship between two point
processes. The first methods were based on cross-correlation
[7,8]. Other methods are information-theory-based [9,10], and
they evaluate, for example, information transfer [11] or the
transfer of entropy [12]. Granger causality assesses coupling
by evaluating the ability of one spike train to forecast patterns
in the other one [13,14]. There are methods based on maximum
likelihood [15], and other methods are aimed at reconstructing
the network structure of many neurons, with the assumption
that the underlying node dynamics are known [16–18].

A different class of approaches to detect couplings is
based on the asymmetric state similarity criterion [19]. These
measures of nonlinear interdependence [19–22] quantify the
likelihood that similar states of the response are mapped
to similar states of the driver. Later the evaluation of the
coupling strength was significantly improved by means of a
rank-based statistics [23]. This measure, called L, was applied
not only in neuroscience [24–26] but also in other fields;
see, e.g., Ref. [27]. While initial applications were restricted
to time-continuous signals, L was subsequently extended to
the study of point processes and also to the combination
of point processes and flows [28]. The original method for
time-continuous signals is based on a reconstruction of the
signals in an embedding space [29], and similarity is assessed
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by the Euclidean distance in that space [23]. Instead, in the
application to point processes, the similarity between different
windows of the signals is quantified by a spike train distance
[30]. The method is modular, meaning that different methods
for estimating spike train similarity can be used in order to
focus on specific properties of the signals, and also different
nonlinear interdependence statistics can be applied.

In the paper in which the measure L was first adapted to
point processes [28], the capability of the method to detect uni-
directional coupling was demonstrated on two model systems,
namely the Lorenz dynamics and Hindmarsh-Rose model
neurons. However, only one spike train distance was used, and
the analysis was performed under rather simplified conditions.
There was no noise, and only one possible regime of the
Hindmarsh-Rose dynamics was covered (irregular spiking in
the driver and bursting in the response). In this paper, we go a
decisive step further, and using Hindmarsh-Rose dynamics
we test the method under more challenging conditions, a
prerequisite for any application to real data. First, we analyze
the robustness of the method against different types of noise
that reflect real conditions. Subsequently, we investigate its
behavior in more problematic Hindmarsh-Rose regimes, not
only irregular spiking and bursting but also regimes close to
periodicity and exhibiting generalized synchronization. We
still use a model system because it allows us both to simulate
realistic experimental conditions and to validate the results.
Throughout the analysis, we test different spike train distances
in order to understand their advantages and disadvantages.

In this paper, we first describe the asymmetric state
similarity criterion and the formulation of the measure L based
on the rank statistic [23], then we review the definitions of
the spike trains distances and the Hindmarsh-Rose neuronal
dynamics. We investigate the performance of the measure
L in the presence of noise, obtained using different spike
train distances. Subsequently, we apply our method to other
regimes, e.g., close to periodicity and in generalized syn-
chronization regimes. Finally, we describe how to optimally
choose the parameters, we interpret the results obtained with
different distances, and we give an outlook on possible
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extensions of the method suitable for work in more complex
settings.

II. METHODS

A. Asymmetric state similarity criterion

The method that we use to detect the presence of a coupling
is based on the asymmetric state similarity criterion [19]. We
consider two unidirectionally coupled dynamics, the driving
dynamics X and the response dynamics Y . The criterion is
based on the fact that as a consequence of the unidirectional
coupling, similar states of Y are likely to be mapped to
similar states of X. At first glance this appears counterintuitive,
because it may seem that similar states in the driver should be
mapped to similar states in the response. To understand the
general idea better, we describe a simple example, namely
the interdependence between the weather (driving dynamics)
and the behavior of a girl called Alice (response dynamics).
We consider just two states for both driver and response,
i.e., the weather is either rainy or sunny, and Alice either
carries an umbrella or not. Whenever Alice goes out with an
umbrella (similar states of Alice’s dynamics), the weather is
rainy (similar states of weather dynamics). But if it is rainy,
Alice does not always behave in the same way. For example,
she might stay at home, with no need to use an umbrella. Hence
when the coupling is unidirectional, there is an asymmetry in
the probability that similarity in one signal implies similarity
in the other. This asymmetry is exactly what the asymmetric
state similarity criterion uses to detect the direction of the
coupling. The degree of the mapping between similar states
was used to quantify the strength of the interaction between the
driver and the response [23,31]. Importantly, if the dynamics
are close to synchronization, there can be a strong bidirectional
mapping between the similarity in the two signals, without a
pronounced asymmetry in the two directions. The strong state
similarity would be evidence of high coupling, and the lack of
asymmetry would weaken directionality detection [32].

We now describe how L was used in Ref. [28] to apply this
principle to spike train signals. First of all, it is necessary to
have two signals x(t) and y(t) measured simultaneously from
X and Y , respectively. We assume that the two systems are
both stationary. To make use of the asymmetric state similarity
criterion, we need to define the states of the dynamics. In the
case of time-continuous signals, the states are obtained by
the state space reconstruction of the signals. They contain
information about the present and recent past amplitude of
the signal [22]. For spike trains, the analogous situation is
to consider short windows. To obtain pairs of isochronous
windows, we cut the signals in short pieces.

After defining the states of the dynamics, we need to
assess the similarity between different states of the same
signal, across different times. For this purpose, we calculate
a matrix with the value dX

ij (dY
ij ) of a chosen spike train

distance (see Sec. II C) between all pairs of windows i and j

(i,j = 1, . . . ,Nw, where Nw is the total number of windows)
of the signals X(Y ).

B. Nonlinear interdependence measure

Here we describe the algorithm to calculate the nonlin-
ear interdependence measure L proposed by Chicharro and

Andrzejak [23]. This measure evaluates the asymmetric state
similarity criterion by quantifying the degree to which the
similarity between states of one dynamics is mapped to the
similarity between states of the other dynamics. It was already
widely applied to time-continuous real-world signals, for
example in the study of EEG [24–26], and also in contexts
different from neuroscience [27].

In the previous section, we defined dX
ij . Here we are

interested in comparing the similarity between windows
relative to the similarity between other pairs of windows.
Therefore, we consider ranks of distances instead of exact
values of distances. For every window i of the Y dynamics,
i = 1, . . . ,Nw, we define the quantity rY

il , which is the index
of the window with rank l when sorted by the distance
dY

ij , j = 1, . . . ,Nw. We also define gX
i,m as the rank of the

distance dX
im in the sorted ascending list of the distances dX

ij ,
j = 1, . . . ,Nw. This allows us to calculate the Y -conditioned
mean rank:

Gk
i (X|Y ) = 1

k

k∑
l=1

gX
i,rY

i,l

. (1)

This quantity reflects the degree to which the first k closest
neighbors of the window i in Y are mapped to close neighbors
of the same window in X. To estimate the interdependence
between the dynamics, we take an average across all windows
of a normalized value for Gk

i (X|Y ). In this way, we obtain
L(X|Y ) [23]:

L(X|Y ) = 1

Nw

Nw∑
i=1

G(X) − Gk
i (X|Y )

G(X) − Gk(X)
, (2)

where G(X) = Nw

2 is the mean rank expected for independent
dynamics, while Gk(X) = k+1

2 is the minimal mean rank. The
measure L(X|Y ) has the expected value 0 for independent
dynamics. When the coupling strength from X to Y increases,
L(X|Y ) increases as well. The maximum possible value is
L(X|Y ) = 1, reached when X and Y are equal or so similar
that their matrices of ranks of distances coincide. The measure
L is designed such that L(X|Y ) detects the coupling from X

to Y . To quantify the level of coupling in the other direction,
we use L(Y |X), obtained by switching the role of X and Y

in Eq. (2) and in all previous definitions. We use �L(X,Y ) =
L(X|Y ) − L(Y |X) to assess the direction of the coupling [23].

The modularity of the approach based on the asymmetric
state similarity criterion allows one to choose a statistics
different from L to evaluate the criterion. In the context of time
continuous signals, other nonlinear interdependence measures
were proposed [20,21,33]. Here we consider only L because it
was shown [23] to be more sensitive and specific for directional
couplings than previous approaches.

C. Assessing similarities between states: Spike train distances

Since it is not defined a priori which should be the proper
“distance” between different windows of a spike train, we
study different possible choices. In the past 20 years, many
different measures of spike train similarity were developed
[30]. Among the best known are the Victor-Purpura distance
[34] and the van Rossum distance [35]. Both depend on a
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FIG. 1. Example of distance matrices dX
ij (first row) and dY

ij

(second row) calculated with three different spike trains distances:
(a) van Rossum distance, (b) SPIKE distance, and (c) ISI distance. The
signals are simulated from unidirectionally coupled Hindmarsh-Rose
dynamics X and Y (driver and response, as indicated by the large
arrow). The matrices are quite different even for the same signal.
From the asymmetric state similarity criterion, we expect that the
dark color in the dY

ij matrices is likely to correspond to the dark
color in the dX

ij matrices, as indicated by the direction of the small
arrows. Elements close to the diagonal are not taken into account (see
Sec. II C).

parameter that defines the time scale to which the method
is mainly sensitive. This sensitivity determines the relative
importance of rate versus exact timing of the spikes in
computing the dissimilarities. Kreuz et al. developed the
ISI distance [36] and the SPIKE distance [37], two time-
scale-independent, time-resolved distances that can be used
to evaluate dissimilarity without the need to set a time scale.

These distances were applied not only in neuroscience
[38–40], but also in other fields [41]. Recently, new gener-
alizations of these distances were developed [42], called the
A-ISI distance and the A-SPIKE distance. These generalized
definitions add a notion of the relative importance of local
differences compared to the global time scales. In particular,
they start to gradually ignore differences between spike trains
for interspike intervals (ISIs) that are smaller than a minimum
relevant time scale.

In our work, we apply the van Rossum distance and the
generalizations of ISI and SPIKE distances (see Appendix). In
preanalysis, the Victor-Purpura distance yielded very similar
results to the van Rossum distance, and thus it is omitted here.
When the parameter of the van Rossum distance increases, the
distance focuses more on spike rate than spike timing accuracy.
On the one hand the parameter offers more flexibility, but on
the other hand it is not obvious how to adjust it. Regarding
the two parameter-free distances, we exploit the fact that the
A-ISI distance focuses on differences of the rate, whereas
the A-SPIKE distance focuses more on the exact timing, in
order to gain complementary information about the system. In
Fig. 1 we present an exemplary application of the three spike
train distances to both the driver X and the responder Y of a
unidirectionally coupled system. This example illustrates that
the three distances give complementary information.

Segments of the signal of a fixed length q are used as states
of the dynamics for the calculation of the distance matrices.
To obtain a finer sampling, we use overlapping windows, i.e.,

from one window to the next there is a step size s with s �
q, which leads to the following segmentation of the signal:
[(i − 1)s,(i − 1)s + q] with i = 1, . . . ,Nw. The total length
of the point process is Q, and the total number of windows Nw

is obtained by rounding down Q−q

s
+ 1. In every window, the

time τ of a spike is relative to the beginning of the segment:
τ = t − (i − 1)s, where t is the time of the spike relative to
the beginning of the whole signal. In the distance matrices,
for every reference window we exclude the comparison with
the W = q

s
− 1 overlapping neighboring windows, in analogy

to the Theiler correction [43]. It is important to choose the
parameters of the method properly. In general, a good choice
for q is the length of several mean interspike intervals, because
a minimum number of spikes in every window is needed for a
good evaluation of distances between windows. The parameter
s should be a good tradeoff between having more sensitive
results (shorter s) and the required computation time (which
is shorter for larger s).

D. Simulated data: Hindmarsh-Rose neurons

We use spike trains derived from coupled Hindmarsh-Rose
model neurons ([44] and references therein) to test our
method. This model is the same as that in [28], but here we
consider more complicated settings. The system of equations
is composed of a driver dynamics X,

ẋ1(t) = x2(t) + 3x1(t)2 − x1(t)3 − x3(t) + Jx,

ẋ2(t) = 1 − 5x1(t)2 − x2(t), (3)

ẋ3(t) = 0.0021{−x3(t) + 4[x1(t) + 1.6]},
and a response dynamics Y ,

ẏ1(t) = y2(t) + 3y1(t)2 − y1(t)3 − y3(t) + Jy

+ εZ(x1(t))[0.3 − y1(t)],

ẏ2(t) = 1 − 5y1(t)2 − y2(t), (4)

ẏ3(t) = 0.0021{−y3(t) + 4[y1(t) + 1.6]}.
The coupling strength is ε and the coupling function is
defined as

Ż(x1(t)) = Z∞(x1(t)) − Z(x1(t))
100[1 − Z∞(x1(t))]

(5)

with

Z∞(x1(t)) =
{

tanh[x1(t) + 0.5] if x1(t) > −0.5,

0 otherwise.
(6)

The two dynamics are identical apart from the input currents
Jx and Jy , which moreover determine the dynamical regime
of the signals. The type of coupling [Eqs. (5) and (6)] is a
model for chemical synapses, whereas electrical synapses are
described by a diffusive coupling [45]. The first components
of Eqs. (3) and (4) represent the membrane potential of
the neurons. In experiments, often one cannot measure the
membrane potential but only the times of spikes. To simulate
such experimental conditions, here we extract from these two
time-continuous signals the spike times that compose the point
processes X and Y . The time of the spike is the instant in
which the signal x1(t) crosses a threshold from below. As the
threshold value, we chose � = 0.6. We call tXn the time of the
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FIG. 2. Example signals for setting A: coupled Hindmarsh-Rose dynamics [x1(t), z(t), y1(t)] with coupling strength ε = 0.24, Jx = 3.30,
and Jy = 3.28. Horizontal lines represent the threshold for spike detection. The x1(t) signal is in an irregular spiking, the y1(t) signal in an
irregular bursting regime.

nth spike, with n = 1, . . . ,NX
s , and NX

s being the total number
of spikes in X. The times tYn are defined analogously.

The Hindmarsh-Rose equations were integrated with a
fourth-order Runge-Kutta algorithm. The step size was 0.1
time units and the sampling step �t = 0.2 time units. We
define T = 1000�t as the unit time interval. We started the
dynamics with a random initial condition, and the first 500T

was discarded to exclude initial transients of the dynamics.
The length of the spike trains was Q = 400T , and for the
segmentation of the signals we used a window length of q = T

with an overlap of s = 0.2T . To avoid any type of in-sample
optimization, this procedure was exactly the same as in the
previous work [28].

Depending on the parameters Jx and Jy , there can be
different dynamical regimes of the Hindmarsh-Rose model,
namely spiking or bursting regimes, and both can be periodic
or aperiodic. In general, the resulting signals have different
numbers of spikes, and furthermore the number of spikes in
the response changes with increasing coupling. In our work, we
analyze two settings. In setting A, we use the same regime as in
[28] to test the robustness against noise for the different spike
train distances. In setting B we consider different input currents
and coupling values in order to validate the method for a range
of different problematic dynamical regimes, such as dynamics
close to periodicity and under generalized synchronization.

An example of the signals from setting A is shown in Fig. 2,
with irregular spikes in the driving dynamics and irregular
bursts in the response. The input currents are the same as
in [28], Jx = 3.30 and Jy = 3.28. We computed L for the
uncoupled case plus nε = 29 coupling values ε equidistantly
distributed on a logarithmic scale from 0.0006 to 0.24. For each
ε, we run nr = 20 independent realizations of the dynamics.
We say that the coupling and its direction for a specific value
of ε are detected if the mean of the difference on the nr re-
alizations 〈�L(X,Y )〉 = 〈L(X|Y ) − L(Y |X)〉 is significantly
larger than zero. To assess the significance, we performed
a Wilcoxon signed rank test on 〈�L(X,Y )〉. The level of
significance was α = 0.05/nε , where we used the Bonferroni

correction [46] to take into account the multiple testing of the
nε values of the coupling. We use this setting to study the ro-
bustness of the measure L to noise. We define the performance
� to be the percentage of the nε coupling values for which
we can significantly detect the coupling and its direction. To
quantify the variability of �, we ran three times a total of nr

realizations, and we calculated the mean and the variance of
the performances. When we compare the performance for the
robustness to noise with different spike train distances, for the
ISI distance and the SPIKE distance there is no need to choose
a parameter. Instead, in the case of the van Rossum distance,
we compute the performance � for a range of parameters and
we select the one that leads to the best performance.

In setting B we consider different input currents (Jx = 3.28,
Jy = 3.60). We consider the uncoupled case plus nε = 89
coupling values ε equidistantly distributed on a logarithmic
scale from 6 × 10−6 to 1.8. Here the driving dynamics is in an
irregular bursting regime, while the response shows a variety
of different behaviors. It is close to periodicity for very small
coupling values [Fig. 3(a)], while it undergoes a bifurcation
as the coupling increases, until it reaches an irregular bursting
regime [Fig. 3(b)]. Finally, for the highest coupling values
there are degenerated bursts [Fig. 3(c)]: the spikes in the bursts
show a decrease in the amplitude from the beginning to the end
of the burst, and the amplitudes of the last ones are so small
that the spikes do not reach the threshold for detection any
longer. The very irregular shape of the spikes makes them not
so well-defined as in the other regimes, and even adjusting the
threshold would not be effective. Therefore, as the coupling
increases, the detected spikes preserve less and less of the
information contained in the time-continuous signals.

There are two intervals of coupling values for which the
driving and the response are in generalized synchronization
[47]. The concept of generalized synchronization comes from
the study of time-continuous signals. Two dynamics X and
Y are in generalized synchronization when the trajectories
y(t) of Y can be derived by a functional relationship from
the corresponding trajectories x(t) of X [48]. In this way,
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FIG. 3. Example signals for setting B: coupled Hindmarsh-Rose dynamics [x1(t),y1(t)] with Jx = 3.28 and Jy = 3.6. In all the panels,
the x1(t) signal is in an irregular bursting regime. The y1(t) signal is very close to periodicity in panel (a), where the coupling strength is
ε = 0.0101, in an irregular bursting regime in panel (b), ε = 0.1092, and finally it presents degeneration of the bursts in panel (c), ε = 1.0276.
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y(t) is not dependent anymore on its initial conditions.
To check for which coupling values the dataset is in the
regime of generalized synchronization, we use the auxiliary
system approach [49], exploiting the fact that the spike trains
that we study are extracted from time-continuous signals.
For a realization of the driving dynamics X [Eq. (3)], we
generate two realizations of the response dynamics, Y and Y ′,
which obey the same Eqs. (4) but start from different initial
conditions. We wait a long transient (50 000T ) and we compute
the average of the difference between the last 400T of y1(t) and
y ′

1(t). If this distance is zero, that means that the Y dynamics
is independent of its initial condition, therefore generalized
synchronization is established.

E. Noise

In this section, we introduce different noise types that we
apply to the simulated signals of setting A. We select them in
order to cover some of the principal disturbances that can affect
data in the real world. The principal noise sources are due to the
intrinsic stochasticity of the neurons [50,51], the uncertainty
due to spike sorting, and other measurement noises [5].

At first we consider a noise type that we call unreliability
noise. It represents the possibility of having false-positive and
false-negative detections of spikes. We simulated this noise
by randomly removing and inserting spikes. In the original
point process tXn , with 1 � n � NX

s , we remove 0 � M � NX
s

spikes. At the same time, we randomly insert M new spikes.
The positions of the new spikes are uniformly distributed in the
interval between 0 and the total recording time Q. This way,
the new spike train t̃Xn has the same number NX

s of spikes,
while the interspike interval distribution is not maintained.
We define the noise level γu as the fraction of spikes that we
remove and insert M = γuN

X
s . Analogous definitions hold for

the tYn spike train.
The second type of noise is a shift in the spike times,

the jitter noise. In this case, we shift every spike time of both
tXn and tYn by a different delay δt extracted from a Gaussian dis-
tribution with zero mean and standard deviation σ . We choose
σ as a fraction γj of the mean interspike interval of the time
series μISI: σ = γjμISI. The noise level is quantified by γj .

The third type of noise reflects the fact that spike propa-
gation depends on unreliable connections between neurons;
for example, some spikes of two connected neurons may not
be transmitted. We represent this effect by modifying a term
in the equations, hence it is a dynamical noise that we call
transmission noise. In the Hindmarsh-Rose Eqs. (3)–(6), the
coupling between the neurons is mediated by the coupling
function Z(x1(t)) [Eq. (5)], which is influenced by x1(t)
only when x1(t) is higher than the threshold of −0.5, i.e.,
in correspondence to a spike in x1. We cancel the influence
from single spikes of X on Y , with some probability γt , which
quantifies the noise level. Thus, for the whole time of the
increase of the membrane potential due to a specific spike in
x1, we let the function Z evolve as if the threshold was not
crossed. It is important to notice that by ignoring spikes, we
reduce the “effective” coupling strength.

III. RESULTS

In this section, we show the influence of different distances
and parameters on the efficiency of L. First, we study the
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FIG. 4. Values of L for increasing coupling strength (k = 1).
From top to bottom, LISI, LSPIKE, and LvR (with the optimal parameter
for significant coupling detection). For every coupling value, there are
20 independent realizations. Results for uncoupled dynamics (ε = 0)
are displayed on the ordinates. The crosses on the bottom of the plots
mark the coupling values for which the detection of the coupling is
significant. The measure LISI performs best, since it is able to detect
even low couplings.

dependence on the coupling strength without noise. Subse-
quently, we investigate the robustness of L to various kinds
of noise. Finally, we test the versatility of this approach in
different dynamical regimes.

We start our analysis with the noise-free case of setting A.
In Fig. 4 we investigate the dependence of L on the coupling
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FIG. 5. Comparison of the performance � of the measure L for different spike train distances in dependence on increasing levels of (a,d)
unreliability, (b,e) jitter, and (c,f) transmission noise, in unit of the corresponding noise levels γu, γj and γt . In the first row (a–c) we set
k = 1, in the second row (b–d) k = 10. The A-ISI distance performs best. The robustness to noise is improved by a higher number of nearest
neighbors k.

strength for the A-ISI distance (LISI), the A-SPIKE distance
(LSPIKE), and the van Rossum distance (LvR). The measure LISI

can distinguish the direction even for small ε and it also gives
higher values of L. The measure LvR instead, even with the
parameter that optimizes the performance �, performs worse
and has lower values than LISI. The LSPIKE performs worst.

In Fig. 5 we continue to analyze setting A, but now we
investigate the effect of the different spike train distances on
the robustness against noise of L. We also look at the influence
of k on the performance. In the presence of unreliability noise,
generally LISI continues to perform best, even if for high levels
of noise LSPIKE starts to perform better [Fig. 5(a)]. It is clear
that selecting a high number of neighbors is very important for
the robustness of the method, since the overall performance
increases [Fig. 5(b)]. At the same time, for k = 10, LISI

performs best across the entire range of noise levels. For
larger k the value of L decreases in general, but also the
variance of L across different realizations decreases because
averaging over more neighbors gives more stable results. As a
consequence, the direction detectability improves, in particular
in the presence of noise. The measure LvR, even though
its parameter is optimized separately for every noise level,
performs worst. Regardless of the spike train distance, up to
35% of the spikes have to be removed and randomly reinserted
in order to completely destroy the performance. Thus we can
conclude that the measure L is robust to unreliability noise.

For jitter noise [Figs. 5(c) and 5(d)] LvR performs very
well; in particular, it slightly outperforms LISI for high levels
of noise. Every spike has to be shifted by a value extracted

from a Gaussian distribution of standard deviation 70% of the
mean interspike interval in order to lead to zero performance.
Accordingly, we can state that the method is robust also to
jitter noise.

The measure LISI performs best also with the addition
of transmission noise [Figs. 5(e) and 5(f)]. Despite the
optimization, LvR performs worse than LISI. The performance
is zero only if 90% of the spikes of the driven dynamics are
ignored by the coupling, hence the measure L is robust also to
transmission noise. We notice that in this case the performance
stays high for high levels of noise and then it drops more
suddenly at the end. The dependence on noise level is therefore
different from that for the other noise types.

One interesting aspect of this analysis concerns the strong
dependence of the van Rossum distance on the time-scale
parameter (results not shown). Putting the focus on rate works
better in the presence of high levels of jitter noise, whereas
for high levels of unreliability noise it is preferable to focus
on spike accuracy. This is intuitive and in agreement with
the comparison of LSPIKE and LISI in the presence of these
two types of noise. However, this dependence of the optimal
parameter on the type and level of noise renders the use of the
van Rossum distance problematic for applications to realistic
situations when all kinds of noise are present at the same time
and the ground truth is unknown.

In setting B, we focus on the adaptability of the measure
L to spike trains which reflect the different regimes of
the underlying dynamical systems (Fig. 6). To avoid the
complications caused by the time-scale parameter, we do not
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FIG. 6. Values of LISI and LSPIKE in dependence on the coupling
strength ε (k = 10). Results for uncoupled dynamics (ε = 0) are
displayed on the ordinates. The crosses on the bottom of the
plots mark the ε values for which the direction of the coupling
is significantly detectable. The shaded areas correspond to the
generalized synchronization regimes. The first dashed vertical line on
the left distinguishes the regime close to periodicity [corresponding
to small coupling values, see Fig. 3(a)] from the regime with bursts in
the response [see Fig. 3(b)], and the second line marks the transition
to the regime for which there is a strong degeneration of the bursts
[see Fig. 3(c)].

consider the van Rossum distance any longer (and the same
applies to the time-scale-dependent Victor-Purpura distance).
From Fig. 6(a) we can see that LISI is highly sensitive to
small coupling values, even if in this regime the response
is close to periodicity [compare Fig. 3(a)]. At the same time,
LSPIKE cannot detect the very small coupling values [Fig. 6(b)].
When ε increases, the values of L for both spike train distances
increase, but their behavior differs. The directionality detection
of LISI deteriorates until the values of LISI are very close to
1 and they almost coincide in both directions. The results
of the auxiliary system approach in Fig. 7 confirm that the
high values of LISI correspond to coupling values close to
and inside the first interval of the generalized synchronization
regime. Surprisingly, for the corresponding coupling values,

FIG. 7. Results of the auxiliary system approach applied to setting
B of the Hindmarsh-Rose model. We plot the average of the absolute
value of the difference between the last 400T corresponding values
of y1(t) and its copy y ′

1(t), after discarding a transient of 105T . For
every coupling value there are five independent realizations, each
of them represented by an asterisk. The crosses that correspond to
values of exactly zero in at least one realization mark the regime of
generalized synchronization. Results for uncoupled dynamics (ε = 0)
are displayed on the ordinates.

LSPIKE can perfectly detect both the presence and direction of
the coupling.

The behavior of LISI resembles the behavior of L for
time-continuous signals when the coupling is approaching
a value large enough to induce generalized synchronization
[23]. This behavior is well known in the study of time-
continuous signals [52]. As a consequence, a requirement
for the applicability of directionality detection is that the
coupling does not induce synchronization [32,53]. The high
sensitivity of LISI leads more easily to high values for the
coupling without any sign of directionality when approaching
the regime of generalized synchronization. In contrast, while
being less sensitive, LSPIKE in the generalized synchronization
regime can perfectly detect the direction of the coupling.
There might be two reasons for these results. First, the rate
compared to the exact timing is more easily affected by a
small coupling. Second, the functional relation of generalized
synchronization that connects the y1(t) and x1(t) signals of
the Hindmarsh-Rose model can be very complicated, and it
is possible in principle that it is easier to detect from spike
rate instead of spike timing. A complete study of generalized
synchronization between two Hindmarsh-Rose dynamics is
beyond the scope of our study. Nevertheless, empirically
we see that generalized synchronization expresses itself in
different features.

After the first synchronization window, while both values
LISI(X|Y ) and LSPIKE(X|Y ) show a decrease, a distinction
of the coupling direction is still possible (Fig. 6). These
coupling values correspond to the change of regime in the
response, from almost regular spiking to irregular bursting
[compare Fig. 3(b)]. In this case, the values of L increase
also in the opposite direction L(Y |X). We remind the reader
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that L(Y |X) would indicate a coupling from Y to X. For
the highest coupling values, LISI decreases again in both
directions [Fig. 6(a)]. Furthermore, there is another window of
generalized synchronization. However, both LISI and LSPIKE

behave differently as compared to the first window. Here
the corresponding signals show an additional effect, the
degeneration of the bursts [see Fig. 3(c)]. The spikes contain
less information about the original time-continuous signals.
Moreover, spike density in the bursts is very high, and there
are longer interburst periods. This bursting structure leads
to smaller values of L despite the higher coupling strength,
compared to the previous regime close to periodicity.

IV. DISCUSSION

The detection of directional interdependence between un-
known dynamics from their signals is a nontrivial problem, and
in the past few decades many different approaches to address
this problem have been proposed. Before using a method to
interpret real data, it is always important to first study its
properties and to apply it to model systems. Thus in this paper
we simulate realistic experimental conditions to validate a
method for the detection of unidirectional couplings between
point processes. This approach is based on the asymmetric
state similarity criterion in the formulation of the nonlinear
interdependence measure L [23]. The capability of this method
to detect coupling was already demonstrated in the Lorenz
dynamics and in one setting of Hindmarsh-Rose dynamics
[28]. Here we examine the robustness against various kinds
of noise and the versatility of the approach in dealing with
different dynamical regimes. Additionally, we take advantage
of the modularity of the measure L and test three spike train
distances that are sensitive to different aspects of the dynamics.

Our results show that among the three distances that we
used for the measure L, the A-ISI distance exhibits the highest
sensitivity in detecting unidirectional coupling. While all three
distances prove to be very robust in the presence of noise, again
the measure LISI performs best. The measure L in general
works for different dynamical regimes, including irregular
spiking, irregular bursting, almost periodic motion, and under
generalized synchronization. Interestingly, LISI and LSPIKE

catch different features of the coupling between spike trains,
namely an interdependence based on the rate or on exact spike
timing, respectively. Therefore, it is recommendable to apply
both LISI and LSPIKE, because they provide complementary
information and might therefore be sensitive to different
coupling strengths.

In general, the values of L are not monotonically increasing
with an increase of the coupling value. As emphasized in [54],
the effect of the coupling depends not only on the coupling
strength but also on the energy of the individual dynamics. As
a consequence, the estimate of the coupling is not independent
from the structure of the data, for example in bursting or
spiking regimes.

The choice of the parameters is important to obtain
meaningful results. In particular, we have seen that a higher
number of nearest neighbors k is an advantage in the presence
of noise. Nonetheless, no fine-tuning of k is needed, and a
value of approximately 0.5% of the total number of windows
is a good choice in order to be less affected by noise. Another

important parameter is the window length. If it is too long,
it reduces the reliability of the measure L in the sense that
there will be too few windows to compare. If it is too short, the
estimation of similarity is not reliable. To obtain robust results,
we recommend a minimum of five spikes in each window.
Furthermore, the relevant information about similarity can be
contained in a complex structure, such as the bursts, which
cannot be properly captured by very short windows.

It was shown in the previous study [28] and is further
supported by our results that the measure L for the detection of
directional coupling between point processes performs well in
the study of simulated spike trains derived from nonlinear
deterministic dynamics. In the application to experimental
data, it would be interesting to first use a measure that
quantifies the determinism from the signal [55] in order to
assess the level of nonrandomness present in the data. For
example, if the spike trains are from two coupled stochastic
point processes, the measure L could have trouble with the
detection of directionality, even if the presence of a coupling
is still detectable. Another caveat is the possibility to have
a small but significant difference in the values of L in
the two directions also for bidirectionally coupled dynamics
[54]. As a consequence, in the interpretation of experimental
results, more caution is necessary to assume directionality if
L(X|Y ) ≈ L(Y |X). An open question concerns the efficiency
of the measure L under these conditions and how to quantify
the reliability of directionality detection.

Since different methods can be used to extract information
from different features of the data, it is recommended not
to restrict oneself to just one approach, such as nonlinear
interdependence measures, but instead to use complementary
techniques for directionality detection [8–15]. A comprehen-
sive comparison between the different methods regarding
their statistical requirements, their computational cost, and
their abilities to provide complementary information on the
dynamics under investigation will be the focus of future
studies.

In this paper, we have considered only pairs of unidi-
rectionally coupled dynamics. The next step is the analysis
of multivariate data, with the perspective of network recon-
struction. Making use of the modularity of the approach
based on the measure L can give complementary information
about interdependence, and this may be useful to discriminate
real from spurious or indirect connections. Moreover, while
here we have focused on neuronal signals, the measure L
seems to be a very promising tool also for applications
outside neuroscience, for example in climatology [56,57] or
earthquake prediction [58].

In closing, we would like to point out that we provide
the MATLAB source codes to calculate L and the spike train
distances used here [59].
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APPENDIX: SPIKE TRAIN DISTANCES

In this Appendix, we give a brief description of the three
measures of spike train synchrony [30] that we use in this
paper: the time-scale-dependent van Rossum distance [35] and
the time-scale-independent ISI and SPIKE distances in their
adaptive generalizations [36,37,42].

1. van Rossum spike train distance

For the van Rossum distance, each spike time tn of both
spike trains (n = 1, . . . ,Ns , where Ns is the total number of
spikes in the point process) is convolved with an exponential
kernel

e−(t−tn)/τR (t > tn).

The parameter of this measure is τR . The convolved waveforms
are called f1(t) for the first and f2(t) for the second spike train.
The van Rossum distance DR [35] is then calculated as

DR(τR) = 1

τR

∫ ∞

0
[f1(t) − f2(t)]2dt. (A1)

For high and low τR , the distance acts as a spike rate and spike
timing measure, respectively.

2. ISI and SPIKE distances

Both the ISI and the SPIKE distances compute first a
time-resolved spike dissimilarity profile. The ISI-dissimilarity
profile I (t) is based on the interspike intervals, whereas the
SPIKE-dissimilarity profile S(t) takes into account the exact
timing of the spikes. For both measures, the total distance
between two spike trains is then calculated as an integration
over time of the instantaneous spike dissimilarity profile:

DP = 1

te − ts

∫ te

ts

P (t)dt, P = I,S,

where ts and te are the beginning and the end of the interval.
In the calculation of the dissimilarity profiles, there is

always an ambiguity concerning the interval preceding the
very first and following the very last spike. In our case, we
initially calculate the profile for the whole time series, and
afterward we segment it in overlapping windows and compute
the integrals. This way, for the intermediate windows we use
some information about the spikes in neighboring windows,
and the problem remains only at the very beginning and the
very end of the spike trains. For this reason, we ignore the first
and the last Wex windows of our signals. The value of Wex is
set adaptively as the minimum number of windows that we
have to neglect in order not to consider windows with empty
neighbor windows.

Recently adaptive generalizations of the ISI and the SPIKE
distances were proposed [42], which take into account the
relative importance of local differences compared to the global
time scale. By relying on a minimal relevant time scale,
they basically give less importance to the differences that are

smaller than a threshold T . This threshold is computed as the
mean of the second moments of the ISIs of the whole spike
train. It is important to calculate T for each spike train from the
whole signal and not just from individual windows in order to
compute a meaningful distance between different windows of
the same signal. In contrast, T can in general be different for
the two spike trains whose connection is under investigation.
In fact, the measure L evaluates how the similarity between
different windows of one signal is mapped on the similarity
among different windows of the other signal.

In this paper, we only show the values of L computed with
the adaptive generalization of ISI and SPIKE distances. Their
property of taking into account the global information about
the time scale and not only adapting to the local one is always
desirable [42]. Additionally, in particular for LSPIKE this is
also reflected in a higher robustness to noise. Here we briefly
describe how to compute these two dissimilarities profiles,
using the notation of Mulansky et al. [60].

a. ISI distance

The ISI-dissimilarity profile I (t) is based on the relative
length of simultaneous interspike intervals [36]. For every
time t , let t

(1),(2)
P (t) be the time of the last preceding spike,

and let t
(1),(2)
F (t) be the time of the first following spike, for the

first and the second spike train, respectively. The instantaneous
interspike interval is thus defined as ν(1)(t) = t

(1)
F − t

(1)
P , and

analogously for ν(2)(t). The profile I (t) is computed by
normalizing the absolute difference of the interspike intervals:

I (t) = |ν(1)(t) − ν(2)(t)|
max{ν(1)(t),ν(2)(t)} . (A2)

By construction, ν(1)(t) and ν(2)(t) are piecewise constant func-
tions, and the same holds for I (t). The adaptive generalization
[42] takes into account the threshold value T :

IA(t) = |ν(1)(t) − ν(2)(t)|
max{ν(1)(t),ν(2)(t),T } . (A3)

b. SPIKE distance

The SPIKE-dissimilarity profile focuses on the exact timing
of spikes. For every time t , the distance from the last preceding
spike to the closest spike of the other spike train is defined as

�t
(1)
P (t) = min

i

{∣∣t (1)
p − t

(2)
i

∣∣}
and analogously for �t

(2)
P and �t

(1),(2)
F . Then these values are

weighted by the instantaneous distances to the two nearest
spikes:

x
(1)
P (t) = t − t

(1)
P ,

x
(1)
F (t) = t

(1)
F − t

with x
(1)
P (t) + x

(1)
F (t) = ν(1)(t). In this way, the local dissimi-

larity is obtained as

S1(t) = �t
(1)
P (t)x(1)

P (t) + �t
(1)
F (t)x(1)

F (t)

ν(1)(t)
, (A4)

and S2(t) is defined analogously.
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The SPIKE-dissimilarity profile S(t) is obtained from these
local distances S1(t) and S2(t), weighted by the local interspike
intervals, with a final normalization:

S(t) = S1(t)ν(2)(t) + S2(t)ν(1)(t)

2〈ν(1,2)(t)〉2
. (A5)

Notice that S(t) is a piecewise linear function. The adaptive
generalization in this case is

SA(t) = S1(t)ν(2)(t) + S2(t)ν(1)(t)

2〈ν(1,2)(t)〉 max{〈ν(1,2)(t)〉,T } . (A6)
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