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Detecting determinism from point processes
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The detection of a nonrandom structure from experimental data can be crucial for the classification,
understanding, and interpretation of the generating process. We here introduce a rank-based nonlinear
predictability score to detect determinism from point process data. Thanks to its modular nature, this approach
can be adapted to whatever signature in the data one considers indicative of deterministic structure. After
validating our approach using point process signals from deterministic and stochastic model dynamics, we show
an application to neuronal spike trains recorded in the brain of an epilepsy patient. While we illustrate our
approach in the context of temporal point processes, it can be readily applied to spatial point processes as well.
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Point process signals are ubiquitous in nature. The under-
lying dynamics is often intrinsically stochastic. For example,
radioactive decay is adequately described by a stochastic
Poisson process. Other point process signals can be assumed to
contain stochastic and deterministic components. A prominent
example is the sequences of action potentials, generally
referred to as spike trains, used by the nervous system to
transmit information. Here the detection of deterministic
structure can be key for a thorough characterization of neuronal
dynamics. Motivated by this example from neuroscience, but
without loss of generality, we use the term spike train to refer
to point process signals. We here introduce an approach to
detect determinism from spike trains. It has the important
advantage over existing approaches [1,2] that it can be targeted
at whatever feature one considers relevant for the detection of
deterministic structure, such as the spike rate or spike timing.

For noise-free deterministic dynamics a given present state
unambiguously determines the dynamics’ future devolution.
For smooth deterministic dynamics, similar instantaneous
states remain similar in their immediate future. A number
of classical tests for determinism (e.g., [3–7]) are therefore
based on quantifying the dynamics’ degree of predictability.
For this purpose, a prediction of the future evolution of a
reference state is derived from the evolution of states which are
similar to this reference state. In these approaches, similarity
is assessed by spatial proximity in reconstructed state spaces.
Importantly, it is well established that predictability is a
necessary but not sufficient criterion for determinism. This
is because also for stochastic processes with memory, similar
instantaneous states remain similar in their immediate future.
Spurious detections of predictability might furthermore occur
for stochastic signals that have no memory but are, for
instance, nonstationary. It is therefore essential to use surrogate
signals to test whether the results of some measure for
predictability are consistent with the null hypothesis of a
stochastic process [8]. Only in combination with surrogate
null hypothesis testing can tests for predictability be used as
a test for determinism. A complementary approach to detect
and characterize deterministic structure is to inspect quantities
such as finite size Lyapunov exponents or epsilon entropies
estimated from the signals (e.g., [9]).

Given a spike train, one can use inter-spike-interval
embeddings to reconstruct the generating dynamics [1,2].
Here present states are formed by vectors whose components
contain the intervals between the most recent spikes. Each
vector is taken to represent the state of the dynamics at
the time of the spike closing the last interval. The se-
quence of these vectors across all spikes in the spike train
yields the inter-spike-interval embedding. In analogy to delay
coordinate embeddings applied to time-continuous signals
[10], inter-spike-interval embeddings are equivalent to the
state space of the time-continuous dynamics generating the
spike train [1,2,11]. To illustrate this point, Sauer [1,2] used
Euclidean inter-state-distance matrices calculated from inter-
spike-interval embeddings as input for a nonlinear prediction
error [5]. This approach allowed Sauer to distinguish between
spike trains of deterministic versus stochastic origin.

We here introduce a rank-based nonlinear predictability
score for spike trains, termed S, and apply it to original
and surrogate spike trains. The important difference to the
classic approach above is that we bypass the state space
reconstruction. We assess the similarity between instantaneous
states, as represented by short segments of the spike train,
directly by means of spike train distances [12]. Importantly,
here one can use any measure of spike train distance. For
example, one can apply metrics that focus either on spike rates
or on spike timing. We here show that this adaptability is
not only an important conceptual advantage, but is indeed
crucial for achieving optimal sensitivity for determinism
across different dynamics.

To calculate S [13], the spike times {tl}l=1,...,L, are scaled
to the dimensionless interval [t1 = 0,tL = 1]. The spike train
is then segmented into overlapping intervals of length q. Each
segment represents the state of the dynamics at the end of this
segment. The step size between subsequent segments is s, with
s � q � 1. Accordingly, the i-th segments span [(i − 1)s,(i −
1)s + q] for i = 1, . . . ,N , where N is obtained by rounding
down 1−q

s
+ 1. To quantify the dissimilarity dij between the

pair of states represented by the segments i and j , we apply
spike train distances to this pair of segments. Across all pairs
this yields the inter-state-distance matrix Dij . As spike train
distances, we use the ISI distance [14,15] and SPIKE distance
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[15–17]. Given two spike trains, the ISI distance quantifies
the average instantaneous similarity between the inter-spike-
interval profiles while the precise timing of spikes is irrelevant.
In contrast, the SPIKE distance quantifies the degree to which
the spikes occur at similar times across the two spike trains.

Given the matrix Dij , one can readily quantify the dy-
namic’s predictability for the horizon h. For each reference
state with index i0 = 1, . . . ,N − h, we denote the indices
of its k nearest neighbors by {j0,r}(r=1,...,k). Here we impose
j0,r � N − h and |i0 − j0,r | > w, with decorrelation window
w [18]. Accordingly, {j0,r}(r=1,...,k) are the indices of the k

smallest entries in row i0 of Dij , ignoring the entries in the
main diagonal, in the w first off-diagonal pairs, and in the last
h columns. Furthermore, we denote by g

j

i0
the rank which di0j

assumes in a sorted list of all distances included in the set
{di0n}n=1,...,N ;|i0−n|>w. This set corresponds to row i0 of Dij ,
now only ignoring the entries in the main diagonal and the first
w off-diagonal pairs. Accordingly, the number of distances
in this set is Mi0 = N − 2w − 1 for w < i0 < N − w + 1.
Below and above this range, Mi0 increases linearly and reaches
Mi0 = N − w − 1 at i0 = 1 and i0 = N .

As stated above, similar instantaneous states of determin-
istic dynamics remain similar in their immediate future. To
quantify the resulting predictability, we at first determine the
mean rank of the k nearest neighbors j0,r of the reference point
i0 after h time steps have passed: Ri0 = 1

k

∑k
r=1 g

j0,r+h

i0+h . For
complete predictability, {j0,r + h}(r=1,...,k) are still the indices
of the nearest neighbors of i0 + h, and we get Ri0 = k+1

2 .
We denote this lower boundary, which is independent of i0,
by RL = k+1

2 . In contrast, for no predictability, our nearest
neighbors will have lost all proximity h time steps later.
Accordingly, gj0,r+h

i0+h are just k random samples from a uniform
distribution on the integers 1, . . . ,Mi0 . In consequence, for no

predictability, Ri0 has an expected value of RU
i0

= Mi0 +1
2 [19].

Therefore, using a general normalization principle [20,21], we
define the rank-based predictability score:

S = 1

N − h

N−h∑

i0=1

RU
i0

− Ri0

RU
i0

− RL
. (1)

For complete predictability we get Ri0 = RL, and S attains
its maximal value of 1. In contrast, for no predictability S
has an expected value of zero since here Ri0 has an expected
value of RU

i0
. Furthermore, as a consequence of the central

limit theorem, for no predictability S is normally distributed
since here it reduces to a sum of samples of an identically
distributed random variable. We use SISI and SSPIKE whenever
we distinguish which spike train distance was used.

We use five models of spike trains derived from simulated
systems. Four models, denoted by A–D, are generated by de-
terministic dynamics to assess the sensitivity of our approach
and its robustness against noise. To assess its specificity, we test
whether we falsely detect deterministic structure in stochastic
spike trains. Therefore, for model E we generate spike trains by
a stochastic dynamics. Furthermore, we analyze real neuronal
spike trains recorded from a patient with epilepsy. To stress
the applicability of our approach to experimental data, we use
spike trains of only 500 spikes for all models and the neuronal
data.

For model A [2,12] an integrate-and-fire process
S(t) is driven by the x(t) variable of a Lorenz
dynamics [ẋ(t) = 10(y(t) − x(t)); ẏ (t) = 28x(t) − y(t) −
x(t)z(t); ż(t) = x(t)y(t) − 8

3z(t)]. We define the initial time
as t1 = 0 and set S(t1) = 0. Then for l = 2, . . . ,500, we
integrate S(t) = ∫ t

t ′=tl−1
(x(t ′) + 25)dt ′. The time when S(t)

crosses the threshold of � = 12 is used as spike time tl ,
S(tl) is reset to zero, and the integration is restarted. For
model B [12,22] we define spike times directly from upward
threshold crossings (� = 27) of the variable z(t) of the
Lorenz dynamics. For models C and D we use a Hindmarsh-
Rose neuron (ẋ(t) = y(t) + 3x2(t) − x3(t) − z(t) + J ; ẏ(t) =
1 − 5x2(t) − y(t); ż(t) = 0.0021[−z(t) + 4(x(t) + 1.6)]). In
contrast to the Lorenz dynamics, this dynamics exhibits
intrinsic spiking. The x(t) variable shows prominent spikes
which we can readily detect by the upward crossing of the
threshold θ = 0.6 [12,23]. The neuron’s dynamical regime
depends on the variable J . For model C we set J = 3.30, which
leads to aperiodic spiking. For model D we use J = 3.28,
for which the spikes are grouped in aperiodic bursts. Model
E is derived in the same way as model A. However, the
deterministic Lorenz variable is replaced by a stochastic signal
to drive the integrate-and-fire process [1]. This stochastic
signal is constrained to have the same power spectrum and
amplitude distribution as x(t) but is otherwise random [24].
Accordingly, the resulting spike trains are stochastic.

To test the robustness of our approach, we superimpose
the model spike trains with noise. We delete a percentage γ

of randomly selected spikes and afterwards insert the same
number of spikes uniformly randomly distributed across the
duration of the spike train. This reflects that for experimental
data, the detection algorithm can have false positive and false
negative spike detections, or it can assign wrong times to true
positive spike detections.

We furthermore analyze a recording of neuronal spiking
from the medial temporal lobe of an epilepsy patient. This
recording was performed prior to and independently from this
study at the University of Bonn, Germany, while the patient
underwent monitoring prior to epilepsy surgery (see [17] for
details). During the 10-min recording, the patient was awake
and at rest, no seizure occurred. The recording contained spike
trains that were classified in pre-analysis to originate each from
a single neuron as well as spike trains that reflect the mixed
activity of multiple neurons (multi-unit activity). We analyzed
only those 18 single neuron spike trains that contained at least
500 spikes. Of these spike trains we took the first 500 spikes.

To generate spike train surrogates, we shuffle the order
of the inter-spike-intervals. This corresponds to the null
hypothesis that the sequence of inter-spike-intervals is station-
ary and uncorrelated. Since the original inter-spike-interval
distribution is maintained, no assumption is made about this
distribution. In particular, it is neither assumed nor excluded
that the spike train is generated by a Poisson process which
would result in an exponential inter-spike-interval distribution.

Apart from fixing the number of spikes to L = 500,
we use fixed parameters across all model systems and the
neuronal data. We define the length of the spike train to 1
dimensionless time unit, and use q = 0.01 and s = 0.001 for
the segmentation. The smaller s, the better the sampling by
the inter-state-distance matrix. Very small values, however,
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FIG. 1. (Color online) Results forSSPIKE andSISI for the original spike trains are shown in green (light grey) and red (dark grey), respectively.
Results for the corresponding surrogates are shown in black [lower bands in (a)–(e), crosses in (f)]. (a)–(e) dependence of results on the noise
percentage γ for models A–E, respectively. For each model and every γ value we generated 300 independent spike trains realizations. From
each realization we generated one surrogate spike train. Bands in the two upper parts show averages ± one standard deviation of S across the
300 original spike trains and across the 300 surrogates. Solid lines in the lower parts show the fraction f of realizations for which the S for the
original spike train was higher than the one for its surrogate. (f) results for the neuronal spiking data (pentagons) and 199 surrogates (crosses).
Filled pentagons indicate cases for which the S values of the original exceeds all surrogates.

increase the computational load. The parameter q determines
the average number of spikes per segment. At q = 0.01 we
have an average of five spikes per segment. The prediction
horizon is an integer multiple of s and should be at least q

to avoid overlap between predicting and predicted segments.
We use h = 0.014 > q to reduce the influence of linear
correlations between subsequent segments. The decorrelation
window w serves to avoid that temporally close segments are
selected as nearest neighbors [18]. We use a high but otherwise
arbitrary value of w = 0.05. Finally, we fix k = 1 nearest
neighbor. Exploring the parameter space, we found these
values to work well across all model systems and the neuronal
data. We deliberately refrained from any extensive parameter
optimization for individual settings. Neither were the data
selected as to optimize our results. The deterministic models
A–D were taken over from [12] where they were studied in
the context of detecting directional couplings. The stochastic
model E was created for the present study, since in [12]
the specificity was tested using independent but deterministic
spike trains. The particular patient and recording of neuronal
spike trains was selected at random from a larger pool of data.

We first consider results obtained for spike trains de-
rived from models A–E in dependence on the noise level
[Fig. 1(a)–1(e)]. The SSPIKE values for the original spike trains
exceed the surrogate results up to substantial noise levels for
all deterministic models (A–D). Even if 25%–50% of the
spikes are relocated to random times, SSPIKE correctly detects
the deterministic structure. A more heterogeneous picture is
obtained for SISI. For noise-free dynamics, also SISI correctly
detects the deterministic structure. However, for the models
A–C already at low noise levels, SISI loses sensitivity. In

contrast, for spike trains from the Hindmarsh-Rose neuron
in an irregular bursting dynamics (model D), SISI performs
better and even slightly exceeds the already high robustness of
SSPIKE. For the spike trains generated by a stochastic dynamics
(model E), the original and the surrogates match across all
noise levels for both SSPIKE and SISI. Hence, these results
provide evidence for the sensitivity and specificity of our
approach for deterministic structure in spike trains.

The mean value of S for stochastic signals, as represented
by the highest noise levels or by the surrogates, sometimes
exceeds zero, although the expected value of S for no
predictability is zero. This is due to linear correlations between
neighboring elements in the inter-state-distance matrices.
These correlations arise since the distances used here are
derived from piecewise constant (SISI) or piecewise linear
(SSPIKE) profiles. Accordingly, unless there is a spike exactly
at the border between two segments, the profile values match
at these boarders. This effect has no impact since it affects the
original and the surrogate results in the same way. If needed,
it can be suppressed using higher q values.

For each of the 18 neuronal spike trains we generated 199
surrogates. For SSPIKE the value for the original spike train
never exceeds the range of the surrogates. In contrast, in two
cases the SISI obtained for the original spike train is higher
than for all surrogates [Fig. 1(f)]. If the null hypothesis was
correct for all spike trains, there would be a probability of only
0.0036 to get two or more rejections. The overall low rejection
percentage should not be misinterpreted as corresponding to
the sensitivity of our test to detect deterministic structure
from real neuronal data. Rather it can indicate that different
types of neurons sampled in the recordings in fact have
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distinct dynamical properties. For example, excitatory versus
inhibitory neurons (e.g., [25]) may show different degrees of
non-randomness.

Apart from this physiological aspect, the disease epilepsy
can have an important impact on the characteristics of neuronal
dynamics. Earlier studies of intracranial electroencephalo-
graphic (EEG) recordings from epilepsy patients during
the seizure-free interval showed that while recordings from
healthy brain areas were mostly consistent with the null
model of a linear stochastic correlated process, recordings
from brain areas generating epileptic seizures exhibit a more
nonrandom behavior [26–28]. These findings suggest that
neurons which are involved in the initiation of epileptic
seizures may reveal an increased degree of nonrandomness
also during the seizure-free period. Our approach could
allow one to detect these putative ictogenic neurons, thereby
contributing information useful for diagnostic purposes. It
might also help to further discriminate between the recently
described distinct electrophysiological phenotypes of neurons
in hypothalamic hamartoma [29].

Importantly, the prominent differences between SISI and
SSPIKE show that deterministic structure manifests itself in
different features of the spike trains across the different models
and the neuronal data. In consequence, depending on the
dynamics, the resulting predictability is better captured if
the inter-state-distance matrices are calculated using one or
the other spike train distance. Overall, SSPIKE performs better
than SISI in detecting nonrandomness in the model systems.
On the other hand, for the neuronal data only SISI led to
rejections of the surrogate null hypothesis. It is the adaptability
of our approach to these different settings that makes it very
versatile and powerful. One can a priori choose a distance
that focuses on what one considers to be the relevant feature
of the spike train. Conversely, by comparing the outcome for

different distances, one can detect this distinctive feature a
posteriori. Hence, this analysis can for example address the
neural coding problem of distinguishing between a rate code
and a temporal code. To scan for deterministic structure on
specific time scales, one can use the Victor-Purpura spike
train distance [30] which offers a corresponding continuous
parameter (cf. [31]).

Further flexibility is offered by the choice of surrogates.
For the sake of generality, we used very simple surrogates
which test the null hypothesis that the sequence of inter-spike-
intervals is stationary and uncorrelated. One can argue that
this does not represent a plausible null model for neuronal
spiking, since already an inhomogeneous Poisson process
might reject this null hypothesis. However, it was not our
aim to find an adequate null model for the investigated spike
trains. Rather we used high values of h and w to minimize
the influence of correlations between inter-spike-intervals. In
future studies more elaborate surrogate types can be used that
test for more general null models. These null models can be
tailored to the particular type of experimental data and working
hypothesis. Furthermore, apart from testing for predictability,
any measure that is based on inter-state-distances can be used.
One example is entropy estimates based on k nearest neighbor
distances and information-theoretic measures derived from
them [32].
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