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Objective: To test whether epileptic seizure prediction algorithms have true predictive power, their per-
formance must be compared with the one expected under well-defined null hypotheses. For this purpose,
analytical performance estimates and seizure predictor surrogates were introduced. We here extend the
Monte Carlo framework of seizure predictor surrogates by introducing alarm times surrogates.
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Keywords: Methods: We construct artificial seizure time sequences and artificial seizure predictors to be consistent
Nonlinear dynamical EEG analysis or inconsistent with various null hypotheses to determine the frequency of null hypothesis rejections
gsil;i[;:ypre diction obtained from analytical performance estimates and alarm times surrogates under controlled conditions.
Surrogates Results: Compared to analytical performance estimates, alarm times surrogates are more flexible with

regard to the testable null hypotheses. Both approaches have similar, high statistical power to indicate
true predictive power. For Poisson predictors that fulfill the null hypothesis of analytical performance
estimates, the frequency of false positive null hypothesis rejections can exceed the significance level
for long mean inter-alarm intervals, revealing an intrinsic bias of these analytical estimates.
Conclusions: Alarm times surrogates offer important advantages over analytical performance estimates.
Significance: The key question in the field of seizure prediction is whether seizures can in principle be
predicted or whether algorithms which have been presumed to perform better than chance actually
are unable to predict seizures and simply have not yet been tested against the appropriate null hypoth-
eses. Alarm times surrogates can help to answer this question.
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1. Introduction

For patients with medically intractable epilepsy, it is the sud-
den, unforeseen way in which seizures occur that represents one
of the most disabling aspects of the disease. Apart from the risk
of serious injury, there is often an intense feeling of helplessness
that has a strong impact on the everyday life of a patient. In prin-
ciple, there are two different scenarios of how a spontaneous sei-
zure could evolve (Lopes da Silva et al., 2003). It could be caused
by a sudden and abrupt transition, in which case it would not be
preceded by detectable dynamical changes in the EEG. Such a sce-
nario would be conceivable for the initiation of seizures in primary
generalized epilepsy. Alternatively, this transition could be a grad-
ual change in dynamics, which could in theory be detected. This
type of transition could be more likely in focal epilepsies.

Around the turn of the millennium, a number of studies re-
ported that nonlinear and linear signal analysis techniques applied
to electroencephalographic (EEG) recordings from epilepsy pa-
tients allowed to reliably predict impending epileptic seizures
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(for a review see Mormann et al. (2007)). If these promising results
could have been substantiated, the impact on the therapeutic pos-
sibilities for epilepsy patients would have been enormous. Apart
from simple warning devices, one could envision automated
implantable closed-loop systems that would prevent seizures by
applying fast-acting anticonvulsant drugs or by electrical or other
stimulation (Mormann et al., 2007).

Until now, however, these early promising results on the pre-
dictability of seizures could not be substantiated. Instead recent
studies using more rigorous methodological concepts revealed that
the performance of these seizure prediction algorithms is far too
low to be considered for clinical application (De Clerq and Lem-
merling, 2003; Winterhalder et al., 2003; Aschenbrenner-Scheibe
et al., 2003; Maiwald et al., 2004; Lai et al., 2004; Harrison et al.,
2005a,b; Mormann et al., 2005). Moreover, it became clear that
sensitivity, specificity, and overall performance derived from these
predictors are difficult to assess. The sensitivity is commonly de-
fined as the number of true positive predictions normalized by
the total number of seizures. However, the standard definition of
specificity as the number of true negatives normalized by the
sum of true negatives and false positives is not applicable because
it is not straightforward to define the number of true negative
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predictions for seizure prediction algorithms (Mormann et al.,
2007). To overcome this problem, specificity is routinely assessed
using the average number of false positive predictions per time.
The interpretation of such false positive rates however depends
not only on the definition of false positives but also on the exact
definition of true positives. Moreover, different normalizations
are used to convert counts of false positive predictions into false
positive rates (Mormann et al., 2007). Furthermore, even if the ori-
ginal predictor lacks any true predictive power, non-zero sensitiv-
ity values and low false positive rates can be obtained just by
chance (Andrzejak et al., 2003). To test whether certain perfor-
mance values of the original predictor are indeed indicative of a
true predictive power, it is therefore indispensable to compare
these values against the performance expected under various
well-defined null hypotheses. Besides the central assumption that
the seizure predictor lacks any true predictive power, these null
hypotheses will generally include further assumptions. Two ap-
proaches for such null hypotheses tests have been suggested: ana-
lytical performance estimates (Winterhalder et al., 2003; Schelter
et al., 2006a; Wong et al., 2007; Snyder et al., 2008) and seizure
predictor surrogates (Andrzejak et al., 2003; Kreuz et al., 2004).

The application of these different null hypothesis tests sug-
gested that while the performance of current seizure prediction
algorithms would not yet suffice for clinical application some of
them at least perform better than chance (Winterhalder et al.,
2003; Aschenbrenner-Scheibe et al., 2003; Maiwald et al., 2004;
Mormann et al., 2003, 2005; Chaovalitwongse et al., 2005; Schelter
et al., 2006a,b; Winterhalder et al., 2006; Sackellares et al., 2006;
Schelter et al., 2007; Wong et al., 2007; Schad et al., 2008; Snyder
et al., 2008). One interpretation of these findings is that seizures
are not completely unpredictable and that the goal to reliably pre-
dict them can ultimately be reached. However, an alternative
explanation is that these algorithms cannot at all predict seizures
and their apparent better-than-random-performance arises merely
because they were not tested against an appropriate null
hypothesis.

2. Definition of the problem and existing approaches

To determine whether a prediction algorithm performs better
than chance, is inevitable to rigorously formulate the tested null
hypotheses and the underlying assumptions. We therefore de-
scribe the various null hypotheses considered here in Section 2.1.
We then discuss two fundamental approaches to estimate the per-
formance expected under such null hypotheses. Section 2.2 out-
lines analytical approaches which provide formulae to determine
the expected performance from the false positive rate of the sei-
zure prediction algorithm. Section 2.3 describes the numerical ap-
proach of seizure predictor surrogates, which are based on Monte
Carlo simulations.

2.1. Seizure predictors and composition of null hypotheses

As seizure predictor we denote a combination of algorithms
used to extract alarms before impending seizures from multi-chan-
nel long-term EEG recordings from epilepsy patients which share
the following characteristics. First some characterizing measure,
e.g. based on the correlation dimension, the largest Lyapunov
exponent or some measure derived from the power spectrum is ex-
tracted from the EEG using a moving window technique (for re-
views see Stam (2005) and Mormann et al. (2007)). The
characterizing measure can be extracted for single time series,
pairs, or groups of time series. In general, the resulting temporal
measure profile will be multivariate. This profile or some derivative
thereof is then further evaluated for signatures that are considered

predictive of impending seizures, resulting in a temporal sequence
of seizure prediction alarm times. The crossing of a pre-defined
threshold by the characterizing measure is a typical example for
such a signature triggering an alarm. These alarm times are then
evaluated with regard to their sensitivity and specificity for
impending seizures. Given a certain specificity value of a seizure
predictor one should test whether its sensitivity is indeed any bet-
ter than what would be expected by chance. Only in this case is
there evidence that the seizure predictor can have true predictive
power. To address this issue, one has to first advance from the
imprecise expression 'expected by chance’ to a precisely formu-
lated null hypothesis. To arrive at such a precise null hypothesis
we shall begin by considering different assumptions.

The fundamental assumption ./ is that the alarms are raised by
a naive and unspecific predictor, i.e. by a predictor which has no
true predictive power. Such a predictor has no access to any infor-
mation that would be indicative of an impending seizure. More-
over, it uses no information about intervals between previous
seizures. Accordingly, the alarm times are in no way related to
the times of upcoming seizures. One can make the further assump-
tion .1 that the predictor is stationary during the entire recording,
implying that the alarms are raised at a time-independent mean
rate. Alternatively, this assumption can be modified to account
for the strong impact post-seizure EEG changes can have on char-
acterizing measures and seizure predictors derived from them (cf.
Mormann et al., 2005). A weakened stationarity assumption .#; is
that . is wrong but the predictor exhibits the same time-depen-
dence for all inter-seizures intervals where, importantly, time is
measured relative to the preceding seizure. In addition, it can be
assumed that the event of the actual seizure does not influence
the predictor state (#,). Conversely, one can assume that an actual
seizure resets the predictor to a state which is generally different
from the one it assumes after raising an alarm (%,), or that an ac-
tual seizure resets the seizure predictor to the same state it as-
sumes after raising an alarm (#;). Note that the assumptions
A, R, and %3 are mutually exclusive. The intervals between
alarms can, for example, be assumed to be uncorrelated and expo-
nentially distributed (2).

These assumptions can be combined in different ways to consti-
tute different null hypotheses (Tables 1 and 2). A general null
hypothesis is directly given by the first assumption (#7} = ./").
However, a direct test of #7} is impossible since in concrete imple-
mentations of null hypotheses tests further assumptions are inev-
itable. Hence, by making further assumptions one arrives at more
specific null hypotheses. For example, #} = 4 & ¥1& Z is that
the alarms arise from a homogenous Poisson process, i.e. from an
uncorrelated random process with a time-independent mean
alarm rate and an exponential inter-alarm interval distribution.
The Tables 1 and 2 cannot represent a lists of all possible assump-
tions and null hypotheses. Rather they comprise assumptions and
null hypotheses that have been used in previous studies as well as
further plausible assumptions and null hypotheses that we address

Table 1
Overview of the different assumptions about the original seizure predictor.

A Unspecific, naive predictor

%1 Stationary during the entire recording

%, Non-stationary, but same time-dependence for all inter-seizure intervals with
time measured relative to previous seizure

#1 A seizure does not reset the predictor state

%,  Aseizure resets the predictor to a state different from the one it assumes after
raising an alarm

23 A seizure resets the predictor to the same state it assumes after raising an
alarm

2  The intervals between alarms are uncorrelated and exponentially distributed
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Table 2
Overview of the different null hypotheses. The letters T and F, respectively, indicate
whether the null hypothesis is fulfilled or violated in a particular Section.

Null hypothesis Assumptions 4.1 4.2 4.3 4.4
#h N T T T F
#Y N& S1& A3 F T F F
Vs N& S1& %y F F T F
wy N& S2& Ry T F F F
#y N& S1& T F F T F

in the present study. These lists can readily be extended by further
assumptions and null hypothesis in future work.

2.2. Analytical sensitivity and performance estimates

An analytical approach to test null hypotheses for epileptic sei-
zure predictors was proposed by Winterhalder et al. (2003), ex-
tended by Schelter et al. (2006a), Wong et al. (2007), and Snyder
et al. (2008), and applied e.g. in Aschenbrenner-Scheibe et al.
(2003), Maiwald et al. (2004), Winterhalder et al. (2006), Schelter
et al. (2006b), Schelter et al. (2007) and Schad et al. (2008)).
Winterhalder et al. (2003) derived an analytical expression for
the maximal sensitivity expected under the null hypothesis #p
for a given specificity of the original seizure predictor. For any
performance measure defined as a function of the sensitivity and
specificity, the analytical sensitivity estimate can readily be trans-
formed into an analytical performance estimate. If the performance
of the original predictor is higher than this analytical estimate,
then #}y can be rejected. Care has to be taken, however, in the
interpretation of such a rejection as it only provides a necessary
but not sufficient condition for a true predictive power of the ori-
ginal predictor. #} represent the conjunction of assumptions
A& #1& & and, accordingly, the violation of any of these assump-
tions is sufficient for its rejection. If #y was rejected, it would be
informative to test further distinct null hypotheses to collect fur-
ther evidence. This evidence could either provide further support
for a true predictive power of the original predictor or help to rule
it out. Unfortunately, apart from the special case of #7, the deriva-
tion of analytical performance estimates for arbitrary null hypoth-
eses seems hardly possible. In particular, like also pointed out by
Wong et al. (2007), it is not possible to account for time-dependent
mean alarm rates.

2.3. Seizure predictor surrogates

The framework of seizure predictor surrogates constructed from
constrained randomizations of the original seizure predictor offers
greater flexibility than analytical performance estimates. Seizure
predictor surrogates can be designed to test a variety of distinct
null hypotheses about the original predictor. Any assumption
made for the null hypothesis has to be represented by a corre-
sponding property that the surrogates share with the original pre-
dictor. Constrained randomization schemes are used to generate
surrogates that exhibit these specified properties, but are other-
wise random. For example, if assumption .#’; is made, the surro-
gates must be constrained to be time-independent, regardless of
potential time-dependencies of the original predictor. If assump-
tion 2 is made, the surrogate must have an exponential inter-
alarm interval distribution, regardless of the original distribution.
If in contrast .#; and 2 are not assumed, the surrogate should be
constrained to share potential time-dependencies and the
inter-alarm interval distribution with the original predictor. In par-
ticular, any feature of the original predictor which is evidently not
related to a true predictive power, but which might influence its
predictive performance, should be translated into an assumption

and be imposed as a constraint on the surrogates. For example,
%> can be motivated if post-seizure EEG changes manifest them-
selves in stereotypical time-dependent features of the predictor,
and in this case the seizure predictor surrogates should be con-
strained to exhibit these same features.

After constructing an ensemble of independent realizations of
the surrogates, the performance should be calculated for the origi-
nal predictor and all surrogates. If the performance of the original
predictor is significantly higher than the distribution of perfor-
mance values obtained for the surrogates, the corresponding
underlying null hypothesis can be rejected. As we will illustrate
in this article, it is key to the flexibility of this Monte Carlo ap-
proach that various distinct null hypotheses can be tested by com-
posing appropriate sets of assumptions and constraints.

The first Monte Carlo approach proposed for the evaluation of
seizure prediction statistics was the technique of seizure times sur-
rogates (Andrzejak et al., 2003). For this approach, the original sei-
zure times are replaced with random surrogate seizure times while
the original measure profile is kept unchanged. Andrzejak et al.
(2003) generated random seizure times by shuffling the original in-
ter-seizure intervals. Thereby the inter-seizure interval distribu-
tion was maintained while possible correlations in the seizure
time sequence were destroyed. Recently, it has been proposed to
constrain seizure times surrogates to preserve possible temporal
correlations in the sequence of seizure times and severities (Sunde-
ram et al., 2007). Apart from assumption ./", the null hypothesis of
seizure times surrogates always includes #; because real seizure
times are deleted and surrogate seizure times are inserted. Hence,
the actual seizures are assumed to have no influence on the seizure
predictor. Accordingly, the interval from the last alarm prior to a
certain seizure to the first alarm after this seizure is regarded as
one continuous inter-alarm interval. The original inter-alarm inter-
val distribution is therefore maintained by construction, and no ex-
plicit assumption concerning the inter-alarm interval distribution
such as 2 can be tested. Furthermore, assumption .%; is inevitable
for seizure times surrogates: the original predictor is assumed to
be stationary for the entire recording, thus assumption .#, cannot
be tested. Hence, while seizure times surrogates offer a straightfor-
ward and computationally inexpensive way to test the null
hypothesis #7', this first type of seizure predictor surrogates does
not offer a high flexibility regarding the assumptions which can be
included in the null hypothesis. Moreover, some recordings may
contain only a few seizures, or recordings can be interrupted by
gaps. Both problems can make the generation of a sufficient
number of independent realizations of seizure times surrogates
impossible, if one wants to preserve the inter-seizure interval
distribution. Nevertheless, seizure times surrogates have been
applied in a number of different studies (Andrzejak et al., 2003;
Mormann et al., 2005; Chaovalitwongse et al., 2005), see also
(Mormann et al., 2003).

To overcome problems related to seizure times surrogates,
Kreuz et al. (2004) proposed measure profile surrogates. This type
of seizure predictor surrogates is generated by randomizing the
original measure profiles while keeping the original seizure times
unchanged. In Kreuz et al. (2004) this technique was illustrated
using the preservation of the autocorrelation function and ampli-
tude distribution of the original measure profile as constraints
for the measure profile surrogates. The autocorrelation was calcu-
lated for the entire recording rather than in a moving window and
also across actual seizure times. Therefore, assumptions %1 and %,
were implicitly made. Despite the preservation of the original mea-
sure profile’s amplitude distribution the original inter-alarm distri-
bution is not preserved by this particular form of measure profile
surrogates. In general, not even the total number of alarms will
be preserved. However, using the technique of simulated anneal-
ing, measure profile surrogates can in principle be constrained to
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preserve any feature of the original seizure predictor (Kreuz et al.,
2004). For example, the measure profile surrogate can be con-
strained to result approximately in the original inter-alarm distri-
bution or in some pre-defined distribution such as in assumption
2. Similarly, constraints can be implemented in order to test .#5.
However, a drawback of this approach is that it can be complicated
to implement and computationally expensive. Especially when
several constraints are combined, the generation of measure pro-
file surrogates can become prohibitively time consuming. Hence,
while measure profile surrogates in principle offer flexibility with
regard to the testable null hypotheses, practical issues can render
this approach unfeasible.

3. Methods

We here propose the concept of alarm times surrogates as a no-
vel Monte Carlo approach for the evaluation of seizure prediction
statistics. As in the case of measure profile surrogates, the original
seizure times are kept unchanged, but the original multivariate
measure profile is not directly manipulated. Instead the randomi-
zation of the original predictor is carried out at the level of the uni-
variate temporal sequences of alarm times. Alarm times surrogates
thus have the advantage of being as easy to implement and compu-
tationally inexpensive as seizure times surrogates while offering
the same flexibility as measure profile surrogates with regard to
the imposed constraints and corresponding null hypotheses.

We introduce different types of alarm times surrogates (Section
3.1) and compare them to analytical performance estimates (Sec-
tion 3.4) on a variety of examples. To relate to earlier work, we
use previously published definitions of sensitivity, specificity, and
performance (Section 3.2). We deliberately refrain from analyzing
seizure predictors extracted from real EEG recordings of epilepsy
patients. Rather we generate artificial seizure time sequences and
artificial measure profiles (Section 3.3), thereby creating controlled
conditions under which we can specifically design artificial original
seizure predictors to be consistent or inconsistent with the differ-
ent assumptions and null hypotheses specified in Tables 1 and 2.
Importantly, this also allows us to generate large ensembles of data
from which we can estimate the frequency of null hypothesis
rejections under well-defined conditions. While the entire analysis
presented here is thus based on artificial data, we will use terms
such as ‘patients’, ‘EEG recording’ or ‘seizure times’ to make the
analogy clear.

3.1. Alarm times surrogates

In the following we describe algorithms to generate different
types of alarm times surrogates. Throughout this study we use
g = 19 alarm times surrogates. Hence, if the null tested hypothesis
is correct, there should be a 5% probability that the original perfor-
mance is higher than the maximal performance of the surrogates
as well as a 5% probability that the performance of the original pre-
dictor is lower than the minimal performance of the surrogates.

3.1.1. #} alarm times surrogates

As a first example of alarm times surrogates we consider the
null hypothesis #§. That means the null hypothesis of a stationary
(1), unspecific, naive (/") predictor which is reset by an actual
seizure to the same state it takes after an alarm (#3). No assump-
tions are made about the distribution of the inter-alarm intervals.
Accordingly, the inter-alarm intervals of the surrogates should be
resampled from the inter-alarm interval distribution of the original
predictor. Furthermore, to meet assumption .#; the surrogates
should be constructed to be time-independent regardless of possi-

ble time-dependencies of the original predictor. To design #}
alarm times surrogates, let us assume that a recording from a pa-
tient includes a total of Q seizures and denote their onset times
by £ (j=1,...,Q). We shall further assume that the recording
was started immediately after a seizure and index this seizure with
j = 0 to facilitate the notation. Finally, the recording is assumed to
end directly after the last seizure with index j = Q. For simplicity,
the duration of the seizure is neglected and set to zero. We denote
by d; the interval between the seizures j — 1 and j. The times of
alarms that are raised during d; are denoted by ,(I=1,...,A)).
The interval between two consecutive alarms | — 1 and [ is denoted
by d}, for [ > 1. By d}, we denote the interval from the seizure j — 1
to the first alarm. The distribution of d}‘.’_, across all seizures j and
alarms [ is denoted by p*. Depending on the length of the recording
and mean inter-alarm interval, the distribution p* can be a very
limited sample and poor estimate of the true inter-alarm interval
distribution of the original predictor. In particular, this p* will be
biased towards shorter inter-alarm intervals, as explained below.
Fortunately, this bias can be reduced substantially using the cor-
rection scheme described hereafter.

Let p denote the inter-alarm interval distribution of an origi-
nal naive and unspecific seizure predictor and let us assume that
during df a number of [y < A; alarms have already been raised by
the predictor. Let us further assume that the remaining time
from the lp-th alarm to the subsequent seizure is short, i.e. of
the order of a typical inter-alarm interval. The predictor would
raise alarm [y + 1 after an interval according to a further random
sample from p. Evidently, the shorter this I, + 1-th interval, the
higher the probability that it fits into the remaining time before
the subsequent seizure. Long intervals are simply more likely to
be interrupted by the event of a seizure which is assumed to re-
set the predictor according to #5. Therefore, p overestimates the
probability of short intervals in p. This problem can be treated
by taking into account also those intervals that are interrupted
by a seizure and are thereby cut short: suppose once again that
A; alarms were raised during d;. This means that alarm A; + 1
was not raised because seizure j+ 1 took place. We know that
the interrupted interval between the alarms A; and A; + 1 would
have been at least as long as the interval from the alarm A; to
this seizure. Instead of ignoring this unfinished interval, which
would lead to the bias just described, one can estimate its length
from a random sample drawn from the subset of all intervals in
p* that are longer than the interval from alarm A; to seizure

j+ 1. Denoting this random sample by dﬁAjH, an improved esti-

mate p of p can be obtained from the set of all dj‘_, across
j=1,...,Qand I=1,... A+ 1. It is important to note that this
improved estimate can still have a remaining bias towards short-
er inter-alarm intervals. Once p has been determined, the gener-
ation of an alarm times surrogate is straightforward. Surrogate

intervals a;l for the first interval dj are drawn with replacement

from p until the alarm time £~  falls after the time of the first

1,A1+1
seizure and this alarm is discarded. The same procedure is then
carried out for the remaining inter-seizure intervals. Note that

under the given constraints A; can differ from A;. Furthermore,
A; >0, and A; > 0.

3.1.2. # alarm times surrogates

To generate #§' alarm times surrogates, only slight modifica-
tions of the scheme described in Section 3.1.1 are necessary. To ac-
count for assumption %, the interval dj-‘_l is not defined from the
beginning of the inter-seizure interval j to the first alarm in this
interval but rather by the time from the last alarm of the preceding



R.G. Andrzejak et al./Clinical Neurophysiology 120 (2009) 1465-1478 1469

inter-seizure interval to this first alarm. Furthermore, #; implies
that the only unfinished inter-alarm interval is the one interrupted
by the end of the recording. Accordingly, the correction scheme for
the estimation of p from p* should only be applied for this last
interval. Surrogate intervals are generated starting at a;, by draw-
ing with replacement from p until the alarm time £ ~  falls after
the end of the recording. QAo

Since the assumption that the intervals between alarms are
uncorrelated and exponentially distributed (2), implies that the
predictor is memoryless, there are no correlations between subse-
quent predictor states regardless of whether or not a seizure took
place between them. Therefore, an actual seizure does not influ-
ence the predictor (#;). Hence, assumption & implies #;, and
accordingly .#y implies #7}'. In consequence, a test based on #7}'
alarm times surrogates should not be rejected if #7 is valid.

3.1.3. # alarm times surrogates

In contrast to the cases of #} and #Y' surrogates we now drop
the stationarity assumption (1) and assume instead that the sei-
zure predictor shows a time-dependence which is time-locked to
the previous seizure (), as e.g. in the case of a post-seizure state
that influences a characterizing measure. Accordingly, the inter-
alarm intervals of the surrogates must follow this time-depen-
dence of the original predictor. We illustrate this approach using
the following specific example. Suppose that the inspection of
the original predictor revealed that the intervals from the preced-
ing seizure to the first alarm are significantly longer than all subse-
quent intervals prior to the next seizure, which in turn all seem to
originate from the same distribution. That is, the distribution of
intervals d}, (j =1,...,Q), which we denote by pj, is different from
the one obtained from all &, (j=1,...,Q,1=2,...,A;), which we
denote by p;. Consequently, the alarm times of the original predic-
tor exhibit some non-random structure that is evidently not
reflecting any true predictive power because it is time-locked to
the preceding rather than to the subsequent seizure. Therefore,
assumption .%; is fulfilled, and one should constrain the alarm
times surrogates to exhibit the same time-dependence by generat-
ing p; and p, separately: using the scheme described in Section
3.1.1, one should estimate p, exclusively from p; by drawing the
additional samples dﬁAj+1 from p;. Importantly, this implies that

these additional samples are only taken for inter-seizure intervals
with A; > 2. If during every inter-seizure interval the original pre-
dictor raised at least one alarm, one can directly use p; = p3. How-
ever, if there are inter-seizure intervals without any alarms, i.e.
some intervals to the first alarm were cut short by the seizure, then
these unfinished intervals should be estimated from additional
samples d;, drawn from p; to derive p;. Once p; and p, have been
determined, a surrogate is generated as described above for the #
alarm times surrogates. For the case of #}Y alarm times surrogates,
however, the first surrogate alarm time a;_l after a seizure is always

drawn from pq, and all subsequent intervals up to af‘~ are drawn

JA+1

from p,. Like for #Y surrogates, the last resulting alarm time fi‘; )
JAj+

falling after seizure j is discarded. Jointly these samples result in

d* . Note that even the sample for the first surrogate alarm time

Lo

interval aﬁl determined by the sample from p; can result in a sur-
rogate alarm time fﬁl falling after seizure j. In this case this first

alarm is discarded, and we obtain A; = 0.

Note that this algorithm is adapted to the particular type of
time-dependence studied here: the intervals to the first alarms
are longer than all subsequent intervals. Indeed, our aim is not to
propose a general-purpose algorithm to construct alarm times sur-

rogates for original predictors with arbitrary time-dependencies.
Rather we here suggest to carefully inspect the original predictor
for potential time-dependencies and then adapt the algorithm de-
scribed in Section 3.1.1 accordingly. The procedure described in
this section is meant as one example for such an adaptation.
Importantly, the concept of constrained randomization generally
allows for such adaptations.

3.2. Quantification of sensitivity, specificity, and performance

Suppose that a multi-channel EEG recorded from an epilepsy
patient has a total duration of d hours and includes Q seizures.
Let us further assume that some characterizing measure was ex-
tracted from this recording by means of a moving window tech-
nique, and that the temporal profile of this measure is evaluated
for signatures that are assumed to be predictive for impending sei-
zures, resulting in a univariate temporal sequence of alarm times.
To analyze whether these alarms have any true predictive power
one first has to quantify their sensitivity and specificity. For this
purpose we define the periods directly preceding the seizures as
prediction horizons. The length of these prediction horizons in
hours is denoted by h and assumed to be the same for all seizures.
We assume that the minimal distance between two consecutive
seizures is not shorter than this prediction horizon. Cases where
at least one alarm is raised within the prediction horizon of a sei-
zure are counted as true positive predictions. Seizures for which no
alarm is raised during the prediction horizon count as false nega-
tive predictions. All alarms outside of any prediction horizon are
counted as false positive predictions. The sensitivity is given by
the ratio of the total number of true positive predictions (P*) to
the total number of seizures:

P
Q

Several ways exist to derive a specificity value from false positive
predictions. To relate to other studies (e.g. Winterhalder et al.,
2003; Aschenbrenner-Scheibe et al., 2003; Mormann et al., 2003;
Maiwald et al.,, 2004; Chaovalitwongse et al., 2005; lasemidis
et al., 2003; Schelter et al., 2006a,b; Sackellares et al., 2006; Win-
terhalder et al., 2006; Schelter et al., 2007; Schad et al., 2008) we
here use the false positive rate. This should be determined by divid-
ing the total number of false positive alarms (P™) by the total time
in hours during which such false alarms can occur. This time is gi-
ven by the duration of the recording minus the total time covered
by the prediction horizons, since by construction no false alarms
can occur during the prediction horizons:
P

~d-on (2)
As definition of the performance we use (cf. Chaovalitwongse et al.,
2005):

S (M

F

2
1752+57 3
(1-9) P2 3)

P(S,F)=1-

Here we use Fp =1 h™' to turn also the second summand in the
square-root into a dimensionless quantity and since one per hour
is commonly used as unit for false positive rates (Winterhalder
et al., 2003; Aschenbrenner-Scheibe et al., 2003; lasemidis et al.,
2003; Maiwald et al., 2004; Mormann et al., 2003; Chaovalitwongse
et al.,, 2005; Schelter et al.,, 2006a,b; Winterhalder et al., 2006;
Sackellares et al., 2006; Schelter et al., 2007; Schad et al., 2008).
For S=1 and F = 0 we get P = 1, while lower values are obtained
for deviations from this perfect predictor. However, the perfor-
mance is not normalized. For poor predictors also negative values
can be obtained.
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3.3. Artificial seizure times, characterizing measures, and alarm times

We generated artificial seizure time sequences to represent the
seizure times included in a continuous EEG recording from an indi-
vidual patient. In total we generated artificial data for an arbitrary
but high number of K = 100,000 patients. The purpose of using
such a large patient ensemble is to reliably derive the frequencies
of rejecting and accepting the different null hypotheses. In the fol-
lowing, we describe the procedure carried out for each individual
patient using the notation and index ranges introduced in Section
3.1. For simplicity we use no additional index to identify individual
patients.

For each patient we drew Q = 15 random inter-seizure intervals
dj, the lengths of which were, unless stated otherwise, uniformly
distributed between 2 and 14 h. The concatenation of these inter-
vals resulted in a random sequence of 15 seizure times t;. Accord-
ingly, across patients, these recordings had an average duration of
5 days =120 h (cf. Fig. 1).

3.3.1. Non-stationary integrate-and-fire predictor

For the setting in Section 4.1, we used a simple non-stationary
stochastic integrate-and-fire process to generate artificial measure
profiles. These measure profiles are supposed to be extracted from
the EEG using a moving window technique and are denoted by m;;
fori=1,...,Nj, where N; is the number of analysis windows in the
j-th inter-seizure interval. The measure profile was initialized to
zero and held at this value during a post-seizure delay period Dj,
i.e. mjj=0 for i=1,...,D;. Values for subsequent analysis win-
dows were generated according to:

0 for |mj| =r
M) = { m;; —1 with probability 0.5+ b else
mi;j+1 else

(4)

using 0 < b < 0.5. In the first of these cases, in addition to resetting
the predictor an alarm was raised at this window: t}, = i. Once the
time index reached i = N, the process was stopped and re-initial-
ized for the subsequent inter-seizure interval. We set the post-sei-
zure delay period D; to be uniformly and randomly distributed
between 1250 and 1750 windows. Assuming the length of individ-
ual windows to be 20 s, this corresponds to 6.94 and 9.72 h, respec-

tively. By construction no alarms could occur during this post-
seizure delay period, which is meant to simulate the well-known
post-seizure EEG alterations. The mean length and distribution of
the intervals between subsequent alarms can be influenced by the
parameters b and r. For the non-stationary integrate-and-fire pre-
dictor we used b = 0.125 and r = 40. An example for a temporal
profile of this predictor is shown in Fig. 1.

Since the alarm times are random and have no true predictive
power for the seizure times, the assumption ./ holds. The assump-
tion ¢ does not hold since the inter-alarm interval distribution is
not exponential. Furthermore, due to the post-seizure delay period
> as well as #, hold. Hence, for this non-stationary integrate-
and-fire predictor #7, and 7} are valid.

3.3.2. Stationary integrate-and-fire predictor

For the setting in Section 4.2, we used a stationary stochastic
integrate-and-fire predictor. This was constructed identical to the
non-stationary integrate-and-fire predictor but with the post-sei-
zure delay period D; set to zero. The parameters were changed to
b =0.055 and r = 70 to obtain a similar false positive rate as for
the non-stationary case. As opposed to the non-stationary case,
for the stationary integrate-and-fire predictor .#; holds instead of
%>, and %3 holds instead of #,. On the other hand, .4 still holds,
and 2 still does not hold. Hence, for this stationary integrate-
and-fire predictor ) and »#} are valid.

3.3.3. Poisson predictor

For the setting in Section 4.3, we did not use artificial measure
profiles but rather generated alarm times directly from a homoge-
nous Poisson process. Such a Poisson process has an exponential
inter-alarm interval distribution, and its only parameter is the
mean inter-alarm interval F” which we specify in units h™'. In
addition to 2 the Poisson predictor also fulfills ./", ¢, and #,. In
consequence #, and 'y are true.

3.3.4. Non-naive predictors

To determine not only the statistical size but also the power of
the different null hypotheses tests, we used two different non-
naive predictors with variable degrees of true predictive power
for the setting in Section 4.4. For this purpose, we first constructed
a non-naive predictor. This predictor raised alarms in the predic-
tion horizons of s randomly selected seizures, with s =0,...,15.

g Y * *
< T A A }/r_ ___________ . 1
* * *
I e i it S T - |
g } }
GH- "~ = -
0a.m. 6 a.m. 12a.m. 6 p.m. 0am.

Fig. 1. Scheme of events during an EEG recording with a duration of approximately 5.5 days. Seizure times are shown by vertical lines with stars. The preceding prediction
horizons are depicted as gray frames. The measure profile of the non-stationary integrate-and-fire predictor (Section 3.3.1) is depicted as black temporal profile. Alarms,
which are triggered whenever the measure profile reaches a pre-defined threshold (depicted as dashed horizontal lines), are shown by gray vertical lines. Whenever an alarm
falls into a prediction horizon, this is indicated by a triangle. Cases in which more than one alarm falls into the same prediction horizon (e.g. for the fourth seizure) contribute
only one count to the total number of true positive predictions (see Section 3.2). Every alarm outside of any prediction horizon is counted as a false positive alarm.
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The times of these alarms were set randomly and uniformly dis-
tributed in the prediction horizons.

For a first example we combined this non-naive predictor with
the naive non-stationary integrate-and-fire predictor (Section
3.3.1). The value of s determines the average sensitivity of the
non-naive part of the predictor. To relate this sensitivity to the
influence of the naive part, we use the percentage of alarms raised
by the non-naive part. Pre-analysis showed that for the given val-
ues of b, r, and D; and averaged across the entire patient group, the
naive integrate-and-fire predictor raises 19.85 alarms during the
recording. Hence, this percentage is given by s* = 100 ;z§5s. For a
second example we combined the non-naive predictor with the
naive Poisson predictor (Section 3.3.3, F” = 0.33 h™'). Given that
the average duration of the recordings is 120 h, the percentage of
alarms raised by the non-naive part of the predictor is given by
s* = 100 ;. The first and second example will be referred to as hy-
brid non-naive integrate-and-fire predictor and hybrid non-naive
Poisson predictor, respectively. For s > 0 both predictors violate
the assumption ./", and in consequence all null hypotheses in Table
2 are false.

3.4. Analytical estimates

Suppose an original seizure predictor fulfills #7 and has a false
positive rate of F per time unit. The probability that this predictor
raises at least one alarm in a prediction horizon of h time units is
approximately:

p; = p(alarm|F, h, #¥) ~ 1 — e (5)

(see Winterhalder et al., 2003; Schelter et al., 2006a). The probabil-
ity that the predictor reaches a sensitivity of at least Sp thus is:

Q i .
pES = Sl hoaY) = > (?)Iﬂ(l p ) -

J=q=QS

For a designated significance level o the analytical sensitivity esti-
mate is defined as:

Sa(F,h) = max{So | p(S > SolF, h, #7) > o} )

(Winterhalder et al., 2003; Schelter et al., 2006a). Hence, the prob-
ability that the original Poisson predictor exceeds S, is less than o.
Throughout the study we use « = 5% as significance level. The ana-
lytical performance estimate is defined by using Eq. (3):
2 P
(1= Sy(Fh) + ®)
0

PA(F>h):17

Winterhalder et al. (2003) gave an analytical sensitivity estimate for
a periodic predictor with an alarm rate of F. The probability that this
periodic predictor raises at least one alarm in a prediction horizon
of his: p; = min{1, Fh}. For the typical case of Fh considerably smal-
ler than 1 one can approximate Eq. (5) by p; (Schelter et al., 2006a),
the Poisson and periodic predictor become equivalent. We therefore
restrict our evaluation of analytical estimates in this study to the
Poisson predictor.

4. Results
4.1. Non-stationary integrate-and-fire predictor

For the first setting we apply the naive non-stationary inte-
grate-and-fire predictor for which #}, and Y are valid (Section
3.3.1). The prediction horizon was set to h = 1h. Fig. 2 shows de-
tailed results obtained under this setting for 10 exemplary pa-
tients, and Fig. 3 summarizes the rejection frequencies of the
different null hypotheses for the entire ensemble of K = 100,000
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Fig. 2. Results for the non-stationary integrate-and-fire predictor (Section 4.1)
obtained for 10 exemplary patients. Top, performance P; middle, sensitivity S;
bottom, false positive rate F. Gray bars represent results obtained for the original
predictor. Magenta horizontal lines depict the corresponding mean value taken
across the entire group of K = 100,000 patients. Red and blue crosses represent
values obtained for 19 #7 and #7 surrogates, respectively. Blue and red horizontal
bars indicate the corresponding mean values of the surrogates. Black bars with
asterisks indicate analytical sensitivity and performance estimates. The leftmost
case corresponds to the example shown in Fig. 1.

patients. In almost 80% of the patients the performance of the ori-
ginal predictor is higher than the analytical performance estimate.
Given that we used a significance level of 5% for the analytical per-
formance estimate, the underlying null hypotheses #7y is clearly
rejected. This is primarily due to the non-stationarity caused by
the post-seizure delay period: consider a certain inter-seizure
interval j and suppose that the first alarm was raised before the on-
set of the prediction horizon of the subsequent seizure (¢}, < t; — h,
see e.g. the third seizure in Fig. 1). Due to the non-zero post-seizure
delay period Dj, the interval d;,1 spanning the time between the
preceding seizure at t; ; and this first alarm at t{; is long while
the period from this first alarm to the subsequent seizure at t} is
covered by shorter inter-alarm intervals: dj,,..., dﬁAj, resulting in

a time-dependent false positive rate. What is used to calculate
the analytical performance estimate is an average false positive
rate obtained from all intervals between any previous seizure at
t, and the onsets of the prediction horizon of the subsequent
one at t; — h. Thereby, the false positive rate reflects the mean
alarm rate covering one long and a number of short inter-alarm
intervals. What is decisive for the actual sensitivity of the naive
random seizure predictor, however, are the short inter-alarm inter-
vals dj,, ..., dj, after t};. Furthermore, given the distribution of in-
ter-seizure intervals and the length of the post-seizure delay
period, there are inter-seizure intervals for which t; —h < &8, <
or for which no alarm is raised at all (see e.g. first and second sei-
zure, respectively, in Fig. 1). The false positive rate is zero in both
cases, and the sensitivity is one and zero, respectively. In conse-
quence, these two cases contribute further to a deviation of the ac-
tual performance of the predictor from the analytical estimate.
Overall, due to the time-dependence of the original predictor, its
performance is higher than the analytical performance estimate.
This deviation in no way reflects any inherent incorrectness of
the analytical performance estimate. Instead it simply reflects that
one of the underlying assumptions, namely the stationarity
assumption %1, is violated. Accordingly, the tested null hypothesis
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Fig. 3. Results for the non-stationary integrate-and-fire predictor (Section 4.1) obtained for the entire patient group for both #% and 7 alarm times surrogates as well as for
the sy analytical performance estimate. For the performance P and the sensitivity S, the blue, green, and red fractions represent the percentages of the 100,000 patients for
which the performance of the original predictor was lower than the minimal value for all 19 surrogates, within the surrogate distribution, and higher than the maximal value
for all surrogates, respectively. For the false positive rate F bars in blue, green, and red indicate the fractions for which the value for the original predictor was higher than the
maximal value for all surrogates, within the surrogate distribution, lower than the minimal value for all surrogates, respectively. The rightmost stacked bars depict in green,
yellow, and red the percentages for which the performance of the original predictor was lower, equal, and higher, respectively, than the analytical performance estimate. To
derive confidence intervals all values were determined from 10 non-overlapping sub-divisions of 10,000 patients each. Bars depict the mean values across these sub-
divisions, error bars depict the corresponding ranges. The dashed lines indicate the 5% significance levels.

oy is correctly rejected. In fact, the assumption of uncorrelated
and exponentially distributed inter-alarm intervals (2) is also vio-
lated, and we illustrate the relevance of this assumption in Section
4.2.

The performance values of the »#7} alarm times surrogates do
not reach the original predictor either (Figs. 2 and 3). For this sur-
rogate type, the inter-alarm intervals are randomized without
constraints. Therefore, the long intervals which were located at
the beginning of the inter-seizure intervals for the original predic-
tor (di ;,...,d ) are randomly distributed within the inter-seizure
intervals for the alarm times surrogate. In particular, they can
overlap with, or even completely cover the prediction horizons.
The latter case reduces the sensitivity, and in both cases, more of
the short inter-alarm intervals fall into periods not covered by pre-
diction horizons, thereby increasing the false positive rate. Overall,
the surrogates’ performance is lower than that of the original
predictor, the null hypothesis #} is thus rejected. As in the case
of the analytical performance estimate, this does not reflect a
shortcoming of the applied surrogate technique but a violation of
the underlying stationarity assumption .%; for the original predic-
tor. In consequence, the rejection of .#} is correct.

So far we have established that the corresponding null hypoth-
eses tested by the »#7} analytical estimate and #} alarm times
surrogates were rejected correctly, because some of the underly-
ing assumptions were not met by the original predictor. Impor-
tantly, while the analytical approach cannot be adjusted to
account for deviations from these assumptions, alarm times sur-
rogates can be constructed to test a different null hypothesis. Be-
fore we proceed, however, we should recall that we made use of
controlled conditions. We used a post-seizure delay period to
construct a non-stationary predictor. What if we had no access
to this a priori knowledge but rather our only information were
the alarm times and the rejections of #7 and »#}3? In that case,
one should scrutinize the original predictor for possible non-

stationary features. Indeed plots of the intervals to the first
alarm in each inter-seizure interval pooled across all seizures of
a given patient, measured in one instance with respect to the
preceding seizure and in another instance with respect to the
subsequent seizure, reveal an evident non-stationarity (Fig. 4).

Patients
+
+
++

Patients
T
+
+
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Fig. 4. (upper) Lengths of intervals from seizures with index j — 1 to the first alarms
in the subsequent inter-seizure intervals (d;, = t}, —t; ;). Rows contain sets of
intervals obtained for 10 exemplary patients (the same patients as in Fig. 3). Each
marker represents an interval obtained for an individual inter-seizure interval.
(lower) Analogous to upper panel but here showing intervals from the first alarms
in inter-seizure intervals j to the subsequent seizures (tf —t?;). The variability
relative to the mean interval length is evidently higher in the lower panel, providing
evidence that the times of the first alarms are related to the preceding but not to the
subsequent seizures.
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This non-stationarity is time-locked to each previous but not to
the subsequent seizure and thereby does not indicate any true
predictive power of the predictor. Accordingly, the reason for
the rejections of #{ and #} can be deduced empirically from
the data without the use of any a priori knowledge. These plots
furthermore provide evidence that while the stationarity assump-
tion & is clearly violated, the assumption of the same time-
dependence for all inter-seizure intervals with time measured
relative to the previous seizure (%,) seems plausible. This
assumption is backed by Fig. 1 which shows that only the first
intervals dj; stand out from the remaining intervals dj,, ..., d},.
Hence, one should drop &, and instead use .#,, which corre-
sponds to testing ) instead of #} (Table 2). As stated in
Section 3.1.2, the construction of #}) surrogates always needs to
be adapted to the particular time-dependence found for the original
predictor. The corresponding algorithm for the case considered
here, i.e. the interval to the first alarm stands out from all subse-
quent inter-alarm intervals, has been described in Section 3.1.2.

Results for exemplary patients shown in Fig. 2 indicate that
Y alarm times surrogates indeed match the performance, sensi-
tivity, and false positive rate of the original predictor. This is fur-
ther substantiated by statistics derived from the entire patient
ensemble (Fig. 3) which show that the performance of the origi-
nal seizure predictor exceeds the maximal performance of all sur-
rogates in 4.0% of the cases (range for ten sub-divisions of &
patients each: 3.8-4.4%). The performance of the original seizure
predictor is smaller than the minimal performance of all surro-
gates in 5.3% of the cases (range: 4.8-5.5%). Hence, the empirical
size of the #? surrogates is close to the significance level of 5%.
This match is not perfect, and somewhat larger deviations are
found for the sensitivity and false positive rate in this example.
However, as already indicated in Section 3.1.1 and further dis-
cussed in Section 5, the surrogates cannot be expected to per-
fectly match the original predictor. We here regard the
empirical size as consistent with the significance level of the test
and interpret these results to provide strong evidence that #7 is
true, which is in fact correct. At first sight the direction of the
remaining deviations might suggest that the test is too conserva-
tive against accepting a true predictive performance of the origi-
nal predictor. However, results of this first setting cannot be
conclusive for this issue. The power of a test can only be studied
when the null hypothesis is false, and we return to this point in
Section 4.4.

4.2. Stationary integrate-and-fire predictor

For this setting, we use the stationary integrate-and-fire predic-
tor for which #7}, and #7¥ are valid (Section 3.3.1). The prediction
horizon was again set to h = 1h. Comparing Figs. 2 and 5 we find
that the performance of the non-stationary integrate-and-fire pre-
dictor in Section 4.1 is substantially higher than the performance of
the stationary predictor studied in the current setting. This further
illustrates the effect of the non-stationarity induced by the non-
zero post-seizure delay period in the former setting. In the current
setting there is no such non-stationarity, and in consequence #}
alarm times surrogates match the original predictor within the ex-
pected accuracy (Figs. 5 and 6). Hence, this null hypothesis is cor-
rectly accepted. In contrast, the performance of the original
predictor is still higher than the analytical performance estimate
in 15.4% of the cases, and thus #7 is correctly rejected, although
the predictor has no true predictive power. This result illustrates
once again that »#7) represents the conjunction of three assump-
tions and that the violation of any of these assumptions, in the cur-
rent setting the assumption of uncorrelated and exponentially
distributed inter-alarm intervals (2), is sufficient for a rejection
of this null hypothesis.
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Fig. 5. Same as Fig. 2, but for the stationary integrate-and-fire predictor (Section
4.2) and only for #} surrogates.

4.3. Poisson predictor with variable mean alarm rate

In this setting we use the Poisson predictor (Section 3.3.3) for a
range of mean inter-alarm intervals F” and a prediction horizon of
2 h. Accordingly, #y is true and all assumptions underlying the
analytical performance estimate are fulfilled. Nonetheless, for low-
er F”, the rejection frequency for the analytical performance
estimate exceeds the significance level of 5%. For F, =1/26 h =
0.0385 h™' the null hypothesis is rejected in 7.8% of the cases
(range: 7.2-8.2%, Fig. 7a). The reason for this mismatch are varia-
tions in F estimated for individual patients. Averaged across the
entire patient ensemble, the mean F always matches the actual
F”, regardless of the actual value of F”. For decreasing F” values,
however, the uncertainty in the estimated F for individual patients
increases. In consequence, for individual patients F can be substan-
tially lower or higher than the actual F”. For those patients for
which F” is underestimated or overestimated by F, and the rejec-
tion probability of the analytical performance estimate is increased
or decreased, respectively. Importantly, while these cases balance
when F is averaged across patients, they cannot balance with re-
gard to the rejection frequency. Overall the empirical size is higher
than the applied significance level.

This problem further aggravates when F has to be estimated
from shorter inter-seizure intervals. To illustrate this point we
show results for which we used a different set of Q = 15 shorter
artificial inter-seizure intervals d; with lengths uniformly distrib-
uted between 2 and 8 h (Fig. 7b). For this example the rejection fre-
quency of the analytical performance estimate reaches values of up
to 10.5% (range: 10.2-11.2%) at F” =0.385 h™'. Hence, even
though #} is valid, there is a substantial probability of false posi-
tive rejections of this null hypothesis tested by the analytical per-
formance estimate. This reveals an intrinsic bias of the analytical
performance estimate that can cause its empirical size to be sub-
stantially higher than the significance level.

Fig. 7 further shows that #} surrogates exhibit a significantly
higher performance than the original predictor. This becomes
apparent in particular for lower F” and for shorter inter-seizure
intervals. The reason why #7 surrogates do not match the original
is that despite the correction scheme to account for unfinished
intervals, the surrogates can have a remaining bias towards too
short inter-alarm intervals. This bias becomes substantial if the ori-
ginal predictor exhibits an inter-alarm interval distribution p with
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Fig. 6. Same as Fig. 3, but for the stationary integrate-and-fire predictor (Section 4.2). Here only 7 surrogates are used.
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Fig. 7. Same as Fig. 3, but here for the Poisson predictor in dependence on (F”)" (Section 4.3) and restricted to rejection frequencies derived from the performance using Hy
and #y' surrogates. (a) Results for the standard patient ensemble. (b) Results for a patient ensemble with shorter inter-seizure intervals.

a pronounced tail towards long intervals, as is the case for the length of inter-seizure intervals, the more difficult it becomes to
exponential p of the Poisson predictor studied here. Evidently, reliably estimate p from p. This explains why the probability that
the heavier the tail of inter-alarm intervals with regard to the the original performance is smaller than the minimal performance
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across an ensemble of #Y surrogates rises with decreasing F” and
for shorter inter-seizure intervals.

While this mismatch would not lead to the erroneous conclu-
sion of a true predictive power of the original predictor since the
original predictor is actually outperformed by the surrogates, it
still is sufficient for a rejection of »#7%. In fact, this #} rejection
is correct. For the Poisson predictor, inter-alarm intervals are
not interrupted by seizures. Therefore, %5 is violated, and thereby
Y is valid. However, like stated in Section 3.1.2 the null hypoth-
esis #}y implies #0'. The Poisson predictor is memoryless and
uncorrelated, it always has the same state and is not reset by a
seizure. #, is valid. Accordingly, the interval from the last alarm
in the inter-seizure interval j to the first alarm in interval j+ 1
does not represent two distinct inter-alarm intervals but rather
one continuous interval. Indeed, results for #}' surrogates show
that for all values of F” and regardless of the length of the in-
ter-seizure intervals, the underlying null hypothesis is always
correctly accepted (Fig. 7). For high values of F”, we find that
the rejection frequency for these surrogates falls below the signif-
icance level. The reason is that due to the substantial tail of the
inter-alarm distribution of the Poisson predictor, there is a grow-
ing probability that no alarm at all is raised for the entire record-
ing for decreasing F”. These cases are counted as acceptances of
the null hypothesis both for surrogates and the analytical perfor-
mance estimate.

4.4. Non-naive predictors

In this last setting, we use the two different non-naive predic-
tors described in Section 3.3.4 with variable degrees of true predic-
tive power. Recall that this predictive power is quantified by s*, i.e.
the percentage of all alarms raised by the non-naive part of the
predictor. To test the hybrid non-naive integrate-and-fire predic-
tor, we use ) alarm times surrogates. Here the case of s* = 0 is
identical to the setting of Section 4.1 (compare Figs. 3 and 8a).
Accordingly, for s* = 0 the rejection frequency of #Y surrogates
is again close to the significance level, and #} is correctly ac-
cepted. For s* = 0 this rejection frequency corresponds to the sta-
tistical size of the test, i.e. the probability of rejecting the null
hypotheses although it is correct. For s* > 0, this rejection fre-
quency represents the statistical power of the test, i.e. the proba-
bility that a false null hypotheses is indeed rejected. Evidently,
for s* — 0 the power converges towards the size, but substantial
deviations from the significance level are already established for
the first non-zero s* ~ 5%(s =1). For increasing s* values, the
power of the test rises further. Hence, at the level of the patient
ensemble the null hypothesis #7Y) is correctly rejected for s* > 0.
For individual patients on the other hand, a substantial probability
of accepting the null hypothesis despite its incorrectness remains
for small s*. However, for s* ~ 25%, a statistical power as high as
approximately 80% is achieved.

Results in Fig. 8a cannot be conclusive with regard to the
power of the #} analytical performance estimate, since already
for s* = 0 its null hypothesis is violated. This is different for the
hybrid non-naive Poisson predictor for which both #' and #}
are true for s* =0 (Fig. 8b). We here use this predictor for
F? =0.25 h™' which for s=0 corresponds to one of the lower
false positive rates considered in Section 4.3 (Fig. 7). Comparing
the results for #} surrogates obtained for the hybrid non-naive
integrate-and-fire with results for #lI' surrogates obtained for
the hybrid non-naive Poisson predictor (Fig. 8a versus b), we
find that for the latter the statistical power rises more slowly
as a function of s. However, here the random part of the predic-
tor raises more alarms, and with regard to s* the power of #7'
surrogates rises faster. A power of around 80% is reached already

for s* ~ 15%. Comparing the #}' alarm times surrogates and the
analytical performance estimate for the hybrid non-naive Poisson
predictor, we find that the power of the analytical performance
estimate rises slightly faster with increasing s*. Overall these re-
sults show that alarm times surrogates and analytical perfor-
mance estimates have a similar, high statistical power to result
in true positive rejections if the seizure predictor has any true
predictive power.

5. Discussion

In this study, we have extended the framework of seizure pre-
dictor surrogates by introducing the concept of alarm times surro-
gates. We compared this concept against an analytical
performance estimates under controlled conditions. Our results
provide ample evidence that alarm times surrogates offer a variety
of important advantages over analytical performance estimates.
The key advantage is the surrogates’ higher flexibility with regard
to the different null hypotheses that can be tested. While analytical
sensitivity and performance estimates have been described only
for periodic predictors and Poisson predictors (#7y) (Winterhalder
et al., 2003; Schelter et al., 2006a; Wong et al., 2007; Snyder et al.,
2008), seizure time surrogates allow one to test various distinct
null hypotheses.

Furthermore, analytical performance estimates have been de-
rived only as a function of false positive rates (Winterhalder
et al., 2003; Schelter et al., 2006a) or the fraction of time under
warning (Wong et al., 2007;Snyder et al., 2008). An advantage of
seizure predictor surrogates is that they are in no way restricted
to any particular definition of sensitivity, specificity, and perfor-
mance. Moreover, seizure predictor surrogates are even robust
against potential biases in these definitions, because any proce-
dure applied to the original seizure predictor is applied in the
same way to the seizure predictor surrogates. Accordingly, any
potential bias included in these procedures affects the original
and the surrogate predictor in the same way. Analytical perfor-
mance estimates, in contrast, must rely on the correctness of
the specificity estimate. If this is not warranted, false positive
rejections of .} are to be expected. Seizure predictor surrogates
can also be derived for schemes based on seizure warnings of
variable duration (cf. Snyder et al., 2008) or based on the notion
of permissive pre-ictal states that not always lead to seizures (cf.
Wong et al., 2007).

At first sight it might seem that the flexibility of seizure predic-
tor surrogates might allow one to just try different null hypotheses
until one finds surrogates that match the original seizure predictor.
Regardless of what other assumptions are made, however, the null
hypotheses of seizure predictor surrogates must always include ./".
Accordingly, the violation of .47, as of any other assumptions in-
cluded in the null hypothesis, is sufficient for a rejection. Therefore,
a predictor with true predictive power will generally outperform
surrogates for any null hypothesis that includes ./". Certainly, the
statistical power of seizure predictor surrogates cannot always be
100%. For seizure predictors with some weak but true predictive
power, false acceptances of the null hypothesis for individual pa-
tients cannot be ruled out. However, on the level of patient ensem-
bles, the null hypothesis is likely to be rejected even for weak
sensitivity and limited specificity (see Section 4.4). When in doubt,
it is recommended to extend the data set by adding more record-
ings to obtain robust results.

Results derived from seizure predictor surrogates always need
to be interpreted with care. First of all, it is never warranted that
all features which do not reflect a true predictive power of the ori-
ginal predictor but may influence its performance have been de-
tected and imposed as constraints to the surrogates. Hence, it
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Fig. 8. Same as Fig. 3, but for the non-na predictors of Section 4.4. (a) Hybrid non-na integrate-and-fire predictor for variable s and s* tested against #y’ surrogates. (b) Same

as (a) but for the hybrid non-na Poisson predictor tested against #7 surrogates.

does not follow from the rejection of different null hypotheses that
the original predictor is not consistent with some other null
hypothesis that includes ./". We can never rule out that the original
predictor is consistent with some appropriate stochastic model
that we have not found yet. Furthermore, even if the appropriate
null hypothesis is used, a perfect statistical match between predic-
tor surrogates and the original predictor is not guaranteed. Such a
perfect match can only be expected if the surrogates match the ori-
ginal in all constrained properties with a sufficient precision. The
often limited sample size given by the original predictor makes it
difficult to eliminate the possibility of a systematic bias in the sur-
rogate properties. Specialized correction schemes, such as the one
described in Section 3.1.1, can reduce such biases but might not
eliminate them completely. Hence the frequency of false positive
null hypothesis rejections may deviate from the significance level
of the surrogate test. The deviations encountered in the present
study were typically such that the empirical size was below the
nominal size. This type of deviation would not provide any evi-
dence for the erroneous conclusion that the original predictor
has true predictive power. However, a bias in the surrogates’ prop-
erties could also cause too many false positive rejections where the
original performance is higher than the surrogate performance. In
consequence, seizure predictor surrogate should not be overrated
as a fail-safe tool for evaluating seizure prediction algorithms.
Keeping these as well as general limitations intrinsic to the logic
of null hypothesis testing (see e.g. Cohen (1994) and references

therein) in mind, alarm times surrogates offer a straightforward
way to test well-defined null hypotheses about seizure predictors
derived from the EEG of epilepsy patients.

5.1. Implications for seizure predictors extracted from actual EEG
recordings

While our paper focusses on the use of artificial seizure pre-
dictors under controlled conditions, our results have strong impli-
cations for applications to seizure predictors extracted from
actual EEG recordings. We discuss these implications in the
remainder of this paper. In Section 4.1, we used an artificial
alarm-free delay period after each seizure to construct a non-sta-
tionary integrate-and-fire predictor. It is well-known that post-
seizure EEG alterations can cause pronounced changes in charac-
terizing measures which in turn result in time-dependencies of
the seizure predictor. Furthermore such post-seizure time-depen-
dencies can be intrinsic to the prediction algorithm. In several
studies (e.g. lasemidis et al. (2003), Chaovalitwongse et al.
(2005), Sackellares et al. (2006), lasemidis et al. (2005)) which
used the largest Lyapunov exponent as characterizing measure,
channel groups used for the predictor were re-selected after each
seizure and were specifically composed of those measure profile
channels which were most converged prior to seizure j and di-
verged after this seizure. A re-convergence of the measure profile
in these channel groups was then regarded as predictive of
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seizure j+ 1 and used to trigger an alarm. Choosing specifically
those channels that are diverged after a seizure (out of equilib-
rium) and awaiting their re-convergence (equilibrium) may have
the same effect as the artificial post-seizure delay period we used
for the construction of the non-stationary integrate-and-fire pre-
dictor. As illustrated in Fig. 4, such time-dependencies can easily
be detected since they are time-locked to each preceding seizure.
For seizure predictor surrogates, one can account for this type of
time-dependence by replacing #; by .#,. The derivation of ana-
lytical performance estimates for these time-dependencies, how-
ever, seems hardly possible. In the analytical framework %
cannot simply be replaced by %,. Indeed we have shown that
HY = & ¥ & A, surrogates matched the performance of
the original non-stationary integrate-and-fire predictor studied
in Section 4.1, whereas #) = /" & &1 & %3 surrogates as well
as the #§ = 4 & &1 &  analytical performance estimate fell
short of this predictor’s performance.

The distinction of the different assumptions and null hypoth-
eses composed from them might seem too meticulous. However,
as further substantiated by the present study, it is important to
realize exactly what assumptions underlie the particular null
hypothesis being tested. Aschenbrenner-Scheibe et al. (2003) re-
ported that although they found no significant difference be-
tween results for the inter-seizure and pre-seizure data
obtained from an original seizure predictor based on the correla-
tion dimension, this predictor nonetheless outperformed the #7
analytical performance estimate. The authors concluded that the
pre-seizure EEG carried information about the forthcoming sei-
zure and that the seizure predictor indeed captured this infor-
mation to some degree. However, if we recall that 7}
represents the conjunction of three assumptions: #y = ./ &
%1 & 2, it is clear that the violation of any of these assumptions
is sufficient for a rejection of this null hypothesis. Apart from a
true predictive power of the original predictor (violating .4/, cf.
Section 4.4), a time-dependence of the mean alarm rate (violat-
ing %1, cf. Section 4.1), or a non-exponential distribution of the
inter-alarm intervals (violating &, cf. Section 4.2) can cause a
rejection of #y. Hence, this rejection provides merely a neces-
sary yet not sufficient condition for a true predictive power of
the original predictor. In fact, Aschenbrenner-Scheibe et al.
(2003) deactivated the predictor after an alarm for the duration
of a prediction horizon. Thereby, assumption 2 was violated by
construction. In addition, an in-sample parameter optimization
was carried out which by itself is sufficient to falsely reject null
hypotheses of analytical performance estimates. Lastly, we have
shown here that the analytical performance estimate has an
intrinsic bias to underestimate the performance values expected
under #} for low false positive rates such as those considered
by Aschenbrenner-Scheibe et al. (2003) (Section 4.3). Therefore,
rather than assuming true predictive power of the original pre-
dictor, many factors could explain why in (Aschenbrenner-Sche-
ibe et al, 2003) the original predictor outperformed the »#7
analytical performance estimate.

Mormann et al. (2005) applied a total of 30 different character-
izing measures to EEG recordings from five patients using different
evaluation schemes. Since the available amount of data was insuf-
ficient for a division into training and testing data, a number of
evaluation parameters were optimized in-sample. To account for
this optimization, results were validated using seizure times surro-
gates, and the surrogates were given the same degrees of freedom
for optimization. Periods of 30 minutes after each seizure were ex-
cluded from the analysis to diminish the influence of post-seizure
time-dependencies that would violate the stationarity assumption
&1 included in the null hypothesis of seizure times surrogates
(#4"). Rejections of this null hypothesis were found for several
measures, particularly for bivariate measures characterizing the

interaction between different brain regions. However, although
Mormann et al. (2005) discussed the problem of testing multiple
characterizing measures, no formal correction for multiple tests
was applied.

Chaovalitwongse et al. (2005) divided EEG recordings from 10
patients into training and testing data for each individual pa-
tient. The authors employed a seizure predictor based on the cri-
terion of a pre-seizure convergence and post-seizure divergence
of the largest Lyapunov exponent profile as described above
and seizure times surrogates to validate the performance values.
As free parameters the number of channel groups and the num-
ber of channels per group were optimized using the training
data. These optimized parameters were then used on the testing
data for both the original predictor and the surrogates. However,
the authors depicted the full distribution of the surrogate testing
data performance for only one of the 10 patients. Notably they
picked the patient for whom the highest original predictor per-
formance was found for the testing data. Only for this one pa-
tient this testing data performance of the original predictor
was compared to the surrogate distribution, and the resulting
p-value was reported. For the remaining nine patients, only the
mean values but not the ranges of the surrogates’ performance
distributions were reported. Overall, eight out of 10 patients
showed a performance of the original predictor that was better
than the mean performance of the surrogates. However, since
the original performance was not statistically tested against
the full distribution of the surrogates, it is problematic to asses
the significance of these performance differences for individual
patients.

Sackellares et al. (2006) re-analyzed the same EEG recordings
studied by Chaovalitwongse et al. (2005) using the same seizure
predictor already used in (Chaovalitwongse et al., 2005). This time,
however, the authors used a different quantification of the perfor-
mance and studied the influence of the length of the prediction
horizon. Furthermore, the data was not divided into training and
testing data, and fixed values were used for the two free parame-
ters of the prediction algorithm, i.e. the number of channel groups
and the number of channels per group. The results were tested
against the null hypotheses of a periodic predictor and Poisson pre-
dictor. Rather than using analytical sensitivity and performance
estimates, Sackellares et al. (2006) generated actual alarms from
a periodic and from a Poisson process. Hence, this procedure,
which Snyder et al. (2008) extended to gamma distributed inter-
alarm intervals, can be regarded as a variant of seizure predictor
surrogates. Here surrogate alarms are not generated by con-
strained randomizations of the original predictor, but by using a
concrete model, namely, a periodic or Poisson process. This form
of typical realization-surrogates (cf. Schreiber and Schmitz (2000))
shares a number of the advantages of seizure predictor surrogates
derived from constrained randomizations of the original predictor.
However, just as Chaovalitwongse et al. (2005) and Sackellares et
al. (2006) only provided the mean values and not the full surrogate
performance distributions. Furthermore, no information was pro-
vided about the choice of the two parameters of the algorithm.
In particular, it is not clear whether the values used by Sackellares
et al. (2006) were indeed chosen independent and different from
the optimal values of these parameters determined in Cha-
ovalitwongse et al. (2005) from the training data portion of the
recordings.

We conclude that previous applications of analytical perfor-
mance estimates or seizure predictor surrogates to real seizure
predictors extracted from actual EEG recordings have suffered
from various problems or shortcomings. Our results presented here
for artificial data under controlled conditions emphasize the rele-
vance of these problems in that they can cause false positive null
hypothesis rejections. These rejections can be erroneously
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interpreted as indicative of true predictive power of the seizure
prediction algorithm.
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