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ABSTRACT

The degree to which unimodal circular data are concentrated around the mean direction can be quantified using the mean resultant length, a
measure known under many alternative names, such as the phase locking value or the Kuramoto order parameter. For maximal concentration,
achieved when all of the data take the same value, the mean resultant length attains its upper bound of one. However, for a random sample
drawn from the circular uniform distribution, the expected value of the mean resultant length achieves its lower bound of zero only as the
sample size tends to infinity. Moreover, as the expected value of the mean resultant length depends on the sample size, bias is induced when
comparing the mean resultant lengths of samples of different sizes. In order to ameliorate this problem, here, we introduce a re-normalized
version of the mean resultant length. Regardless of the sample size, the re-normalized measure has an expected value that is essentially zero
for a random sample from the circular uniform distribution, takes intermediate values for partially concentrated unimodal data, and attains
its upper bound of one for maximal concentration. The re-normalized measure retains the simplicity of the original mean resultant length
and is, therefore, easy to implement and compute. We illustrate the relevance and effectiveness of the proposed re-normalized measure for
mathematical models and electroencephalographic recordings of an epileptic seizure.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0166468

Real-world data often depend on circular variables, a typical
example being average wind speed as a function of compass nee-
dle direction. Circular data often show concentration around
some central value, such as the elevated incidence of infectious
diseases in a certain season. The classical measure of the concen-
tration of unimodal circular data is the mean resultant length,1–3

which is applied in many scientific fields.4–40 Given a certain
value of the mean resultant length obtained for experimental or
observational data, statistical tests can be used to assess its sig-
nificance under the null hypotheses of uniformity or specified
circular location.1–3,41 However, the value itself can be difficult to
interpret. The reason is that for data drawn from the circular uni-
form distribution, the expected value of the mean resultant length

for a finite number of observations is non-zero and increases
with decreasing sample size. This sample size dependence can be
misleading. When the mean resultant length is used to assess syn-
chronization, for example, a small network of fully independent
nodes can erroneously be concluded to be more synchronized
than a bigger network for which coupling between nodes actu-
ally induces some coherence. To address this problem, here, we
propose a simple re-normalization of the mean resultant length.
Whatever the sample size, our re-normalized measure has an
expected value of essentially zero for data drawn from the cir-
cular uniform distribution and attains its upper bound of one,
corresponding to maximal concentration, when all of the data
take the same value. Thus, the re-normalized mean resultant
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length provides a more informative measure of the concentration
of circular data than the original mean resultant length, with-
out diminishing its universal applicability, simplicity, and ease of
implementation.

I. INTRODUCTION

The mean resultant length plays a central role in circular
statistics1–3 and is referred to by various names in different sci-
entific communities, such as the Kuramoto order parameter,42

phase coherence,4 phase stack,28 phase synchronization index,7

phase locking value,8 or mean phase coherence.9 Several general-
izations, such as, for example, the triplet synchronization index,43

exist. Applications of the mean resultant length are so numer-
ous and widespread across scientific disciplines that any attempt
to compile a halfway comprehensive summary would fill numer-
ous pages. We, therefore, restrict ourselves to reference some
examples from neuroscience,4–6 neurology,7–13 cardiology,14,15 other
fields of medicine,16,17 psychology,18,19 biomedical engineering,20,21

biology,22,23 ecology,24,25 climatology,26,27 seismology,28,29 chemi-
stry,30,31 physics,32,33 astronomy,34,35 computer science,36,37 the study
of mathematical models,38,39 and last but not least the classical work
of Rayleigh on acoustics.40

We review the definition of the mean resultant length and illus-
trate the problems caused by its sample size dependence in Sec. II.
In Sec. III, we propose our re-normalized mean resultant length.
After using mathematical models in Secs. II and III to illustrate
the relevance and effectiveness of our re-normalized measure under
controlled conditions, in Sec. IV, we apply it in an analysis of an
electroencephalographic (EEG) recording of an epileptic seizure to
illustrate its application to real-world data. In Sec. V, we briefly
consider complementary approaches and the unbiased estimate of
squared mean resultant length. As we discuss in Sec. VI, our aim
is not to address the statistical testing of circular concentration, but
to introduce the re-normalized mean resultant length as a measure
with improved interpretability, which is particularly useful when
comparing levels of concentration across experiments with different
sample sizes.

II. CLASSICAL MEAN RESULTANT LENGTH

Let2j, for j = 1, . . . , n, denote a random sample of size n from
some circular distribution on [0, 2π). A pertinent example would be
the phases of n oscillators at a certain time t. Indeed, for the sake
of brevity and without loss of generality, henceforth, we generally
refer to the 2j’s as phases. In some derivations below, we assume
that the2j’s are n independent and identically distributed (iid) ran-
dom variables from the circular uniform distribution. Whenever
this assumption is made, we use the expression 21, . . . ,2n ∼ CU .
Whatever the circular distribution from which the 2j’s were sam-
pled, the mean resultant length can be defined in two equivalent
ways (see, e.g., Sec. 1.3.1 in Ref. 3),

R̄n :=
1

n

∣

∣

∣

∣

∣

∣

n
∑

j=1

ei2j

∣

∣

∣

∣

∣

∣

, (1)

where i =
√

−1 and | · | denotes modulus, or R̄n :=
∥

∥X̄
∥

∥, where

X̄ := 1
n

∑n
j=1(cos2j, sin2j)

′ and ‖ · ‖ is the Euclidean norm on R
2.

The notation R̄n is used in order to clarify that the sample mean
resultant length determined for a finite number of n phases is being
referred to, as opposed to its population counterpart

(∣

∣E
[

ei21
]∣

∣ if

the sample is iid
)

that summarizes the concentration of a circular

distribution from which the phases were drawn. Clearly, R̄n attains
its upper bound of one if and only if all of the 2j are equal. The

lower bound of R̄n is zero, obtained when X̄ = 0. This occurs, for
instance, when the data distribution is antipodally (or twofold) sym-
metric: for example, an even number of phases with2j+1 = 2j + π

for j = 1, 3, . . . , n − 1. However, for such data, and more generally
for `-fold symmetric and some other forms of reflectively symmetric
data, R̄n is no longer a measure of concentration but rather a mea-
sure of symmetry. As is well known, and as we illustrate below, for
finite n, the expected value of R̄n is not zero for21, . . . ,2n ∼ CU .

Consider the circular uniform case with 21, . . . ,2n ∼ CU .
Being a function of n random variables, R̄n is itself a random vari-
able, with a probability density function that does not admit a closed
form (see Sec. 4.1.1 in Ref. 1). Due to the central limit theorem, in
the limit as n → ∞, the density of R̄n reduces to the Dirac delta
function, as then R̄n = 0 with probability one. The situation is more
complicated for finite n, and we use the following example of two
dynamical systems, A and B, to illustrate an important problem of
interpretation that can occur. To define system A, we use nA = 5
independent harmonic oscillators with the phases φj(t) governed by

φ̇j(t) = ωA,j (2)

for j = 1, . . . , nA, where the dot denotes differentiation with respect
to time and ωA,j is the natural frequency of oscillator j. For system
B, we use a standard Kuramoto model42 for a network of nB = 10
all-to-all coupled oscillators with phases ψj(t). For j = 1, . . . , nB, the
temporal evolution of the phases is determined by

ψ̇j(t) = ωB,j −
K(t)

nB

nB
∑

k=1

sin
(

ψj(t)− ψk(t)
)

, (3)

where ωB,j denotes the natural frequency of oscillator j and K(t) is
a time-dependent coupling. Starting from initial conditions of inde-
pendent and identically distributed observations from the circular
uniform distribution, both systems are integrated using a fourth-
order Runge–Kutta scheme with a sampling time of 1t = 0.05
during a total of 2500 time units. The coupling is set to K(t) = 0
for 0 ≤ t < 1250 and K(t) = 2.7 for 1250 < t ≤ 2500. Both ωA,j and
ωB,j are drawn at random from a normal distribution with mean 6.0
and standard deviation 1.25 radians per time unit (see Appendix A).

For any time t, the phases φj(t) and ψj(t) are then used as 2j

in Eq. (1) to calculate the mean resultant length R̄n for systems A
and B as a function of t [Fig. 1(a)]. A naïve interpretation of these
results is that during the entire time period, both systems have some
intermediate degree of phase locking across oscillators. The phase
locking of system B increases at 1250 but does not reach the level
of system A. If we were to regard these interpretations as evidence
of coupling within systems A and B, our conclusion would be quite
wrong. The reason for this misinterpretation is easily explained. To
begin with, being generated by Eqs. (2) and (3), the phases evolve
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deterministically. However, at any moment in time, during which
the oscillators evolve independently, they can be regarded as a set of
independent and identically distributed observations from a circular
uniform distribution. This means that in the absence of coupling, the
assumption21, . . . ,2n ∼ CU holds. Accordingly, during the entire
2500 time units, the results for system A fluctuate around a non-
zero offset given by the expected value of R̄n for 21, . . . ,2n ∼ CU

with n = 5. During the first 1250 time units, the results for system B
fluctuate around the corresponding expected value of R̄n for n = 10.
As one can see in Fig. 1(a), the expected value of R̄n is higher for
n = 5 than for n = 10. Once the coupling for system B is activated
in the second 1250 time units, the assumption 21, . . . ,2n ∼ CU is
no longer fulfilled for this dynamical system. The coupling leads to
a certain degree of dependence of the phases across oscillators. This
results in an increase of the R̄n values of system B, however, without
reaching the values of the uncoupled system A. Hence, the smaller-
sized uncoupled system A has higher values of the mean resultant
length than the larger-sized system B, irrespective of whether the
oscillators of B are coupled or not.

To further illustrate the sample size dependence of the mean
resultant length R̄n, we consider results for the von Mises dis-
tribution (see, e.g., Sec. 3.5.4 in Ref. 1). This continuous uni-
modal circular distribution has two parameters, the mean direction
µ0 ∈ [0, 2π) and the concentration parameter κ > 0. As κ → 0, the
von Mises distribution converges to a circular uniform distribution.
As κ increases, the distribution is increasingly concentrated around
the mean direction µ0. Figure 1(b) shows the average mean resul-
tant length R̄n as a function of κ for a range of values of n. For high κ
values, R̄n converges to its upper limit of one, regardless of n. How-
ever, for smaller κ , the average R̄n curves for different n diverge
from one another. In the limit of a circular uniform distribution
(κ → 0), the curves converge to different offsets. This further illus-
trates that for independent identically distributed observations from
the circular uniform distribution (21, . . . ,2n ∼ CU), the expected
value of the mean resultant length calculated for a finite number of
n observations is non-zero and depends on n.

III. RE-NORMALIZED MEAN RESULTANT LENGTH

Having understood what causes the problems illustrated in
Figs. 1(a) and 1(b), when re-normalizing R̄n, we first require the
expected value of R̄n for phases without a preferred direction. More
precisely, we need the expected value E[R̄n] for 21, . . . ,2n ∼ CU .
Here, the expectation is taken across independent observations of
R̄n, each resulting from n phases. As shown in Appendix B, we can
use the following fast-converging asymptotic approximation:

E[R̄n] ≈ γn :=
1

2

√

π

n
. (4)

Using this approximation, we first center R̄n by subtracting γn and
then divide by the maximum value of the resulting centered measure
(see, for example, Ref. 44 and references therein for instances of this
type of re-normalization), so as to obtain the re-normalized mean
resultant length,

T̄n :=
R̄n − γn

1 − γn

. (5)

For21, . . . ,2n ∼ CU , E
[

T̄n

]

is essentially zero for n ≥ 2. This

is fundamentally different from E
[

R̄n

]

for21, . . . ,2n ∼ CU , which
strongly depends on n and, even for large n, can be substantially
higher than zero [see Eq. (4) and Figs. 1(a) and 1(b)]. Both measures
have the same well-defined upper limit: if and only if all n values
2j are equal, T̄n = R̄n = 1. The lower limit of T̄n is obtained for
two antipodal phases (22 = 21 + π) and is given by −γ2/(1 − γ2)

= −1.679 to three decimal places.
Figure 1(c) shows that the re-normalized mean resultant length

T̄n resolves the problem detected for the original mean resultant
length R̄n in Fig. 1(a). The values of T̄n for system A fluctuate around
zero during the entire time interval. The same is found for system
B during the first 1250 time units. In contrast, T̄n rises to a non-
zero average value for system B during the second 1250 time units.
If these results were used to draw conclusions about the couplings
in the two dynamics, those conclusions would be correct. Only the
oscillators of system B are mutually coupled and only during the
second 1250 time units. Furthermore, Fig. 1(d) shows that T̄n pro-
vides a solution to the problem with the use of R̄n illustrated in
Fig. 1(b). The re-normalized measure T̄n converges to zero and one
for low and high values, respectively, of the concentration parame-
ter κ of the von Mises distribution. For intermediate κ values, only a
weak dependence on n is found. We also investigated the results of
Figs. 1(a) and 1(c) for stochastic versions of the dynamical systems
from Eqs. (2) and (3), where we added dynamical Gaussian white
noise. We considered several noise variances, all smaller than the
signal variance to have a meaningful identifiable trend. The same
qualitative results of Figs. 1(a) and 1(c) were obtained, and hence,
the results are not shown here.

IV. APPLICATION TO RECORDING OF AN EPILEPTIC

SEIZURE

To illustrate the relevance of our re-normalized measure for
the analysis of real-world data, we present an application to an EEG
recording of an epileptic seizure. This multichannel recording was
part of the diagnostic testing carried out for a patient with pharma-
coresistant focal-onset epilepsy and allowed the clinicians to localize
the seizure onset zone, i.e., the area of the patient’s brain where the
first signal changes of the seizure were detected. Based on the local-
ization of the seizure onset zone along with the overall results of
the diagnostic testing, the clinicians delineated the brain area, which
was then to be removed by epilepsy surgery. After this surgery, the
patient became seizure-free. Due to characteristics of this record-
ing, the results of the diagnostics, and the positive surgery outcome
of the patient, we can use the following notion of focal and non-
focal dynamics. There were 11 EEG recording channels placed in
close proximity to the seizure onset zone, capturing the focal dynam-
ics. For the non-focal dynamics, we randomly selected five EEG
channels, which recorded from areas that were not involved in the
seizure at its onset. We used the analytic signal concept based on
the Hilbert transform to compute the instantaneous phases from
band-pass filtered EEG signals. This resulted in 11 and 5 temporal
phase profiles for the focal and non-focal dynamics, respectively.
(For further details of the EEG recording and data pre-processing,
see Appendix C.) For any fixed time t, and separately for the focal
and non-focal dynamics, the phases were used as 2j in Eq. (1) to
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FIG. 1. (a) Dependence of R̄n [Eq. (1)] on time for dynamical systems A (blue) and B (red). Both curves are smoothed with a moving average of 20 time units (see Appendix A).

Note that this graph is not scaled to the upper limit of R̄n, which is one. Furthermore, recall that both systems are started from initial conditions of independent and identically
distributed observations from the circular uniform distribution, and at time t = 0, all oscillators in both systems are independent. Accordingly, there are no initial transients.

(b) Dependence of R̄n on the concentration parameter κ of a von Mises distribution with mean direction µ0 = π . The different curves show the sample means of R̄n across

109 sets of n observations each (n is indicated in the legend). (c) Same as panel (a) but for T̄n [Eq. (5)]. (d) Same as panel (b) but for T̄n.

calculate the mean resultant length R̄n and the re-normalized mean
resultant length T̄n. Performing this analysis for all t included in the
EEG recording yielded the temporal profiles shown in Fig. 2.

Before and after the seizure, the mean resultant length R̄n

attains similar levels for the focal and non-focal dynamics [Fig. 2(a)].

In contrast, values of the re-normalized mean resultant length
T̄n are clearly higher for the focal dynamics as compared to the
non-focal dynamics [Fig. 2(c)]. The results for T̄n are more mean-

ingful than those for R̄n, because the focal dynamics are consis-
tently reported to show a higher degree of synchronization than

Chaos 33, 091106 (2023); doi: 10.1063/5.0166468 33, 091106-4
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FIG. 2. (a) Dependence of R̄n on time for the focal dynamics (red) and non-focal dynamics (blue), captured by 11 and 5 EEG recording channels, respectively. (b) Exemplary
snapshots of the phases drawn schematically on a unit circle. The symbols in the center of the circles identify the corresponding curve and the time point in panels (a) and

(c). (c) Same as panel (a) but for T̄n. All curves in (a) and (c) are smoothed with a moving average of 5 s.

the non-focal dynamics during the periods, which do not include
seizures.9,10,13,45–55 Accordingly, such quantitative EEG analysis may
support clinicians in the localization of the seizure onset zone. We
should furthermore note that before the seizure, the T̄n values for the
non-focal dynamics remain close to zero. Accordingly, the under-
lying R̄n values apparently only reflect the high value expected for
the five instantaneous phases used for the non-focal dynamics. Dur-
ing the seizure, at around 170 and 220 s, the non-focal T̄n values

show two prominent drops below zero. This can be explained by
the approximately antipodal arrangement of the phases during these
periods [see insets in Fig. 2(b)]. The value of γn used to calculate T̄n

is based on the assumption that the phases are independent observa-
tions from the circular uniform distribution. For an approximately

antipodal arrangement, R̄n < γn and therefore, T̄n < 0. Again, the
measure T̄n is more informative than R̄n. Due to the lack of a refer-
ence level in R̄n, it is not possible to detect when its values fall below
the one expected for uniformly distributed phases.

Regarding the T̄n profile of the focal dynamics during the
seizure, we see a pronounced drop shortly after the onset of the
seizure, followed by a first pronounced peak and a sequence of
drops. A very prominent peak is found at the end of the seizure.
This temporal profile can be detected in both R̄n and T̄n. How-
ever, only the measure T̄n allows us to clearly conclude that for the
focal dynamics, the minima during the seizure do not fall below the
levels expected for uniformly distributed phases. Overall, this tem-
poral evolution of the re-normalized mean resultant length T̄n is in
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line with previous findings on the dynamics of epileptic seizures.
While seizures are classically considered to reflect abnormal exces-
sive or synchronous neuronal activity,56 it has been shown that,
apart from synchronization, de-synchronization is also important
for seizure dynamics.57–62 In particular, as reviewed in Ref. 63, de-
synchronization is often observed preceding seizures or during their
early stages, while high levels of synchronization are commonly
found toward the end of seizures.

V. COMPLEMENTARY APPROACHES

The fact that the expected value of T̄n for n independent identi-
cally distributed observations from the circular uniform distribution
(21, . . . ,2n ∼ CU) is not exactly zero is due to the fact that γn is
only an approximation to E

[

R̄n

]

. However, as shown numerically

(see Appendix B), the deviation of E
[

T̄n

]

from zero is relatively
small compared to its standard deviation under 21, . . . ,2n ∼ CU .
For ease of implementation, therefore, it would seem reasonable
to neglect this deviation. If deemed necessary, however, the devi-
ation from zero can be addressed at little extra cost. Monte Carlo
estimated values of E

[

R̄n

]

can be used for small n ≤ n0, while
γn [Eq. (4)] can be used for large n > n0. The threshold n0 can
be set according to the required level of accuracy. For these esti-
mated values and accuracies, see Table II in Appendix B and the
supplementary material.

Another alternative to R̄n and T̄n is to use the squared mean
resultant length, which follows from Eq. (1) and can be written as

R̄2
n :=

1

n2

∣

∣

∣

∣

∣

∣

n
∑

j=1

ei2j

∣

∣

∣

∣

∣

∣

2

. (6)

It is well known and can be shown with basic calculus that E
[

R̄2
n

]

= 1/n for 21, . . . ,2n ∼ CU . This value is exact; no approximation
is required. One can proceed analogously to Eq. (5) and define

T̄2
n :=

R̄2
n − 1/n

1 − 1/n
. (7)

In contrast to T̄n, the quantity T̄2
n has an expected value of exactly

zero for 21, . . . ,2n ∼ CU . However, for the squared mean resul-
tant length, a more general solution exists. By turning it into a
U-statistic,64 it is straightforward to unbias R̄2

n. In particular, this fol-
lows from Eq. 4.7.3 in Ref. 1. References 65 and 66 used this unbiased
version of R̄2

n.

We emphasize again that γn, and, therefore, T̄n, assume that the
data form a random sample from the circular uniform distribution.
We are not aware of any closed-form expressions for E

[

R̄n

]

when
the underlying distribution is not circular uniform. However, val-
ues ofE

[

R̄n

]

can be estimated straightforwardly and precisely, either
using large samples drawn from known distributions or using non-
parametric bootstrap methods when the underlying distribution is
unknown. These values can be used to define measures analogous to
T̄n when the underlying distribution is known, or assumed, not to
be circular uniform.

VI. DISCUSSION

There exist well-developed inferential methods for circular
data, in particular, for testing the null hypothesis of uniformity
on the circle (e.g., Refs. 1–3 and 41). However, our aim in re-
normalizing R̄n has been to improve its interpretation and, thus, its
use in exploratory data analysis, not to address the issue of statis-
tical inference for the population mean resultant length or testing
for circular uniformity. There exists other relevant work regarding
the mean resultant length R̄n and its statistical properties in applica-
tions to real-world data. That work addresses the impact of noise,67,68

non-stationarity,68 and results expected when the data are assumed
to come from certain non-uniform circular distributions,5 to name
just three contexts. The main findings from them carry over readily
to T̄n since it is simply a re-normalization of R̄n. Nonetheless, that
re-normalization is essential. The expected value of T̄n for n inde-
pendent and identically distributed observations from the circular
uniform distribution (21, . . . ,2n ∼ CU) has two important proper-
ties. First, it is essentially zero. This reduces the risk of false positive
conclusions of concentration of the circular variable around some
central value. Second, its expectation is essentially independent of
the sample size, n, an important feature that facilitates the compar-
ison of concentration across samples with different sizes. A further
advantage of T̄n over R̄n is that it is only weakly dependent on the
sample size for partially concentrated data, as we have illustrated
with observations from von Mises distributions. In closing, we note
that while one of our models and the application to real-world data
used time-dependent phases, the scope of this approach is much
wider. The re-normalized mean resultant length can be applied to
any type of circular data to which the classical mean resultant length
can be applied (e.g., Refs. 4–40).

SUPPLEMENTARY MATERIAL

See the supplementary material for tables analogous to Table II
in Appendix B but for n = 2, . . . , 100.
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APPENDIX A: NATURAL FREQUENCIES

OF DYNAMICAL SYSTEMS A AND B

Consider the dynamical system A introduced in Sec. II, which
is just a set of independent oscillators. Accordingly, all oscillators
rotate at their constant natural frequencies ωA,j. Because these fre-
quencies are drawn at random and are not integer multiples of each
other, groups of oscillators will form in narrow phase ranges and
directly resolve again in a quasi-random manner. This leads to fast
fluctuations of the mean resultant length and the re-normalized
mean resultant length. The same holds true for system B in the
absence of coupling [K(t) = 0]. To dampen these fluctuations, the
curves in Figs. 1(a) and 1(c) are smoothed by a moving average filter.
Depending on the particular random sample of natural frequencies
ωA,j and ωB,j, the aforementioned formation and dissolving of sub-
groups of oscillators takes place on longer time scales, leading to
slow modulation in the R̄n and T̄n curves. The examples shown in
Figs. 1(a) and 1(c) have the frequencies given in Table I, for which
no slow modulation is obtained.

APPENDIX B: EXPECTED VALUE OF THE MEAN

RESULTANT LENGTH

Throughout this Appendix B, we assume that the phases
2j for j = 1, . . . , n are iid circular uniform random variables
(21, . . . ,2n ∼ CU). As indicated in the main text, one can readily
show that E

[

R̄2
n

]

= 1/n. In contrast, for E
[

R̄n

]

, no closed-form

expression exists for all n. However, a standard application of
the (multivariate) central limit theorem shows that, as n → ∞,√

2nX̄ is asymptotically distributed as the standard bivariate normal
N2(0, I2), where X̄ was defined after Eq. (1) and I2 is the 2 × 2 iden-
tity matrix (the asymptotic variance–covariance matrix). An appli-
cation of the continuous mapping theorem with ‖ · ‖, thus, implies

that
√

2n
∥

∥X̄
∥

∥ =
√

2nR̄n is asymptotically distributed as ‖N2(0, I2)‖,
that is, as a chi random variable with two degrees of freedom (χ2).

Since E [χ2] =
√

2π/2, then limn→∞
√

2nE
[

R̄n

]

=
√

2π/2, from
which it follows that

E[R̄n] ≈
1

2

√

π

n
=: γn. (B1)

For small n, the distribution of
√

2nR̄n deviates strongly from
the χ2 distribution [Figs. 3(a)–3(d)]. Nevertheless, as can be veri-
fied numerically and is shown in Table II, the expected value of
R̄n remains close to γn even for small n. Therefore, even for small
sample sizes, Eq. (B1) remains a remarkably good approximation
[Fig. 3(e), Table II, columns 2–4], and consequently, E

[

T̄n

]

remains
close to zero [Fig. 3(f), Table II, column 5]. Even though the asymp-
totic distribution of R̄n was identified by Lord Rayleigh in 1880,40

we have not been able to find systematic analysis of its small sample
accuracy like that presented in Table II and Fig. 3. We point out a
notable exception: E

[

R̄2

]

= 2/π is known exactly (see Eq. 4.4.10 in
Ref. 1) due to the univariate nature of the problem.

APPENDIX C: INTRACRANIAL

ELECTROENCEPHALOGRAPHIC RECORDINGS

The electroencephalographic (EEG) recording analyzed in
Sec. IV was acquired at the Inselspital Bern (Bern, Switzerland).
Intracranial EEG recordings for localizing the seizure onset zone
have to be tailored to the individual patient. They are highly person-
alized, and thus, often, different numbers of electrodes are used for
different patients.70 The recording was obtained using eight intracra-
nial electrodes with a total of 64 channels, with 11 of them located in
close proximity to the seizure onset zone as determined by an expe-
rienced epileptologist (K.S.). An extracranial reference electrode
placed between 10/20 positions Fz and Pz was used. The data were
recorded at a sampling rate of 512 Hz, and EEG signals were then
re-referenced against the median of all the channels free of perma-
nent artifacts as judged by visual inspection. We filtered the signals
between 4 and 30 Hz using a finite impulse response (FIR) band-pass
filter prior to the analysis. The reference scheme and the filter setting
were taken from an earlier analysis of a larger data set, including the
recording analyzed here.71 No prominent artifacts were detected in
this recording.

TABLE I. Frequencies used in Eqs. (2) and (3).

j 1 2 3 4 5 6 7 8 9 10

ωA,j 5.57 10.17 3.12 19.18 5.89 . . . . . . . . . . . . . . .
ωB,j 5.19 8.95 3.16 0.45 0.71 1.71 1.11 7.78 3.79 13.33
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FIG. 3. Numerical approximation of the densities of R̄n and T̄n. For each n, we generated N = 109 circular uniform random samples of size n. For each of the N samples,

the values of R̄n and T̄n were then calculated. (a)–(d) Probability density functions of the χ2 distribution (black) and the estimated probability density function of
√
2nR̄n using

a fine frequency polygon (red). The green lines mark the abscissa value
√
2n, the upper limit of the support of

√
2nR̄n. (e) Red: Dependence of R̄n on n. The error bars

mark the sample mean (central cross) along with the 25th and 75th percentile of each distribution of N observations. The fact that the ordinate values of the red crosses and

the black diamonds (γn) can hardly be distinguished shows that γn is a very close approximation to E
[

R̄n

]

(see the fourth column of Table II for the remaining deviations).

(f) Dependence of T̄n on n, with the same layout as for (e). It can be seen that E
[

T̄n

]

is very close to zero even for small n (see the fifth column of Table II for remaining

deviations). Note that, from its definition, the standard deviation of T̄n is larger than that of R̄n by a factor of (1 − γn)
−1
> 1.
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TABLE II. Numerical estimation of the expected values E
[

R̄n

]

and E
[

T̄n

]

. For each

n, we generated N= 109 circular uniform random samples of size n. For each of the

N samples, the values of R̄n and T̄n were then calculated. The sample means
〈

R̄n

〉

and
〈

T̄n

〉

, used to estimate E
[

R̄n

]

and E
[

T̄n

]

, were then calculated from the N val-

ues of R̄n and T̄n. Only their significant digits are reported. The standard error (SE)

of R̄n

(

respectively, T̄n

)

is estimated by the sample standard deviation of R̄n

(

T̄n

)

for

the N observations. The standard error of
〈

R̄n

〉 (

respectively,
〈

T̄n

〉)

is SE
(

R̄n

)

/
√
N

(

SE
(

T̄n

))

, with 1/
√
N = 3.16 × 10−5. The low standard errors indicate that the

expected values are closely approximated by
〈

R̄n

〉

and
〈

T̄n

〉

. Note that the exact

value of E
[

R̄2

]

is 2/π = 0.6366 to four decimal places. Analogous tables in the

supplementary material include results for all n = 2, . . . , 100.

n γ n 〈R̄n〉 〈R̄n〉 − γn 〈T̄n〉 SE(R̄n) SE(T̄n)

2 0.6267 0.6366 0.0100 0.0267 0.3078 0.8243
3 0.5117 0.5249 0.0132 0.0270 0.2405 0.4925
4 0.4431 0.4498 0.0067 0.0120 0.2184 0.3922
5 0.3963 0.4016 0.0053 0.0088 0.1967 0.3258
6 0.3618 0.3656 0.0038 0.0060 0.1816 0.2845
7 0.3350 0.3381 0.0031 0.0047 0.1690 0.2542
8 0.3133 0.3158 0.0025 0.0036 0.1589 0.2314
9 0.2954 0.2975 0.0021 0.0030 0.1503 0.2134
10 0.2802 0.2820 0.0018 0.0025 0.1430 0.1987
20 0.1982 0.1988 0.0006 0.0008 0.1024 0.1277
50 0.1253 0.1255 0.0002 0.0002 0.0652 0.0746
100 0.0886 0.0887 0.0001 0.0001 0.0462 0.0507
200 0.0627 0.0627 <10−4 <10−4 0.0327 0.0349
500 0.0396 0.0396 <10−4 <10−4 0.0207 0.0216
1000 0.0280 0.0280 <10−4 <10−4 0.0146 0.0151
2000 0.0198 0.0198 <10−4 <10−4 0.0104 0.0106
5000 0.0125 0.0125 <10−4 <10−4 0.0066 0.0066
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