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ABSTRACT

Different across-layer synchronization types of chimera states in multilayer networks have been discovered recently. We investigate possible
relations between them, for example, if the onset of some synchronization type implies the onset of some other type. For this purpose, we use a
two-layer network with multiplex inter-layer coupling. Each layer consists of a ring of non-locally coupled phase oscillators. While oscillators
in each layer are identical, the layers are made non-identical by introducing mismatches in the oscillators’ mean frequencies and phase lag
parameters of the intra-layer coupling. We use different metrics to quantify the degree of various across-layer synchronization types. These
include phase-locking between individual interacting oscillators, amplitude and phase synchronization between the order parameters of each
layer, generalized synchronization between the driver and response layer, and the alignment of the incoherent oscillator groups’ position
on the two rings. For positive phase lag parameter mismatches, we get a cascaded onset of synchronization upon a gradual increase of the
inter-layer coupling strength. For example, the two order parameters show phase synchronization before any of the interacting oscillator pairs
does. For negative mismatches, most synchronization types have their onset in a narrow range of the coupling strength. Weaker couplings
can destabilize chimera states in the response layer toward an almost fully coherent or fully incoherent motion. Finally, in the absence of a
phase lag mismatch, sufficient coupling turns the response dynamics into a replica of the driver dynamics with the phases of all oscillators
shifted by a constant lag.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0146550

Chimera states,1–3 which are paradigmatic for the coexistence of
synchronization and desynchronization, can be found even in
very small, isolated networks.4,5 Networks in nature, however,
often consist of several interacting layers. In many cases, such
as communicating brain areas, neither complete synchroniza-
tion nor complete desynchronization would allow for a proper
function. Instead, some partial synchronization is essential not
only within layers but also across layers. Motivated by this
bridge to real-world dynamics, recent work analyzed chimera
states in multilayer networks, revealing different across-layer
synchronization types, such as identical or almost identical,6–11

generalized,6 relay,11–13 forced,14,15 alignment,6,14–19 frequency,8

and phase synchronization.20,21 Are there relations between these
different synchronization types? Does some type generally imply
some other type? Do they occur at the same coupling strengths?
How do they depend on the heterogeneity of the network? To

address these questions, we compose a whole battery of measures,
each defined to detect one specific type of across-layer synchro-
nization. We apply this battery of measures to a multiplex net-
work with driver-response inter-layer coupling and a parame-
ter mismatch between layers. In dependence on this mismatch
and coupling strength, different compositions of synchronization
arise. We here refer to this finding as chameleon-like across-layer
synchronization and conclude that this versatility may contribute
to the importance of synchronization in natural and human-
made multilayer networks.

I. INTRODUCTION

The study of chimera states in multilayer networks showed
from early on that couplings between network layers can induce or
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destabilize chimera states in individual layers.7–13,19,21–32 Apart from
ring networks,6–8,10–19,22–29 two-dimensional lattices30–32 with a mul-
tiplex inter-layer coupling were analyzed. Further studies addressed
the role of coupling delays,12,22–25 inter-layer couplings with temporal
fluctuations,10,27 of limited duration,26 and with nonlinear inertia,9 as
well as intra-layer coupling strengths adapting to the phase differ-
ence of interacting oscillators.21,33 Chimera states were described in
bipartite networks34,35 and semirings with reflecting connectivity.36

A further focus of attention is on across-layer control of chimera
states.6,12,16–18,27 Relay synchronization was demonstrated in triplex
networks,11–13 and forced synchronization was studied in networks
of 20 layers.14,15 Apart from identical or almost identical synchro-
nization between all oscillator pairs,6–11 two multiplexed rings can
show alignment synchronization, for which the coherent domains
attain the same6,14–19 or antipodal19 positions on the rings of both
layers. Generalized synchronization37–39 can be induced by a driver-
response inter-layer coupling in multiplexed rings.6 The layers’
mean frequencies can be entrained, overcoming an across-layer mis-
match in the oscillators’ natural frequency.8 Phase synchronization40

between the order parameters of two rings each consisting of dif-
ferent numbers of oscillators and with an across-layer mismatch
in the oscillators’ natural frequencies was demonstrated in Ref. 20.
In this non-multiplex setting, a bidirectional coupling from the
order parameter phase of one layer to the individual oscillators of
the other layer was used.20 In multiplex networks, phase synchro-
nization can be attained between individual oscillators.21 We here
return to the network architecture of Ref. 6 to investigate rela-
tions between some of these synchronization types. Our results show
that this network exhibits a variety of across-layer synchronization
types, which can coexist in different combinations. We introduce
the term chameleon-like across-layer synchronization to refer to this
changeableness of the system.

II. NETWORK DEFINITION

We study a network in which the first layer X drives the sec-
ond layer Y via a unidirectional inter-layer multiplex coupling. Each
layer consists of a ring of N = 50 identical phase oscillators con-
nected via a non-local intra-layer coupling within a rectangular
kernel of broadness b = 18. The phases of individual oscillators
φx,j(t) in the driver X are not influenced by the inter-layer coupling
but only by the intra-layer coupling. In contrast, the phase φy,j(t)
of each individual oscillator j in the response Y is influenced by
the intra-layer coupling and receives the inter-layer coupling with
strength ε from oscillator j in X,

φ̇x,j(t) = νx −
1

2b

j+b
∑

k=j−b

sin
(

φx,j(t)− φx,k(t)+ αx

)

, (1)

φ̇y,j(t) = νy − ε sin
(

φy,j(t)− φx,j(t)
)

−
1

2b

j+b
∑

k=j−b

sin
(

φy,j(t)− φy,k(t)+ αy

)

(2)

for j = 1, . . . , N. It is this ordered j → j inter-layer coupling that
defines the multiplex architecture. The oscillators in the driver layer

have the natural frequency νx and the phase lag parameter αx. The
parameters in the response νy and αy are, in general, set differ-
ently from the corresponding values in the driver, and we denote
the resulting mismatches between the layers by 1ν = νy − νx and
1α = αy − αx. According to the layer’s ring architecture, sums
and differences of oscillator indices in Eqs. (1) and (2) are to be
understood as modulo N. Starting from random initial conditions
of the phases φx,j(t = 0) and φy,j(t = 0), which are independently
and uniformly distributed in (0, 2π], we integrate the dynamics
using a fourth-order Runge–Kutta scheme with a sampling time of
1t = 0.05.

Like stated above, for the purpose of this study, we have to
introduce a battery of measures each defined to assess a specific
type of synchronization. This at first requires to extract a number
of variables from the dynamics of individual layers. We here define
them for the driver X, analogous definitions hold for the response Y.
For each oscillator, the instantaneous frequencyωx,j(t) is determined
from the finite difference of the phase,

ωx,j(t) =
φx,j(t)− φx,j(t +1t)

1t
. (3)

The network’s mean-field is represented by the complex Kuramoto
order parameter,41

Zx(t) =
1

N

N
∑

j=1

eiφx,j(t) = Rx(t)e
i8x(t), (4)

with imaginary unit i, order parameter amplitude Rx(t), and order
parameter phase8x(t).

Throughout this study, we set νx = 0 and αx = 1.485. At these
parameter values in combination with N = 50, b = 18, the driver
layer spontaneously enters into a chimera state for the majority of
random initial conditions. The chimeric segregation into two com-
plementary groups can be appreciated in the spatiotemporal evolu-
tion of the oscillators’ instantaneous frequencies ωx,j(t) in Fig. 1(a).
In a high-coherence group, all oscillators jointly rotate at an almost
constant frequency ωx,j(t). This frequency is negative; i.e., the rota-
tion is clockwise. For the remaining oscillators, which form the
low-coherence group, the frequenciesωx,j(t) show an apparent irreg-
ular spatiotemporal profile. Hence, while all oscillators have the
same equation of motion [Eq. (1)], this spatial symmetry of the
network structure is broken by its dynamics.

Figure 1(a) furthermore shows that the positions of the high-
and low-coherence group drift along the extension of the ring during
the course of time.42 To quantify the across-layer synchronization of
this drifting motion, we at first determine the momentary position
of the low-coherence group in Y. For this purpose, we use the tem-
poral variability of frequencies, resulting in a spatial profile across
j = 1, . . . , N for a certain time t,

ϑx,j(t) = σ
(

ωx,j(t
′)
)

t′∈[t−T,t]
. (5)

Here, σ(·)_ denotes the standard deviation across the specified time
interval sampled in steps of 1t. We use an interval of T = 100
time units, which is short compared to the time scale of the drift-
ing motion but long enough to estimate the profile of ϑx,j(t). Since
the oscillators of the low-coherence group show higher temporal
variability in ωx,j(t) as compared to the ones of the high-coherence
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FIG. 1. Cascaded onset of synchronization. (a) Profiles of instantaneous frequencies ωx,j(t) and the center of the low-coherence group Cx(t) (black line) for the
driver X. We display 2000 time units of the evaluation interval I, which spans 90 000 time units. The lag of Cx(t) with regard to drift of the low-coherence group
arises since Cx(t) estimates the average position across the most recent T = 100 time units [Eqs. (5)–(7)]. For the illustration of this figure, Cx(t) is calculated every
one time unit, instead of only every T = 100 time units. (b)–(i) is the same as (a) but for the response: ωy,j(t) and Cy(t). Inter-layer coupling ε is indicated above
each panel. Other parameters: N = 50, b = 18, νx = 0, νy = 0.2 (i.e., 1ν = 0.2), αx = 1.485, αy = 1.513 (i.e., 1α = 0.028). All panels have the same range of
j and t.

group [see again Fig. 1(a)], the ϑx,j(t) profile shows a bump centered
at indices j corresponding to the low-coherence group’s position on
the ring. We, therefore, interpret ϑx,j(t) as a circular distribution43

and determine its circular mean direction. To link this direction

to our network, we just have to map back and forth between the
domain of the arg function of (−π ,π] and the extension of the ring
(0, N]. Accordingly, for each oscillator with index j, a vector with

length ϑx,j(t) and angle
2π j−πN

N
is defined in the complex plane. The
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angle of the resultant mean vector across all N oscillators,

ψx(t) = arg





1

N

N
∑

j=1

ϑx,j(t) · ei
2π j−πN

N



 , (6)

can then be used to determine the center of the profile’s bump,

Cx(t) = N
ψx(t)+ π

2π
. (7)

Therefore, Cx(t) provides the center of the low-coherence group
with values in (0, N]. The variables ωy,j(t), Ry(t),8y(t), and Cy(t)
characterizing the response dynamics Y are defined analogously to
the corresponding quantities in X.

To test for generalized synchronization between the driver
and response, we use a replica of the response layer Y as auxiliary
response layer Y′. This auxiliary response is obtained from a fur-
ther realization of Eq. (2), starting from different random initial
conditions but driven by the same φx,j(t) like the primary response
Y. Like further described in Sec. III, this auxiliary response is used
exclusively to test for generalized synchronization and no further
variables are extracted from it. Technically, the driver X, response
Y, and auxiliary response Y′ jointly form 3 · N coupled differential
equations, which we integrated simultaneously using the aforemen-
tioned fourth-order Runge–Kutta scheme with1t = 0.05 time units
starting from 3 · N independent random initial conditions.

During the first 1 × 103 time units, the inter-layer coupling was
still kept off. Therefore, during this initial period, all three layers
could settle to a chimera state, with Y and Y′ not yet being influenced
by X. For our finite-size ring networks, chimera states can sud-
denly collapse to a fully coherent state in which all phases become
equal and the order parameter amplitude attains its maximal value
of one.44,45 Furthermore, after the initialization with random phases,
the network can directly go to this fully coherent state without ever
forming a chimera state. If any of the three layers went to a fully
coherent state during the initial 1 × 103 time units, the realization
was discarded and the dynamics was started again with a set of
new random initial conditions. Provided that all layers entered into
chimera states, the inter-layer coupling with strength ε was turned
on at 1 × 103 time units. The dynamics was then evaluated during
the interval I = [1 × 104, 1 × 105] time units. In this way, transients
caused by the coupling onset could fade out between 1 × 103 and
1 × 104 time units. In case the driver layer collapsed after the initial
1 × 103 time units but before the end of the simulation at 1 × 105

time units, the realization was also discarded and the simulation was
started over. As we describe below, the driving can cause a degener-
ation of the chimera state in response to an almost fully coherent or
almost fully incoherent state. This reflects, however, an effect of the
coupling instead of the transient nature of chimera states. There-
fore, no reinitialization of the simulation was done if the chimera
state degenerated in the response or the auxiliary response after the
coupling onset at 1 · 103 time units.

III. SYNCHRONIZATION MEASURES

Since the aim of our study is to characterize different types of
synchronization between the driver layer X and response layer Y, we
have to use a battery of measures, each defined to detect one specific

type of across-layer synchronization. For this purpose, we combine
some methods devised in our earlier work6,20 with additional ad hoc
measures. Synchronization between the mean-fields is assessed sep-
arately for the amplitudes and phases of the order parameters Zx(t)
and Zy(t). We denote the Pearson correlation coefficient between the
amplitudes Rx(t) and Ry(t) across t ∈ I by K. For independent layers,
K values close to zero are expected. The range of 0.99 ≤ K < 1 is
used to detect non-identical order parameter amplitude synchroniza-
tion. The lower threshold of 0.99 is high but otherwise arbitrary. The
upper limit of K = 1 indicates a perfect correlation throughout the
evaluation interval I. In this case, it remains to be ruled out that Rx(t)
and Ry(t) have a constant offset between them before concluding to
identical order parameter amplitude synchronization.

To quantify the dependence between the order parameter
phases 8x(t) and 8y(t), we at first unwrap them from the cir-
cular domain to the infinite domain. We then determine their
instantaneous difference,

18(t) = 8x(t)−8y(t), (8)

and therefrom the accumulated order parameter phase difference,20

S =
max {18(t)}t∈I − min {18(t)}t∈I

2π
, (9)

where {·}_ indicates that the extrema are determined across the
specified time interval sampled in steps of 1t. If 8x(t) and 8y(t)
rotate with a constant phase lag throughout the evaluation interval
I, we get max {18(t)}t∈I = min{18(t)}t∈I and obtain the minimal
value of S = 0. This represents order parameter phase synchroniza-
tion with strong phase-locking. Note that for this condition to be
fulfilled, the phase difference has to be constant but does not have
to be zero:18(t) = const ≥ 0. In contrast, any temporal variability
of 18(t) leads to S > 0. However, as long as the order parameters
do not lap each other in the complex plane, the value of S remains
below 1. Accordingly, 0 < S < 1 corresponds to order parameter
phase synchronization with weak phase-locking. As soon as one order
parameter completes one more rotation than the other order param-
eter, 18(t) grows by 2π , and S increments by 1. Hence, S ≥ 1
indicates that the order parameter phases are not locked and the
order parameters of the driver and response are not phase synchro-
nized. Provided that we detect strong or weak phase-locking, we
determine the average order parameter phase lag,

18 = 〈18(t)〉t∈I, (10)

where 〈·〉_ indicates that the average is taken across the specified
time interval sampled in steps of1t. For strong phase-locking, aver-
aging would not be needed because the phase lag18(t) is constant,
but Eq. (10) remains applicable.

Apart from the macroscopic quantity S, we determine the
accumulated phase differences sj for pairs of individual oscillators
across j = 1, . . . , N. The sj are determined in the same way as S, but
using the phase differences of individual oscillators 1φj(t) = φx,j(t)
− φy,j(t) instead of the order parameter phase difference18(t). The
fraction of weakly phase-locked oscillator pairs is then given by

Lw =
#{j|0 < sj < 1 ∧ j = 1, . . . , N}

N
, (11)
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with # denoting cardinality (see Refs. 8, 21, 30, and 32 for simi-
lar approaches). Analogously, the fraction of strongly phase-locked
oscillator pairs is

Ls =
#
{

j|sj = 0 ∧ j = 1, . . . , N
}

N
. (12)

We use the range of 0.5 ≤ Lw < 1 to conclude partial oscillator
pair phase synchronization with weak phase-locking, and Lw = 1
implies complete oscillator pair phase synchronization with weak
phase-locking. The same thresholds are applied to Ls to assess par-
tial or complete oscillator pair phase synchronization with strong
phase-locking.

To quantify the degree to which the drifting motion of the low-
coherence group in the driver X influences the one in the response
Y, we use the normalized distance between the groups’ positions,

1C(t) =
min{|Cx(t)− Cy(t)|, N − |Cx(t)− Cy(t)|}

N
4

. (13)

Here, | · | denotes the absolute value, and the min-operation ensures
that the shorter of the two distances on the ring is used. The nomina-
tor of Eq. (13) takes its minimum of 0 if Cx(t) = Cy(t). Its maximum
of N

2
is obtained if Cx(t) and Cy(t) are in antipodal positions. A

nominator of N
4

is expected for independent dynamics. Accord-
ingly, due to the denominator of Eq. (13), 1C(t) is in units of
this expected value for independent dynamics. The average chimera
group distance is determined from

1C =
〈

1C(t)
〉

t∈I
. (14)

Only in the case of this temporal average taken in Eq. (14), t is incre-
mented in steps of T instead of the sampling time 1t [see again
Eq. (5)]. For independent dynamics, we expect 1C = 1. The max-
imal value of 1C = 2 is obtained if a low-coherence group in the
response is always antipodal to the one in the driver. We use a range
of 0 < 1C ≤ 0.05 to conclude non-identical group alignment syn-
chronization. If the drifting motion of the low-coherence group in
the response is identical to the one in the driver, we get1C = 0 and
identical group alignment synchronization.

The approach to determine the average chimera group distance
via Eqs. (5)–(7) is based on the assumption that the ϑx,j(t) and ϑy,j(t)
profiles actually have a bump. To check the validity of this assump-
tion for the driver, we determine the profile’s spatial coefficient of
variation,

ξx(t) =
σ {ϑx,j(t)}j=1,...,N

µ{ϑx,j(t)}j=1,...,N

, (15)

where σ {·}_ and µ{·}_ denote standard deviation and mean, respec-
tively, across the given indices. The average across the evaluation
interval is

ξx =
〈

ξx(t)
〉

t∈I
. (16)

For the response Y, the quantity ξy is calculated analogously. The
driver X, which has fixed parameters and is not influenced by the
coupling, always shows chimera states and high values of ξx ≈ 0.55.
For the response Y, the quantity ξy depends on the parameter mis-
match and inter-layer coupling strength. We found by visual inspec-
tion of the dynamics that for values ξy lower than approximately

FIG. 2. While in the high-coherence group, individual oscillators are locked to the
mean-field. Black: the order parameter phase of the driver8x(t) and the phase of
an exemplary individual oscillator φx,j=1(t) for the realization shown in Fig. 1(a).
Red: Same as black but for the realization of the response shown in Fig. 1(b) and
using oscillator j = 32 as an example. All parameters are the same as in Fig. 1:
N = 50, b = 18, νx = 0, νy = 0.2 (i.e., 1ν = 0.2), αx = 1.485, αy = 1.513
(i.e.,1α = 0.028).

0.30, a clear delineation of the response’s low- and high-coherence
group was not given. In this case, the average chimera group distance
1C cannot be well-defined.

The so-called auxiliary system approach38,39 detects general-
ized synchronization37–39 between the driver X and response Y from
identical synchronization between the response Y and the auxiliary
response Y′. We quantify the difference between Y and Y′ by

δ(t) =
1

N

N
∑

j=1

∣

∣

∣

∣

sin

(

φy,j(t)− φy′ ,j(t)

2

)∣

∣

∣

∣

. (17)

This metrics was introduced in Ref. 6 and adapted in Ref. 21. If dur-
ing the evaluation interval we find δ(t) = 0, this indicates identical
synchronization between Y and Y′ and, therefore, generalized syn-
chronization between X and Y46 (see also Refs. 47 and 48). To express
the two possible outcomes, we define the measure G = 1 if there is
generalized synchronization and G = 0 otherwise.

IV. RESULTS

In the first part of this section, we provide detailed results
for single realizations of exemplary dynamics (Fig. 1). A particu-
lar emphasis is given to group alignment synchronization (Fig. 1) as
well as to the evolution of phases and phase differences of individ-
ual oscillators and order parameters (Figs. 2 and 3). Evaluating all
synchronization measures at the collective level (Table I), we show
that these exemplary dynamics represent different combinations of
across-layer synchronization types.

Figure 1 shows profiles of the instantaneous phase velocities
for the driver ωx,j(t) and response ωy,j(t) in dependence on time
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FIG. 3. Order parameters phase-lock before individual oscillators do. Instantaneous phase differences of order parameters (red) and individual oscillator pairs (gray) in
dependence on time and for exemplary inter-layer coupling strengths. Results shown in panels (a)–(h) are, respectively, for the realizations shown in Figs. 1(b)–1(i), but here
covering the entire evaluation interval. Note the different ordinate scalings across panels. In panel (h), an extra label to the y axes is placed at −0.072. This corresponds
to −26◦, which is the average order parameter phase lag 18 around which 18(t) fluctuates for this ε (see Table I). All parameters are the same as in Fig. 1: N = 50,
b = 18, νx = 0, νy = 0.2 (i.e.,1ν = 0.2), αx = 1.485, αy = 1.513 (i.e.,1α = 0.028).

t and the oscillator index j. Results are shown for fixed 1ν = 0.2
and 1α = 0.028 and eight selected values of the inter-layer cou-
pling strength ε. In general, we use new random initial conditions
for each realization. However, the same set of 3 · N independent

random initial conditions is used across all simulations of Fig. 1.
This allows us to show the profile of the driver X only once since it
is fully determined by its N initial conditions [Fig. 1(a)]. Moreover,
changes observed in the profiles of the response Y [Figs. 1(b)–1(i)]

TABLE I. Results for the examples displayed in Fig. 1 and further analyzed in Fig. 3, with the corresponding panels indicated in the first two columns. The inter-layer coupling ε

is given in the third column. Recall that Fig. 1(a) displays the driver dynamics, which does not depend on the coupling and is common to the response dynamics in Figs. 1(b)–1(i).

Results in this table are obtained from the entire evaluation interval of 90 000 time units, while Fig. 1 shows only an exemplary window of 2 000 time units. Boldface values indicate

synchronization assessed by the respective measure as detailed in the following: 0 < 1C ≤ 0.05, non-identical group alignment synchronization; 0< S< 1, order parameter

phase synchronization with weak phase-locking; G= 1, generalized synchronization; 0.5≤ Lw< 1, partial oscillator pair phase synchronization with weak phase-locking and

Lw = 1, complete oscillator pair phase synchronization with weak phase-locking; and 0.99≤ K< 1, non-identical order parameter amplitude synchronization. Other forms and/or

stronger degrees of synchronization are not detected for the examples included here. In particular, there is no oscillator pair phase synchronization with strong phase-locking;

hence, Ls = 0. Recall that the average order parameter phase difference18 is not determined (n.d.) in the absence of order parameter phase-locking as detected by S> 1. All

parameters are the same as in Fig. 1: N= 50, b= 18, νx = 0, νy = 0.2 (i.e.,1ν= 0.2), αx = 1.485, αy = 1.513 (i.e.,1α= 0.028).

Figure 1 Figure 3 ε 1C S G Lw K Ls 18

(b) (a) 0 1.0 2997 0 0 0.000 87 0 n.d.
(c) (b) 0.01 0.91 2989 0 0 −0.0061 0 n.d.
(d) (c) 0.03 0.42 2929 0 0 0.028 0 n.d.
(e) (d) 0.24 0.044 26.13 0 0 0.62 0 n.d.
(f) (e) 0.26 0.024 0.79 0 0 0.79 0 −51°
(g) (f) 0.31 0.010 0.38 1 0 0.91 0 −42°
(h) (g) 0.37 0.0021 0.018 1 0.68 0.98 0 −33°
(i) (h) 0.46 0.000 98 0.0077 1 1 0.99 0 −26°
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exclusively reflect the impact of the different coupling strengths ε
from X to Y obtained for this set of N initial conditions used for
Y. The auxiliary response Y′ also has its own N initial conditions.
It is not displayed in Fig. 1 because it is exclusively used to test for
generalized synchronization.

The driver shows a chimera state with the characteristic seg-
regation into a low- and high-coherence group and the drifting
boundaries between these groups42 [Fig. 1(a)]. Regarding the order
parameter phase 8x(t) and the phase of exemplary individual oscil-
lators φx,1(t), we first notice that they grow toward −∞ (Fig. 2),
which reflects that their clockwise rotation has, by convention, a
negative phase velocity [see again Fig. 1(a)]. At the resolution of
Fig. 2, the order parameter phase seems to grow linearly. However,
small fluctuations can be detected when looking at its derivative,
i.e., the instantaneous order parameter phase velocity (not shown).
Phases of individual oscillators evolve less regularly. Looking back
and forth between Figs. 1(a) and 2, one can verify that once oscil-
lator j = 1 joins the high-coherence group, the momentary slope of
φx,1(t) is on average the same as the one of8x(t). This illustrates that
high-coherence group oscillators are locked to the mean-field. Once
the drifting of the groups causes the oscillator to switch back from
the high-coherence to the low-coherence group, its phase loses grip
and it is often lapped by the mean-field phase. In consequence, once
the first oscillator turned again into a low-coherence group mem-
ber, the absolute value of the slope of its phase φx,1(t) is again lower
than the one of8x(t).

For ε = 0, i.e., in the absence of an inter-layer coupling, the
response shows a chimera state, which is independent from the one
of the driver [Fig. 1(b)]. Due to the parameter mismatch 1ν = 0.2
and 1α = 0.028, the appearance of the Y dynamics is somewhat
different from the one of X. It has less sharp boundaries between
its high- and low-coherence group, and the drifting motion seems
more erratic. Furthermore, the average absolute values of ωy,j(t)
are smaller than the ones of ωx,j(t). As a consequence, the order
parameter of the response rotates slower than the one of the driver.
Therefore, the 8y(t) curve has a less negative slope than the one of
8x(t) in Fig. 2. Due to the lack of coupling between layers, the posi-
tions of the low-coherence groups for the driver Cx(t) and response
Cy(t) evolve in an unrelated manner. When averaged across the

entire evaluation interval, we, therefore, get a 1C value, which is
consistent with the value of one expected for such independent
dynamics (Table I). For ε = 0.01, the overall appearance of the
response dynamics remains similar to the uncoupled case but with
a different time course for the low-coherence group position Cy(t).

Indeed,1C already drops below the aforementioned expected value
[Fig. 1(c), Table I]. At ε = 0.03, one can notice a pronounced rip-
ple pattern in the response dynamics, and the overall appearance
of ωy,j(t) seems to become even more erratic than for ε = 0 and ε
= 0.01 [Fig. 1(d) vs Figs. 1(b) and 1(c)]. On the other hand, the drift-
ing motion of the boundaries between the high- and low-coherence
group in the response Y increasingly resembles the one of the driver
X, resulting in a substantial decrease of1C [Fig. 1(d), Table I].

At an inter-layer coupling of ε = 0.24, the average chimera
group distance 1C has crossed the threshold used to detect non-
identical group alignment synchronization [Fig. 1(e), Table I]. Upon
further increase of the coupling, 1C diminishes further. However,
it remains non-zero so that we do not get identical group alignment

synchronization for the examples included in Fig. 1. Moreover, from
around ε ≥ 0.24, the response frequency profiles ωy,j(t) increasingly
resemble the one of the driver ωx,j(t) [Fig. 1(a) vs Figs. 1(e)–1(i)]. As
a consequence, the response frequency profiles ωy,j(t) for different
strong couplings also increasingly resemble each other. Therefore,
while visual inspection of the response dynamics is helpful for com-
paring uncoupled and different weakly coupled dynamics, it fails to
tell apart different strongly coupled dynamics. That is why we need
the set of metrics introduced in Sec. III. They allow us to reveal
changes in both the degree and form of across-layer synchronization
across the entire range of inter-layer coupling strengths.

After focusing on group alignment synchronization (Fig. 1)
and the evolution of phases (Fig. 2), we now proceed to inspect
across-layer phase differences of individual oscillators and order
parameters. Figure 3 shows differences between the unwrapped
individual phases 1φj(t) and between the order parameter phases
18(t) that underly the measures sj and S, respectively. We first
consider the case of zero inter-layer coupling [Fig. 3(a)]. Since both
networks rotate clockwise and X rotates faster than Y, the difference
of their mean-fields 18(t) = 8x(t)−8y(t) growths unboundedly
into the negative domain, and we get S � 1 for the accumulated
order parameter phase difference (Table I). In contrast to 18(t),
differences between individual phases 1φj(t) do not evolve mono-
tonically. We already saw in Fig. 2 that oscillators in the low-
coherence group rotate slower than the ones in the high-coherence
group.49 Therefore, despite that X is overall faster than Y, oscilla-
tors in the low-coherence group of X can still rotate slower than
oscillators in the high-coherence group of Y. Therefore, while a
certain oscillator j of X is in the low-coherence group and the mul-
tiplexed oscillator j of Y is in the high-coherence group, the curve
1φj(t) = φx,j(t)− φy,j(t) can have a positive slope. The largest nega-

tive slope of1φj(t), in contrast, is obtained, while the oscillator with

index j of X belongs to the high-coherence group and the one of Y to
the low-coherence group. Intermediate slopes are obtained as long
as both oscillators belong to the same group in their respective net-
work. Since at ε = 0, the oscillators switch between the high- and
low-coherence groups independently for X and Y, the slopes of the
N curves of 1φj(t) change irregularly. There cannot be any phase-
locking between individual oscillator pairs; hence, we get sj � 1 for
all j, and therefrom, Lw = Ls = 0 [Fig. 3(a), Table I]. A similar pic-
ture is obtained for ε = 0.01, notwithstanding that already a slight
decrease of S can be noted [Fig. 3(b), Table I]. This decrease con-
tinues for ε = 0.03, and the 1φj(t) curves fan out less [Fig. 3(c),
Table I]. This can be understood by connecting results from differ-
ent synchronization measures. Recall that at this coupling, already, a
stronger alignment of the centers of the low-coherence groups of X
and Y across time is obtained [see again Fig. 1(d) and1C in Table I].
As a consequence, pairs of oscillators with the same index j more
often belong either both to the high-coherence group or both to the
low-coherence group in X and Y.

A qualitatively different scenario is obtained for ε = 0.24
[Fig. 3(d)]. The 18(t) curve shows a stick-jump behavior. Dur-
ing some time, it fluctuates around a non-zero value. Then, at some
apparently random moment in time, this sticking behavior is inter-
rupted by a jump. The order parameter of the driver suddenly laps
the one of the response one or a few times, decreasing18(t) by 2π
times the number of extra rotations. This jump is followed by a new
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sticking period and so on. As a result of the sticking, S decreases
substantially. As a result of the jumps, it remains clearly above one
(Table I). A stick-jump behavior is also found for the phase differ-
ences of individual oscillator pairs 1φj(t). It can be observed that
collective jumps of all oscillators coincide with particularly pro-
nounced jumps in the order parameter [see again Fig. 3(d)]. Since
jumps are found for all pairs of oscillators, not a single pair shows
weak or even strong phase-locking. Hence, all sj remain above one,
and we continue to get Lw = Ls = 0 (Table I). The next transition is
found for ε = 0.26 [Fig. 3(e)]. The difference of the order param-
eter phases 18(t) does no longer grow toward −∞, but instead
fluctuates around a stable non-zero mean value. We, therefore, get
0 < S < 1, indicating order parameter phase synchronization with
weak phase-locking. Accordingly, we can now also determine the
average phase lag18 (Table I). In contrast, all individual oscillator
pairs continue to show a stick-jump behavior. The difference is that
the average duration of the intervals during which the1φj(t) curves
stick gets longer such that the total growth of these curves is reduced.
This reduction is further intensified at ε = 0.31 [Fig. 3(f)].

At ε = 0.37, for more than one half of the oscillator pairs, their
curve 1φj(t) sticks during the entire evaluation interval, resulting
in Lw > 0.5 [Fig. 3(g), Table I]. This means that we detect par-
tial oscillator pair phase synchronization with weak phase-locking
(0.5 ≤ Lw < 1). For the remaining pairs, the driver oscillator laps its
response oscillator once, resulting in 1φj(t) < −1. This means that
these oscillator pairs are not phase-locked. This example illustrates
that for such stick-jump behavior, the assessment of weak phase-
locking and, thereby, the value of Lw depends on the duration of
the evaluation interval. For shorter and longer evaluation intervals,
respectively, all N or not a single oscillator pair would be assumed to
be weakly phase-locked. It is just a matter of whether the evaluation
interval is long enough to capture their sporadic jumps. However,
what does not depend on the observation time is the finding of
Ls = 0 because not a single oscillator pair shows a constant phase
lag, which would imply strong phase-locking. Finally, at ε = 0.46,
for all oscillator pairs, the sticking outlasts the evaluation inter-
val, resulting in Lw = 1. This indicates complete oscillator pair
phase synchronization with weak phase-locking [Fig. 3(h), Table I].
Accordingly, at this coupling, not only the mean-field, as assessed
by the order parameter, but also all individual oscillators of the
response Y show weak phase-locking to their counterparts in the
driver X. The absolute average phase lag between the order parame-
ters 18 decreases with the inter-layer coupling but remains non-
zero (Fig. 3(h), Table I). A non-zero average phase lag is found
also for the individual oscillators. In both cases, the phase lag is not
constant, ruling out strong phase-locking. This is reflected in S > 0
and sj > 0 for all j and, therefore, Ls = 0, throughout the examples
included in Fig. 3.

How do the amplitudes of the order parameter behave upon the
locking of the order parameter phases? Is there a relation between
the order parameter amplitude correlation K and the accumulated
order parameter phase difference S? For pairs of low-dimensional
coupled chaotic dynamics, phase synchronization is conventionally
defined by the weak phase-locking criterion.40 For this criterion, the
amplitudes of the individual dynamics are not taken into account.
In particular, the amplitudes may remain uncorrelated between the
two dynamics. For our two-layer network, the Pearson correlation

coefficient K between the order parameter amplitudes Rx(t) and
Ry(t) increases significantly once the order parameter phases start
to lock (Table I), and this correlation is strengthened upon a fur-
ther increase of the inter-layer coupling strength. Non-identical
order parameter amplitude synchronization is reached at ε = 0.46.
This is consistent with the aforementioned observation that at
higher couplings, the response frequency profilesωy,j(t) increasingly
resemble the one of the driver ωx,j(t) [compare again Fig. 1(a) vs
Figs. 1(e)–1(i)]. However, due to the parameter mismatches1ν and
1α, the network layers cannot synchronize identically. As a conse-
quence, the correlation K remains below one, and we do not reach
identical order parameter amplitude synchronization (Table I).

While identical synchronization is not possible between non-
identical layers, we can get generalized synchronization between
them.6 Using the auxiliary system approach, we find this transition
in between the examples shown Fig. 1(f) and 1(g). For ε = 0.26,
there is no generalized synchronization (G = 0) between the driver
and response, but at ε = 0.31, there is (G = 1). This implies that
while the profiles displayed in Figs. 1(b)–1(f) still depend on the
initial conditions of the response Y, the ones in Figs. 1(g)–1(i) are
uniquely determined by the state of the driver shown in Fig. 1(a).
In other words, there exists some function F such that ωy,j(t)
= F(ωx,j(t)). As concluded in the previous paragraph, this function
F cannot be simply the identity. Furthermore, note that at ε = 0.31,
despite that the overall system shows generalized synchronization,
none of the individual oscillator pairs is phase-locked. At ε = 0.46,
both the order parameters and all oscillator pairs show phase syn-
chronization, however, only with weak phase-locking. This means
that the phase differences of the pair of order parameters and all
pairs of individual oscillators are not constant [see again Fig. 3(h)].
Therefore, the function F relating the response Y to the driver X
is not simply the phase lag operation. Accordingly, combining the
results from G, K, S, and sj, we can conclude that the system exhibits
generalized synchronization with a non-trivial function F.

The results reviewed so far show how the synchronization mea-
sures allow detecting different types of across-layer synchronization.
However, this part of the analysis was restricted to some exem-
plary inter-layer coupling strengths ε and fixed 1α = αy − αx and
1ν = νy − νx. We now proceed by looking at results in the plane
spanned by 1α and ε, keeping only 1ν = 0.2 fixed (Fig. 4). Recall
that these parameters only affect the response layer Y. The driver
layer X has fixed αx and νx and is not influenced by the unidi-
rectional inter-layer coupling from X to Y. For the measures of
synchronization 1C, S, Lw, Ls, and K, we use a hot and cold color
map for unsynchronized and synchronized dynamics, respectively.
In this way, the transition from white to blue marks the onset of syn-
chronization as assessed by the particular measure. Magenta indi-
cates the strongest degree of synchronization for each measure. For
the binary measure G, magenta indicates generalized synchroniza-
tion, and black shows the absence thereof. For the spatial coefficient
of variation ξy and the average order parameter phase lag 18, a

gray color map is used. The parameter range for which 18 is not
determined due to the lack of phase-locking is painted in red.

Results for the group alignment synchronization as assessed
by the average chimera group distance 1C are shown in Fig. 4(a).
For ε = 0, this distance is close to the expected value for such
uncoupled layers:1C ≈ 1. A first drop of1C throughout the range
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FIG. 4. Chameleon-like across-layer synchronization: In dependence on1α and ε, different compositions of synchronization arise. Averages across 40 realizations. Panels
(a) and (c)–(e): Hot colors, cold colors, and magenta indicate, respectively, no sync, sync, and the strongest degree of sync according to the corresponding measure.

Log-scale for hot and cold colors in (d) and (a) and (c) only for cold colors. (a) Average chimera group distance.1C > 0.05: No sync. 0 < 1C ≤ 0.05: Non-identical group

alignment sync. 1C = 0: Identical group alignment sync. (b) Spatial coefficient of variation in response’s frequency profile ξy . (c) Accumulated order parameter phase
difference. S ≥ 1: No sync. 0 < S < 1: Order parameter phase sync, weak phase-locking. S = 0: Order parameter phase sync, strong phase-locking. (d) Order parameter
amplitude correlation. K < 0.99: No sync. 0.99 ≤ K < 1: Non-identical order parameter amplitude sync. K = 1: Identical order parameter amplitude sync. (e) Fractions of
weakly or strongly phase-locked individual oscillator pairs. 0 < Lw < 0.5, Ls = 0: No sync. 0.5 ≤ Lw < 1, Ls = 0: Partial oscillator pair phase sync, weak phase-locking.
Lw = 1, Ls = 0: Complete oscillator pair phase sync, weak phase-locking. Lw = 0, Ls = 1: Complete oscillator pair phase sync, strong phase-locking. (f) Average order
parameter phase difference 18. Red: not defined (n.d.) due to lack of phase-locking. (g) G = 1: Generalized sync. G = 0: No sync. (h) Lines indicating sync onset as
assessed by each measure. Dashed magenta line: Range where response is replica of driver with phases of all oscillators shifted by a constant lag. Black dots, from left to
right: parameters used in Figs. 1(b)–1(i); ×: Fig. 5(b); +, from left to right: Figs. 5(c)–5(e). White squares, top to bottom: Figs. 5(f)–5(g). All other parameters are the same
as in Fig. 1.
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of 1α is visible already for small inter-layer couplings ε. On the
left of Fig. 4(a), two prominent tongues are found. A dark tongue is
located at positive 1α around ε ≈ 0.18. Here, the measure 1C has
values of up to almost two. Recall that1C is normalized by the value
expected for independent layers

(

N
4

)

. Accordingly, a value of almost
two means that the low-coherence groups in the driver and response
are in almost antipodal positions on the ring

(

N
2

)

. However, for the
parameters corresponding to this dark tongue constituted by high
1C values [Fig. 4(a)], very low values of ξy are found [Fig. 4(b)]. The

low ξy values indicate that in this parameter range, the response does
not show a clear segregation between the high- and low-coherence
group. A look at some exemplary dynamics with parameters from
the center of the dark tongue confirms that, in contrast to the driver
X [Fig. 5(a)], the response Y [Fig. 5(b)] shows no chimera state. As a
consequence, the position of the low-coherence group and, there-
fore, 1C is indeed not well-defined, as already suggested by low
values of ξy [Fig. 4(b)].

For negative 1α, a blue tongue of non-identical group align-
ment synchronization is found [Fig. 4(a)]. However, looking at
the response for parameters close to this blue tongue, we find
a further type of non-chimera dynamics [Figs. 5(c)–5(e)]. The Y
layer switches intermittently between partly synchronized states and
almost fully synchronized states. The partly synchronized states in
the response appear as vertical stripes in which a low-coherent group
seems to form at the position of the low-coherence group of the
driver dynamics [Figs. 5(c)–5(e) vs Fig. 5(a)]. However, this forma-
tion disintegrates, and the response dynamics seems to go toward
a fully synchronized state. Since each oscillator receives a different
input via the multiplex coupling from X, however, a fully synchro-
nized state cannot be reached. In particular, the oscillators in Y
coupled to oscillators belonging to the low-coherence group in X
deviate from the overall almost synchronized motion. The degree
of incoherence in Y is small, but the group of affected oscilla-
tors is aligned to the low-coherence group in X. In consequence,
during both the partly synchronized states and almost fully synchro-
nized states, the response Y has a well-defined low-coherence group,
which is aligned to the one in the driver X, resulting in low values of
1C. At some point in time, the almost synchronized motion is then
again interrupted by a brief outburst of only partial synchronization.
This finding is in some analogy to the state-dependent vulnerabil-
ity of synchronization reported in Ref. 50. It depends on both the
state of the driven dynamics and the momentary input received from
the driver, whether or not the almost fully synchronized motion
breaks down temporarily. The mean duration of the almost synchro-
nized dynamics vs the one of only partially synchronized motions
is influenced by 1α and ε. Furthermore, these parameters deter-
mine whether generalized synchronization between the driver and
response occurs [Figs. 5(c) and 5(d)] or not [Fig. 5(e)]. This fur-
ther supports that the synchronization measures, in this case G,
are essential to discriminate between different states, which seem
very similar under visual inspection [Fig. 5(d) vs Fig. 5(e)]. Taken
together, Figs. 5(b)–5(e) show that weak inter-layer couplings can
destabilize the chimera state in the response layer, even if the driver
layer is in a chimera state.

As indicated by cold colors on the right of Fig. 4(a), we get non-
identical group alignment synchronization throughout the entire
range of 1α for high enough inter-layer couplings. The line of

synchronization onset is tilted from lower ε for negative 1α to
higher ε for positive 1α [Fig. 4(h)]. The degree of group alignment
synchronization becomes higher upon a further increase of ε, in par-
ticular, for smaller absolute values of 1α [Fig. 4(a)]. For 1α = 0,
magenta indicates that we get identical group alignment synchro-
nization for ε ≥ 0.215. Looking at the underlying dynamics, we see
that the phase velocity profile of the response is, in fact, identical to
the one of the driver:ωx,j(t) = ωy,j(t) [Fig. 5(a) vs Figs. 5(f) and 5(h)].
Recall, however, that even at 1α = 0, the driver and the response
layer are not identical since we use a non-zero 1ν. Accordingly,
the two layers of our network cannot synchronize identically. This
aspect can only be resolved with the help of further synchronization
metrics in the following.

The global pattern of the accumulated order parameter phase
difference S in Fig. 4(c) resembles the pattern of 1C in Fig. 4(a).
For uncoupled layers, the measure increases from S = 2679 at
1α = −0.036 to S = 3046 at 1α = 0.036. This can be explained
by the influence of αy on the average angular frequency of Zy(t),
while the one of Zx(t) remains unaffected. A dark tongue in the
S profile is found around the same area as in the 1C profile.
These results reaching S > 3700 show that around these parame-
ter values, the driving not only destabilizes the chimera state [see
again Fig. 5(b)] but also reduces the average angular velocity of
the response mean-field Zy(t). As a consequence of this decelera-
tion, the order parameter of Y is lapped more often by the one of
X, explaining the increase in S. In continued resemblances to the
1C profile, we find a white tongue of small S values within the
unsynchronized regime of the left of Fig. 4(a). However, S gener-
ally remains above one. Accordingly, in this region of the 1α–ε
plane, the order parameter phase difference 18(t) shows a stick-
jump behavior. The sticking periods coincide with the almost fully
synchronized states, whereas the outbursts of partial synchroniza-
tion cause jumps [Figs. 5(c)–5(e)], resulting in low S values without
reaching weak phase-locking. The exception is found at ε = 0.04
and1α − 0.034, where the sticking periods are typically longer than
the evaluation interval. In consequence, at this isolated parameter
value pair, we get S < 1 and, therefore, order parameter phase syn-
chronization with weak phase-locking [see the isolated blue dot on
the lower-left part of Fig. 4(c)].

Comparing again Figs. 4(a) and 4(c), or alternatively regard-
ing Fig. 4(h), we find that for positive 1α, the order parameter
phase synchronization with weak phase-locking starts at somewhat
higher ε than group alignment synchronization. For negative 1α,
both types of synchronization start within a more narrow range of ε.
Within the phase synchronized regime, decreasing S values, indicat-
ing diminishing fluctuations in the order parameter phase difference
18(t), are found for decreasing absolute 1α values [Fig. 4(c)]. For
1α = 0 and ε ≥ 0.215, magenta indicates that the fluctuations dis-
appear and we get S = 0. Hence, we detect order parameter phase
synchronization with strong phase-locking. This is plausible since
we saw above that the phase velocity profiles ωx,j(t) and ωy,j(t) are
identical for 1α = 0 and ε ≥ 0.215 [see again Fig. 5(a) vs Fig. 5(f)
and see Fig. 5(h)].

Turning to the measure K, which assesses the order parame-
ter amplitude correlation, we find that also here, results for1α = 0
and ε ≥ 0.215 stands out [magenta in Fig. 4(d)]. We get an
order parameter amplitude correlation of K = 1, implying that the
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FIG. 5. The driver chimera can destabilize the response chimera. (a) Profiles of instantaneous frequenciesωx,j(t) for the driver X (the same realization and the time window as
in Fig. 1). (b)–(g) The same as (a) but for the response:ωy,j(t). Inter-layer coupling ε andmismatch in phase lag parameter1α indicated above each panel. Other parameters:
N = 50, b = 18, νx = 0, νy = 0.2 (i.e.,1ν = 0.2). (h) ωx,j(t)− ωy,j(t) = 0 for the example of ε = 0.3 and1α = 0. (i) ωx,j(t)− ωy,j(t) 6= 0 for the example of ε = 0.3
and1α = −0.012. The color scale in panels (h) and (i) is the same as in (a)–(g) but bounded by −0.02 and +0.02. All panels have the same range of j and t.

temporal variations of these amplitudes are identical for the driver
and response. Moreover, there is no constant offset between Rx(t)
and Ry(t) (results not shown). Hence, we get identical order param-
eter amplitude synchronization between X and Y. Also, these
K results are consistent with, but not sufficient for, identical

synchronization between the driver and response at zero mismatch
in α and strong enough inter-layer coupling ε. Recall again that
we can rule out identical synchronization a priori since the two
layers are non-identical. For zero inter-layer coupling, K ≈ 0 is
found, and only small K values are obtained for weak coupling.
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Remarkably, the onset of order parameter phase synchronization
with weak phase-locking is accompanied by a first sharp increase of
order parameter amplitude correlation K [see Fig. 4(c) vs Fig. 4(d)].
Upon a further increase of ε, the threshold of K ≥ 0.99 for non-
identical order parameter amplitude synchronization is reached,
resulting in a triangular pattern with its tip at the point1α = 0 and
ε = 0.215.

Combining the results for the order parameter phases
[Fig. 4(c)] and order parameter amplitudes [Fig. 4(d)], we see a
transition from (i) an unsynchronized motion, to (ii) phase synchro-
nization with weak phase-locking but without amplitude synchro-
nization, to (iii) phase synchronization with weak phase-locking and
non-identical amplitude synchronization, and reaching (iv) phase
synchronization with strong phase-locking and identical amplitude
synchronization. Evidently, the exact value of ε leading to the transi-
tion from (ii) to (iii) depends on the choice of the threshold K ≥ 0.99
used for the detection of non-identical amplitude synchronization.

We illustrated above that at 1α = 0.028 and upon increasing
ε at first, the order parameters and only later individual oscilla-
tor pairs show weak phase-locking (see again Table I, columns S
and Lw and Fig. 3). It turns out that this cascaded synchroniza-
tion onset is found throughout positive 1α. For negative 1α, the
onset of partial weak phase-locking of individual oscillator pairs
practically coincides with the one of weak phase-locking between
the order parameters [compare again Fig. 4(c) vs Fig. 4(e) and see
Fig. 4(h)]. Like for all previous synchronization measures, the line
1α = 0 and ε ≥ 0.215 stands out [magenta in Fig. 4(e)]. Here, and
only here, we find complete oscillator pair phase synchronization
with strong phase-locking, reflected in Ls = 1. This is confirmed
by comparing Fig. 5(a) vs Fig. 5(f) and by Fig. 5(h), which shows
ωy,j(t) = ωx,j(t) obtained for exemplary parameters on the magenta
line. Away from the magenta line, we always get Ls = 0, indicating
the absence of strong phase-locking between individual oscillator
pairs. This is confirmed by comparing Fig. 5(a) vs Fig. 5(g) and by
Fig. 5(i), which show non-zero differences betweenωy,j(t) andωx,j(t)
obtained for exemplary parameters away from the magenta line. In
consequence, we either get Ls = 0 or Ls = 1. We never find par-
tial oscillator pair phase synchronization with strong phase-locking,
which would be reflected in 0 < Ls < 1.

A look at the average phase differences for the order param-
eters [Fig. 4(f)] and for pairs of individual oscillators (not shown)
allows resolving the particular type of synchronization found for
1α = 0 and ε ≥ 0.215. Recall that these average phase differences
are only meaningfully defined for parameter values at which we get
phase-locking. For the order parameters, we find18 < 0, implying
that expectedly, the response Y lags behind the driver X [Fig. 4(f)].
With increasing inter-layer coupling ε, the absolute value of this
lag decreases throughout the range of 1α. In contrast to all syn-
chronization measures discussed above, however, the line 1α = 0
and ε ≥ 0.215 does not stand out in the 18 profile. On the other
hand, inspecting the phase differences between individual oscilla-
tor pairs 1φj, one finds that exclusively for parameters on this line,
the phase lag is constant not only across time but also across all
oscillators (results not shown). In consequence, the order parame-
ters rotate with the same time-independent phase lag between them:
18(t) = 1φj(t) = 180 for all j, which is also confirmed by S = 0.
Basically, at any moment in time, the response is a replica of the

drive with all oscillators rotated by a constant angle180. This rota-
tion has no effect on the order parameter lengths such that K = 1.
It also does not alter the instantaneous frequencies, explaining why
we get ωy,j(t) = ωx,j(t) across all t and j. The latter equality in turn
explains the identical group alignment synchronization found for
1α = 0 and ε ≥ 0.215, because the average chimera group distance
1C is based on ωy,j(t) and ωx,j(t). Effectively, at 1α = 0, all indi-
vidual oscillator pairs and, therefore, the two layers of the network
behave like a pair of simple coupled oscillators with a mismatch in
their natural frequencies. Above a certain coupling strength, they
enter into synchronization with a non-zero but constant phase lag.
This analogy is plausible when we recall again that at 1α = 0, only
the mismatch 1ν = 0.2 between the frequencies of the driver and
response remains.

We close this section by describing the onset of generalized
synchronization with regard to the other types of synchronization
[Fig. 4(g)]. We have shown above (Fig. 1 and Table I) that at
1α = 0.028 and upon increasing ε, we get the following sequence
of onsets: non-identical group alignment synchronization (0 < 1C
≤ 0.05), order parameter phase synchronization with weak phase-
locking (0 < S < 1), generalized synchronization (G = 1), partial
oscillator pair phase synchronization with weak phase-locking
(1 > Lw ≥ 0.5), and finally non-identical order parameter ampli-
tude synchronization (1 > K ≥ 0.99). This cascaded synchroniza-
tion onset is found across 1α > 0 [compare again Figs. 4(a), 4(c),
4(d), 4(e), and 4(g) and see Fig. 4(h)]. For 1α = 0, all types of
synchronization have their onset at ε = 0.215, directly entering
into their strongest degree. For 1α < 0, except for non-identical
order parameter amplitude synchronization, all synchronization
types have their onset within a narrow range of ε [Fig. 4(h)]. Con-
cerning the critical couplings, one should again keep in mind that
their exact values depend on the exact choice of the different thresh-
olds used for the definition of the synchronization onsets (see also
Refs. 8, 11, and 31). With regard to generalized synchronization
vs phase synchronization,51 we see that we can get order parame-
ter phase synchronization without generalized synchronization at
1α > 0, as well as order parameter phase synchronization along
with generalized synchronization 1α ≤ 0. Can we get generalized
synchronization without phase synchronization? Yes, this is given
in the tongue centered around inter-layer couplings of ε = 0.05 for
negative1α [Fig. 4(h)].

V. DISCUSSION

The network studied here provides an example of a modular
system in which the coupling within and across modules is estab-
lished via connections between individual nodes. Depending on
its parameters, the system can show different forms and degrees
of partial synchronization. Furthermore, part of the network can
transiently or permanently collapse to an almost fully synchronized
motion. These features of the network structure and dynamics can
be regarded as analogies to the brain, its functions and diseases, lead-
ing to potential applicability of our findings to real-world dynamics
(see also Refs. 12, 17, 19, 20, 22, 36, 45, and 52–60). However, our
network is far away from being a realistic model for the brain. It is
much too simple. It might, however, be exactly this simplicity that
yields our network a powerful model. It allows us to study basic
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mechanisms of synchronization, which the brain may also employ
to orchestrate its functions. The brain is complex, but it might still
make use of simple principles.

Depending only on its parameter 1α, our network can show
different transitions to synchronization between the driver X and
response Y. For example, for negative 1α, it shows a sharp transi-
tion where most types of synchronization start in a narrow range
of inter-layer coupling. Beyond this coupling, the drifting motion of
the low-coherence group in the response is very similar to the one
in the driver, and all individual oscillators as well as the mean-field
are phase-locked. Moreover, the driver and response show gener-
alized synchronization.6 Here, we should recall the implication of
generalized synchronization. The state of the response has become
independent from its initial condition and depends solely on the
state of the driver. Furthermore, at this transition, the mean-field
amplitudes show a strong increase in the across-layer correlation,
however, without reaching the threshold for order parameter ampli-
tude synchronization. In contrast, for the non-multiplex setting
studied in Ref. 20, the mean-field amplitudes remained uncorrelated
across the two layers despite locking of the mean-field phases.

For positive 1α, our system shows a more cascaded onset of
synchronization. Shepelev and Vadivasova also reported on such
a cascaded onset, in their case frequency synchronization and
structure synchronization started at different inter-layer coupling
strengths.8 One exemplary stage of the cascade we find here are
intermediate coupling strengths at which the phases of the mean-
fields are already locked with only a moderate correlation between
the mean-field amplitudes. At the same coupling, all individual
oscillators remain unsynchronized across layers. Furthermore, there
is no generalized synchronization, which implies that the response
layer, despite being mean-field phase-locked to the driver, still car-
ries the information of its initial conditions. Small changes of the
coupling strength can be used to up- or down-regulate the mean-
field amplitude correlation without affecting the other synchroniza-
tion quantities. Upon an increase of the coupling, an adjustable
fraction of individual nodes can be pushed into a phase-locked
motion, which is in analogy to previous findings.21,30,32 Overall, the
system has the capacity to achieve tunable degrees of across-layer
synchronization of macroscopic mean-field variables, while micro-
scopic variables can remain unsynchronized. It is also capable of
allowing the driver to entrain the response with regard to both
microscopic and macroscopic variables and force the response to
forget its initial conditions via generalized synchronization. Last but
not least, forcing the response to forget its initial conditions can also
be achieved without entrainment of the mean-fields. The chimeric
balance between synchronization and de-synchronization within
individual layers can furthermore co-exist with the different across-
layer synchronization types. The across-layer driving can, however,
also push the response layer into a state of almost full within-
layer synchronization or desynchronization. In this case, any type
of across-layer synchronization might only be an epiphenomenon
of the response dynamics’ degeneration. It can be conjectured that
this collapse corresponds to some malfunction of the system. The
existence of such malfunctions could be the price the system has to
pay for its versatility of functions.

In closing, we briefly sketch some open questions. The phase
lag parameter is important for the emergence of chimera states (see,

for example, Refs. 1, 3, 52, 60, and 61). Along with the difference
in the natural frequencies 1ν = νy − νx, we used the difference of
the phase lag parameters 1α = αy − αx to introduce a mismatch
between the parameters of the driver and the response layer. Future
work should study in more detail the role of the phase lag param-
eter in individual layers with regard to the emergence of chimera
states in multilayer networks. Furthermore, the transient nature of
chimera states44,45,61,62 should be further analyzed. A question that
should be addressed is how the inter-layer coupling influences the
system’s overall stability and lifetime distributions (see also Refs. 63
and 64). For example, does coupling between layers promote or
prevent chimera state collapses to fully synchronized states within
individual layers?
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