
Mean field phase synchronization between chimera states
Ralph G. Andrzejak, Giulia Ruzzene, Irene Malvestio, Kaspar Schindler, Eckehard Schöll, and Anna Zakharova

Citation: Chaos 28, 091101 (2018); doi: 10.1063/1.5049750
View online: https://doi.org/10.1063/1.5049750
View Table of Contents: http://aip.scitation.org/toc/cha/28/9
Published by the American Institute of Physics

Articles you may be interested in
Alternating chimeras in networks of ephaptically coupled bursting neurons
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 083113 (2018); 10.1063/1.5022612

Engineering chimera patterns in networks using heterogeneous delays
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 071103 (2018); 10.1063/1.5042133

Asymmetry in initial cluster size favors symmetry in a network of oscillators
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 081101 (2018); 10.1063/1.5043588

Synchronization of chimera states in a multiplex system of phase oscillators with adaptive couplings
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 093115 (2018); 10.1063/1.5031681

Chimera states and intermittency in an ensemble of nonlocally coupled Lorenz systems
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 063119 (2018); 10.1063/1.5020009

Time dependent stability margin in multistable systems
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 093104 (2018); 10.1063/1.5042310

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1908776651/x01/AIP-PT/Chaos_ArticleDL_0618/Chaos_1640x440Banner_2-18.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Andrzejak%2C+Ralph+G
http://aip.scitation.org/author/Ruzzene%2C+Giulia
http://aip.scitation.org/author/Malvestio%2C+Irene
http://aip.scitation.org/author/Schindler%2C+Kaspar
http://aip.scitation.org/author/Sch%C3%B6ll%2C+Eckehard
http://aip.scitation.org/author/Zakharova%2C+Anna
/loi/cha
https://doi.org/10.1063/1.5049750
http://aip.scitation.org/toc/cha/28/9
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.5022612
http://aip.scitation.org/doi/abs/10.1063/1.5042133
http://aip.scitation.org/doi/abs/10.1063/1.5043588
http://aip.scitation.org/doi/abs/10.1063/1.5031681
http://aip.scitation.org/doi/abs/10.1063/1.5020009
http://aip.scitation.org/doi/abs/10.1063/1.5042310


CHAOS 28, 091101 (2018)

Mean field phase synchronization between chimera states
Ralph G. Andrzejak,1,2 Giulia Ruzzene,1 Irene Malvestio,1,3,4 Kaspar Schindler,5 Eckehard
Schöll,6 and Anna Zakharova6

1Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc
Boronat 138, 08018 Barcelona, Catalonia, Spain
2Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri
Reixac 10-12, 08028 Barcelona, Spain
3Department of Physics and Astronomy, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino,
Italy
4Institute for Complex Systems, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
5Department of Neurology, Sleep-Wake-Epilepsy-Center, Inselspital, University Hospital, University Bern,
Freiburgstrasse 18, 3010 Bern, Switzerland
6Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany

(Received 25 July 2018; accepted 15 August 2018; published online 11 September 2018)

We study two-layer networks of identical phase oscillators. Each individual layer is a ring network
for which a non-local intra-layer coupling leads to the formation of a chimera state. The number of
oscillators and their natural frequencies is in general different across the layers. We couple the phases
of individual oscillators in one layer to the phase of the mean field of the other layer. This coupling
from the mean field to individual oscillators is done in both directions. For a sufficient strength of
this inter-layer coupling, the phases of the mean fields lock across the two layers. In contrast, both
layers continue to exhibit chimera states with no locking between the phases of individual oscillators
across layers, and the two mean field amplitudes remain uncorrelated. Hence, the networks’ mean
fields show phase synchronization which is analogous to the one between low-dimensional chaotic
oscillators. The required coupling strength to achieve this mean field phase synchronization increases
with the mismatches in the network sizes and the oscillators’ natural frequencies. Published by AIP
Publishing. https://doi.org/10.1063/1.5049750

Chimera states are an intriguing coexistence of syn-
chronous and asynchronous motion in networks of
coupled dynamics.1,2 There is growing evidence that the
analysis of chimera states can help understand the dynam-
ics of natural and man-made networks.3–5 In such real-
world dynamics, however, the interplay of synchronization
and desynchronization is not only important within indi-
vidual networks but also across interacting networks.6

Therefore, while chimera states were traditionally studied
in one-layer networks, recent work deals with interac-
tions of chimera states across coupled layers in multilayer
networks.7–19 In particular, it was shown in Ref. 12 that
driver-response couplings between layers can induce so-
called generalized synchronization,20–22 where the state of
the response layer becomes a unique function of the state
of the driver layer. While these findings on generalized
synchronization between chimera states12 are appealing
from a theoretical point of view, their applicability might
remain limited because this particular type of synchro-
nization is difficult to detect. Moreover, previous work7–17

focused on multiplex networks, for which the layers must
have the same number of oscillators and the inter-layer
coupling connects individual oscillators in a pairwise and
ordered topology. These constraints exclude many types
of real-world multilayer networks, which in general can
have different numbers of nodes in each layer, thereby
already ruling out a multiplex connection topology across
layers. Furthermore, the nodes in the network of one layer
might not be directly connected to the nodes in the net-
work of the other layer but instead to some macroscopic

variable of the other network. We, therefore, use a more
general approach than in previous work7–19 and study
two-layer networks with a different number of oscilla-
tors in each layer. For each layer, we use the classical
setting of a ring network of non-locally coupled identi-
cal phase oscillators in a chimera state. We at first briefly
illustrate that chimera states in individual ring networks
can be identified as weakly chaotic attractors (Refs. 5, 23,
and 24 and references therein). We then couple the phases
of individual oscillators in one layer to the phase of the
mean field of the other layer. This coupling from a macro-
scopic variable in one layer to the microscopic variables in
the other layer is done in both directions. We show that
also in the presence of inter-layer coupling, both layers
continue to exhibit chimera states. For a sufficient cou-
pling strength, the phases of the two mean fields lock,
while their amplitudes remain uncorrelated. Hence, in
analogy to low-dimensional chaotic oscillators,25 the mean
fields of networks in chimera states can show phase syn-
chronization. We then study the parameter plane spanned
by the mismatch in the natural frequencies of the two
layers and the coupling strength between them. We show
that the synchronization region in this plane forms Arnold
tongues,26 a finding which further strengthens the analogy
to the low-dimensional case dealt with in Ref. 25. We dis-
cuss the applicability of our findings using examples from
neuroscience. In particular, we propose that our study
may shed light on the dynamics and action of weak elec-
tromagnetic fields emerging from the collective activity of
biological neuronal networks.
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I. INTRODUCTION

Interacting networks are ubiquitous in nature. In many
cases, such as brain networks, neither a completely syn-
chronized nor a completely desynchronized dynamics of
the networks would allow for a proper function. Instead, a
balance between synchronization and desynchronization is
essential not only within networks but also across networks.
Recent work on chimera states, which are paradigmatic for
this balance, has, therefore, progressed from the study of
individual networks to interacting networks. Chimeras were
studied in multilayer networks of phase oscillators,7,11–13,16,19

Hindmarsh-Rose,7,9,10,14,18 and FitzHugh-Nagumo27 model
neurons, as well as chaotic time-discrete maps.8,15,17 It was
shown that couplings between network layers can suppress
or induce7–11,14–17 chimera states in individual layers and
that chimeras can be identical, almost identical, or distinct
across different layers.7,8,11–16,18 Coupling delays8–10 as well
as parameter mismatches or structural differences across
layers7,9,11,15–17 were found to play an important role in
this multilayer setting. For the special case of bipartite net-
works in-phase, anti-phase and out-of-phase chimeras were
observed.19,27

To address the specific issue of across-layer synchroniza-
tion, we previously studied a two-layer multiplex network
with a driver-response coupling scheme.12 Each layer con-
sisted of a ring network of N non-locally coupled identi-
cal phase oscillators,1,2 and both layers individually showed
chimera states when there was no connection between them.
We then applied a unidirectional coupling from the driver
layer X to the response layer Y . Each node in the layer X
with index j was connected to its counterpart node in Y with
index j, for j = 1 . . . N . For a sufficiently strong coupling,
the layers entered into generalized synchronization. This par-
ticular kind of synchronization is defined by the existence
of a function H that determines the state of the response,
given the state of the driver: Y = H(X ).20–22 Despite this syn-
chronization across layers, both networks continued to show
chimera states with distinct spatiotemporal dynamics. Since
synchronization can play a role in the transmission of infor-
mation across interacting networks in nature, we concluded
in Ref. 12 that our findings on generalized synchronization
led to a broader applicability of the concept of chimera states
to real-world phenomena. It can be objected, however, that
the function H can be very complicated, and a direct test
for its existence based on the observation of the temporal
evolution of X and Y requires the computation of condi-
tional Lyapunov exponents (Refs. 26 and 28 and references
therein) or some advanced nonlinear signal analysis measures
(e.g., Ref. 29). For our model systems studied in Ref. 12,
we detected generalized synchronization indirectly using the
auxiliary system approach.21,22 For this approach, however,
one has to construct an exact replica of the response net-
work, and it is unlikely that such a technique can be directly
applied in real-world systems. Furthermore, for the multiplex
setting used in Refs. 7–18, the layers must have the same num-
ber of nodes N , and connections between nodes across the
layers are pairwise and ordered. As stated above, these con-
straints exclude many types of networks. Finally, inter-layer

connections in multilayer networks can be bidirectional, and
the work of Ref. 12 was restricted to unidirectional driver-
response couplings. In the present work, we overcome these
limitations.

II. TWO-LAYER NETWORK

We analyze a two-layer network and denote the individ-
ual layers by X and Y . Each layer is constituted by a ring
network of Nx and Ny phase oscillators, respectively. Within
each layer the phase oscillators are mutually coupled via a
non-local rectangular kernel. As a consequence, the networks
of each layer enter into a chimera state. We denote the time-
dependent phases of individual oscillators in X by φx,jx(t)
for jx = 1, . . . , Nx, and their mean field is quantified by the
complex Kuramoto order parameter30

Zx(t) = 1

Nx

Nx∑

jx=1

eiφx,jx (t) = Rx(t)e
i�x(t), (1)

with collective amplitude Rx(t) and phase �x(t). This order
parameter rotates in the complex plane, and its phase velocity
is denoted by �x(t) = d�x(t)/dt. All quantities are defined
analogously for Y .

To connect the two layers, the phases of all oscillators in
X are coupled with strength ε to the order parameter phase of
the network Y . In the same way, the phases of all oscillators in
Y are coupled with the same strength ε to the order parameter
phase of the network X .31 Overall, this leads to

φ̇x,jx(t) = ωx − ε sin
[
φx,jx(t) − �y(t)

]

− 1

2bx

jx+bx∑

k=jx−bx

sin
[
φx,jx(t) − φx,k(t) + α

]
(2)

and analogously for Y . The phase lag parameter is set to
α = 1.46.12,23,24,32 The number of oscillators Nx,y is in general
different for X and Y . The natural frequencies of individual
oscillators ωx,y are the same for all oscillators within a given
layer, but in general different across the layers X and Y . The
coupling range is set to bx,y = 0.35 · Nx,y. According to the
networks’ ring architecture, sums and differences of oscillator
indices in Eq. (2) are to be understood as modulo Nx,y.

III. INTEGRATION OF DYNAMICS AND PRELIMINARIES

The networks of both layers X and Y were initialized with
random phases independently and uniformly distributed in
(0, 2π ], and we integrated the dynamics using a fourth-order
Runge-Kutta scheme with fixed sampling time of dt = 0.05.
Results of pre-analysis comparing dt = 0.01 and dt = 0.05
showed the latter to lead to a sufficient accuracy. For each
run, we integrated the dynamics for a total of 2 · 106 sam-
pling times, corresponding to 1 · 105 dimensionless time units.
At the parameters we used, the complex order parameters
revolve on the order 1.25 · 104 times in this period. The cou-
pling between layers ε was turned on only after the first 1 · 103

time units, so that initially the networks in both layers could
settle to a chimera state not being influenced by the other
layer. The resulting dynamics was evaluated during the inter-
val I = [1 · 104, 1 · 105] time units. Accordingly, transients



091101-3 Andrzejak et al. Chaos 28, 091101 (2018)

FIG. 1. The mean field of a network in a chimera state is sensitively depen-
dent on the initial conditions. Temporal evolution of the order parameter
amplitude Rx(t) obtained for two almost identical initial conditions in a
chimera state.

toward a synchronized motion could fade out between 1 · 103

and 1 · 104 time units.
For our finite-size ring networks, chimera states can sud-

denly collapse to a fully coherent state24 in which the phases
of all nodes become locked and oscillate at constant phase
velocity. Furthermore, after the initialization with random
phases the network can directly go to this fully coherent state
without ever forming a chimera state. While chimera state col-
lapses were studied in Refs. 24 and 32, we follow Ref. 12 and
exclude them from the present study. Whenever the network
of either of the layers approached the fully coherent state, the
realization was discarded and a new realization was started
with new random initial conditions. This had to be done only
occasionally, since at the network sizes we used the mean life-
time of chimera states is orders of magnitudes higher than the
evaluation interval I.24,32 It was, therefore, not necessary to
further increase the stability of the chimera states by using a
higher number of oscillators.

Chimera states in finite-size networks can be identified
as weakly chaotic attractors (Refs. 5, 23, and 24 and refer-
ences therein). Accordingly, the mean field of a network in a
chimera state can be regarded as a chaotic oscillator. To illus-
trate this fact we started the network of layer X twice with
almost identical initial conditions for Nx = 250, ωx = 0, and
ε = 0, i.e., uncoupled from the network of layer Y . Both ini-
tial conditions were already in a chimera state and differed
only by 0.01 in the phase of one single oscillator from the
unsynchronized group. As a consequence of this difference,
the order parameters of both realizations diverged rapidly and
got completely uncorrelated. This sensitive dependence on the
initial conditions is illustrated in Fig. 1 using the order param-
eter amplitude (see also Fig. 2 of Ref. 23). This illustration
serves merely as an example for the well-established chaotic
nature of chimera states, and we include it only to underline
that our results indeed concern the synchronization of chaotic
oscillators.

IV. QUANTIFICATION OF PHASE SYNCHRONIZATION

To assess the synchronization between the mean fields
of the two layers X and Y , we analyze their rotating order
parameters Zx(t) and Zy(t).33 At first, we define

	�(t) = �x(t) − �y(t). (3)

Phase synchronization of the order parameters can be defined
using the strong locking condition 	�(t) = const or the
weak locking condition |	�(t)| < const.25 To distinguish the
regimes of strong phase locking, weak phase locking, and
unsynchronized motion, we introduce the normalized phase
difference index:

S = max
{
	�(t)

} − min{	�(t)}
2π

. (4)

Here, curly brackets denote the set of values across all times
included in the evaluation interval, i.e., t ∈ I. The differ-
ent regimes can be distinguished as follows. Phase syn-
chronization detected from strong phase locking, S = 0: If
�x(t) and �y(t) rotate with a constant difference, we get
max

{
	�(t)

} = min{	�(t)} and accordingly S = 0. This
includes 	� = const > 0 which corresponds to phase syn-
chronization with a constant phase lag. Phase synchronization
detected from weak phase locking, 0 < S < 1: Any temporal
variability of 	�(t) leads to S > 0. However, as long as the
order parameters never lap each other in the complex plane,
i.e., the difference of their phases stays below 2π , S remains
below 1. The smaller the temporal variability of 	�(t), the
smaller the value of S. Unsynchronized motion, S ≥ 1: As
soon as one order parameter completes at least one more rota-
tion than the other order parameter, 	�(t) grows by 2π and
we get S ≥ 1. This indicates that the phases are not locked.
The order parameter do not rotate in a phase synchronized
manner.

Inter-layer couplings ε that are not strong enough to
lead to a phase synchronized motion of the mean fields can
still induce a dependence between their phases. We quantify
the degree of this dependence by the temporal mean phase
difference coherence:

C =
∣∣∣
〈{ei	�(t)}〉

∣∣∣. (5)

Here, angular brackets 〈〉 denote the temporal average taken
over the values included in the set defined by {} and || denotes
the absolute value. Accordingly, C can also be read as the
modulus of the complex Kuramoto order parameter of the
phase differences 	�(t). If the two order parameters evolve
independently, 	�(t) is uniformly distributed in (0, 2π ], and
we get C = 0.34 If, due to a coupling, 	�(t) is attracted by
some phase lag, it is no longer uniformly distributed across the
circle. Instead, the distribution of {	�(t)} is peaked around
this attracting value, and we get C > 0. Once the strong phase
locking condition is fulfilled C reaches its upper bound of 1.
However, in contrast to 0 < S < 1, the measure C has no
defined range if the weak phase locking condition is fulfilled.
The advantage of C over S is that C > 0 allows us to detect
dependencies in the phases in the unsynchronized regime even
if 	�(t) suffers frequent slips by 2π resulting in S � 1.

Finally, the Pearson correlation coefficient35 between the
order parameter amplitudes taken across the evaluation inter-
val I is denoted by K. If these amplitudes {Rx(t)} and {Ry(t)}
are independent variables, the expected value is K = 0. The
upper limit of K = 1 would be obtained for identical synchro-
nization of the amplitudes Rx(t) = Ry(t).
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V. RESULTS

We start by inspecting the dynamics with no coupling
between the layers, that is, Eq. (2) with ε = 0. The other
parameters are set to Nx = 250, Ny = 150, ωx = 0.01, ωy = 0
and the fixed values specified in Sec. II for the remaining
quantities (Fig. 2). As a consequence of the non-local cou-
pling within the networks of individual layers, they are both
in chimera states [Fig. 2(a)]. On the other hand, because of the
lack of inter-layer coupling, the two networks evolve inde-
pendently from another. The difference between the order
parameter phases 	�(t) increases linearly with some super-
imposed fluctuations [Fig. 2(b)]. These fluctuations are caused
by the diffusion of the individual mean field phases,26 reflect-
ing the chaotic nature of the chimera dynamics (see again
Fig. 1). The overall increase of 	�(t) shows that the layers’
complex mean fields rotate at different mean phase velocities
�x(t) and �y(t). This difference is caused by the mismatches
in the number of oscillators, Nx versus Ny, and in the natural
frequencies of individual oscillators, ωx versus ωy. The ampli-
tudes of the order parameters Rx(t) and Ry(t) show temporal
fluctuations, and there is no relation between them [Fig. 2(c)].
When taken for the entire evaluation interval I, the Pearson
correlation coefficient between Rx(t) and Ry(t) is K = 0.006.

When the networks are mutually coupled with ε = 0.01,
both networks continue to exhibit chimera states [Fig. 3(a)].
In contrast to the uncoupled case, however, the order param-
eter phase difference 	�(t) remains bounded; it fluctuates
around a mean value of approximately 0.16π [Fig. 3(b)].
This indicates that while the strong phase locking condition
is not met, the weak phase locking condition is fulfilled. In

contrast to the order parameter phases, their amplitudes Rx(t)
and Ry(t) remain uncorrelated over time [Fig. 3(c)], reflected
in a negligible value of K = −0.016. Accordingly, only the
phases but not the amplitudes of the order parameters Zx(t)
and Zy(t) are synchronized. Hence, the mean fields of the two
layers exhibit a phase synchronized dynamics, analogous to
the one described for low-dimensional chaotic oscillators by
Rosenblum et al. 25

In contrast to the phases of the macroscopic mean fields,
phases of pairs of individual oscillators are not locked across
layers. First of all, as opposed to multiplex networks, in our
setting there is no pre-defined pairing between individual
oscillators with the same index in both networks. Consider-
ing pairings of oscillators with in general different indices, we
find that individual pairs are only locked temporarily while
both oscillators belong to the group of coherent oscillators
in their respective network [Fig. 3(a)]. However, since these
coherent groups drift across the networks of the layers,23 in
the long run, all individual oscillators switch back and forth
between their coherent and incoherent groups. As soon as one
oscillator is in the incoherent group, the phase locking is bro-
ken. Accordingly, there is no stable phase locking between
any pair of individual oscillators across the layers.

To further illustrate the transition to mean field phase syn-
chronization, we inspect the temporal evolution of the order
parameter phase difference 	�(t) for exemplary inter-layer
coupling strengths ε [Fig. 4 and again Figs. 2(b) and 3(b)]. For
zero coupling, 	�(t) increases in an approximately, though
not strictly linear way versus time. For nonzero but non-
synchronizing couplings we find the typical stick-jump cycles
(see also Fig. 1 in Ref. 25). In each cycle, 	�(t) at first

FIG. 2. Without coupling between the layers X and Y , the difference between their mean field phases is unbounded. All panels have the same interval of time t
as abscissa. Time is relative to the beginning of the evaluation interval I, which has a total duration of 90 000 time units. We use ωx = 0.01, ωy = 0, Nx = 250,
Ny = 150, and accordingly bx = 87, by = 52. Panel (a) shows the temporal evolution of phases of the individual oscillators φx,jx (t) and φy,jy (t) obtained from
an exemplary solution of Eq. (2) for ε = 0. The networks of the layers X and Y are displayed at bottom and top, respectively, separated by the white gap. For
each layer separately, we shifted the oscillator indices circularly such that the groups of coherent oscillators of X and Y are adjacent in this display. This can
be done due to the ring architecture of the networks. Panel (b) shows the order parameter phase difference 	�(t). In both panels (a) and (b), the red and black
vertical lines indicate the instants when the order parameters are in-phase and in anti-phase, respectively. Panel (c) shows the evolution of the order parameter
amplitudes Rx(t) and Ry(t).
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FIG. 3. For sufficiently strong coupling
between the networks of the layers X
and Y , their mean fields are phase syn-
chronized. Same as Fig. 2 but for ε =
0.01. No red or black vertical lines are
used since the order parameters are never
in-phase or in anti-phase.

increases very slowly (stick) and then rapidly completes a full
rotation of 2π (jump). The duration of these cycles fluctuates
but generally increases with the coupling strength. Finally,
for sufficient coupling, 	�(t) remains bounded and does not
complete rotations of 2π any longer.

Figure 5 displays results obtained upon a gradual increase
of the coupling strength between layers ε. For ε = 0, the
unbounded growth of 	�(t) results in S � 1 [Fig. 5(a)].
This normalized phase difference index S remains limited
only due to the finite duration of the evaluation interval I.
Furthermore, at ε = 0, the temporal mean phase difference
coherence C is indistinguishable from zero, reflecting that

FIG. 4. Increasing the inter-layer coupling strength prolongs the periods
in which the phase difference is stuck. Temporal evolution of the order
parameter phase difference 	�(t) for different coupling strengths between
layers: ε = 0; 0.004; 0.0045; 0.004875; 0.005125; 0.01 from top to bottom at
the right border of the plot. All other parameters are like in Figs. 2 and 3.

	�(t) is uniformly distributed across the circle [Fig. 5(b)].
Since the order parameters rotate clockwise, their mean phase
velocities are negative. For ε = 0, we find that |〈{�y(t)}〉| >

|〈{�x(t)}〉|, i.e., the order parameter Zy(t) rotates faster than
Zx(t) [Fig. 5(c)]. For nonzero but low couplings we still get
S � 1. This shows that 	�(t) continues to undergo fre-
quent jumps by 2π , each incrementing S by one. Nonetheless,
when taken modulo 2π , 	�(t) is already attracted by a cer-
tain phase difference resulting in C > 0 (see again Fig. 4).
Around ε ≈ 0.005, the measure S drops sharply, has first
entries below 1 for ε > ε1 = 0.0053125, and remains below
1 for ε > ε2 = 0.005475. In ε1 < ε < ε2, we find some real-
izations that perform a 2π phase difference jump during the
evaluation interval (S > 1) and some realizations that do not
(S < 1). Such behavior is common in synchronization transi-
tions; see, for instance, the synchronization transition found
in delay-coupled FitzHugh-Nagumo systems with excitatory
and inhibitory links (Fig. 3 in Ref. 36). It indicates that the
synchronization transition in networks is a non-equilibrium
phase transition of second order, not of first order, i.e., it is
not a discontinuous transition in systems with finite N. Above
ε2 we find that 〈{�x(t)}〉 is very close to 〈{�y(t)}〉, and C
approaches its upper bound of 1, though without reaching
it. Most importantly, we find 0 < S < 1. Hence, the weak
phase locking, but not the strong phase locking condition, is
fulfilled. Throughout the range of the coupling, the Pearson
correlation coefficient K between the order parameter ampli-
tudes remains vanishingly small [Fig. 5(d)]. Overall, Fig. 5
shows that for ε > ε2, the mean fields of the two layers are
phase synchronized.

We now consider the parameter plane spanned by ωx and
ε, while we continue to keep Nx = 250, Ny = 150, ωy = 0
fixed [Figs. 6(a) and 6(b)]. Throughout the range of ωx and
ε, the correlation between the order parameter amplitudes
remained −0.03 < K < 0.04 (not shown). Already at ωx =
ωy = 0, a substantial coupling is needed to achieve the weak
phase locking condition [Fig. 6(a)]. The reason is that the
difference in the number of oscillators Nx and Ny by itself



091101-6 Andrzejak et al. Chaos 28, 091101 (2018)

FIG. 5. Transition to the phase synchronized motion of the
mean fields upon increasing the coupling between layers.
All panels have the same interval of the coupling strength
between layers ε as abscissa. All other parameters are like
in Figs. 2 and 4. (a) Normalized phase difference index
S. For realizations below the horizontal black line at S =
1, the weak phase locking condition is fulfilled. The ver-
tical dashed lines indicate from left to right ε1 and ε2.
(b) Temporal mean phase difference coherence C. (c)
Mean order parameter phase velocities 〈{�x(t)}〉, 〈{�y(t)}〉.
(d) The Pearson correlation coefficient K between the order
parameter amplitudes.

leads to a difference in �x(t) and �y(t). Even if ωx = ωy = 0,
the order parameter Zy(t) rotates faster than Zx(t), and inter-
layer coupling is needed to overcome this mismatch in the
phase velocities of the mean fields. Increasing the natural
frequency ωx of individual oscillators in the layer X while
keeping ωy = 0, increases this mismatch further. As a conse-
quence, higher coupling strengths are needed to achieve phase

synchronization between the mean fields. The required cou-
pling strength increases approximately linearly with ωx. Note
that ωx directly corresponds to the difference in the oscilla-
tors’ natural frequencies since we keep ωy = 0. Furthermore,
we find that synchronization is established with a non-zero lag
between �x and �y, and this lag is reduced upon increasing ε

[Fig. 6(b)].

FIG. 6. Stronger couplings are needed to overcome fre-
quency mismatches and reduce phase lags in synchronized
motion. Dependence of results on the coupling strength
between layers ε and the natural frequency ωx of oscilla-
tors in layer X . We fix ωy = 0. [Panel (a)] Logarithm of
the normalized phase difference index S for Nx = 250, Ny =
150, and accordingly bx = 87, by = 52. Blue colors indicate
that the weak phase locking condition (0 < S < 1) is ful-
filled. Red colors indicate that the mean field phases remain
unlocked. [Panel (b)] Mean phase difference 〈{	�(t)}〉
taken modulo 2π . Values are displayed only for combina-
tions of ε and ωx for which S < 1 in panel (a). The remaining
cases are shown in grey. Panels (c) and (d) same as (a) and
(b) but for Nx = Ny = 200 and bx = by = 70.



091101-7 Andrzejak et al. Chaos 28, 091101 (2018)

As last setting, we study the case when both layers have
the same number of oscillators Nx = Ny = 200 [Figs. 6(c)
and 6(d)]. We find that for ωx → ωy, synchronization already
occurs for very small couplings [Fig. 6(c)]. This was also
reported for the chaotic but highly coherent Rössler dynamics
in Ref. 25. It implies that the diffusion of the order param-
eter phases is only moderate. A further analogy to the low-
dimensional case first studied by Rosenblum and colleagues is
that the synchronization regions shown in Fig. 6 form Arnold
tongues, i.e., the phase-locking domain for coupled periodic
oscillators (see Fig. 2 in Ref. 25). For ωx = ωy = 0, the mean
phase lag 〈{	�}〉 becomes very close to zero [Fig. 6(d)].
Importantly, also for this zero-lag phase synchronization of
the mean fields, their amplitudes Rx(t) and Ry(t) remain uncor-
related over time. The correlation coefficient between these
amplitudes was found to be −0.034 < K < 0.042 across all
phase synchronized solutions (not shown). In summary of our
last setting, also if the networks constituting the two layers
have the same number of oscillators with the same natural fre-
quency, only the weak phase locking criterion is fulfilled. Like
for all results shown above, the strong phase locking condition
is not fulfilled. This is to be expected given the chaotic nature
of the chimera states for our finite size networks.5,23,24

VI. DISCUSSION

Our work provides a conceptual extension of phase syn-
chronization of chaotic oscillators25 to networks showing
chimera states. Compared to previous work on generalized
synchronization of networks in chimera states,12 the present
work on phase synchronization is of significantly wider appli-
cability. First of all, the multiplex setting with a driver-
response coupling studied in Ref. 12 excludes many types
of real-world multilayer networks. Furthermore, to detect
generalized synchronization from the temporal evolution of
networks requires the computation of conditional Lyapunov
exponents26,28 or nonlinear interdependence measures.29 As
an alternative one can use the auxiliary system approach.21,22

This seems, however, even more prohibitive in real-world sce-
narios since an exact replica of the driven network is needed.
In contrast, to detect phase synchronization as described in the
present work, one only has to monitor whether the difference
of the mean field phases across networks remains bounded
over time.

Our results are also interesting from a neuroscientific
point of view, because they may provide a theoretical frame-
work for modern concepts about how communication is
implemented in brain networks.37 One important characteris-
tic of brain networks is that most connections are local, prob-
ably mostly as a result of the strong evolutionary constraint
to minimize energy consumption of long-range axonal trans-
mission. The prevalence of local connections also elegantly
explains the well-known ∼ 1/f characteristic of the elec-
troencephalogram (EEG).38 However, the activities between
different brain regions have to be coordinated, ideally in an
energy-efficient way and with minimal delay.39 One intriguing
possibility of efficient long-range communication are weak
endogenous electric fields generated by the (partial) local syn-
chronization of neurons.40 In the framework developed in the

present study, these emerging electric fields correspond to the
mean field order parameters. Spatial orientation of neurons,
their morphology, and the distribution of ion channels in their
membranes may render sets of neurons specifically respon-
sive to differently oriented electric fields and thus provide
the substrate for selective even directed communication as
modeled here.41,42 If neurons are conceptualized as oscilla-
tors, then the sudden change of natural frequencies in a local
network as, for example, observed at the onset of epileptic
seizures43,44 might then also disrupt the coordination con-
veyed by the phase synchronization of the order parameter
and allow pathologic activity to develop and spread, until
coupling is increased, for example, by the development of
stronger electric fields toward the end of epileptic seizures.45

Finally, we propose that the hypothesis of phase synchro-
nization between endogenously generated electric fields as
a coordinating mechanism between distant brain regions
might be tested by multi-scale electrophysiologic record-
ings, such as combining single unit, local field potential, and
EEG recordings as has become technically feasible in recent
years.46
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