
OFFPRINT

Characterizing unidirectional couplings between
point processes and flows

R. G. Andrzejak and T. Kreuz

EPL, 96 (2011) 50012

Please visit the new website
www.epljournal.org



A LETTERS  JOURNAL  EXPLORING  
THE  FRONTIERS  OF  PHYSICS

AN INVITATION TO 
SUBMIT YOUR WORK

www.epljournal.org

The Editorial Board invites you to submit your letters to EPL
EPL is a leading international journal publishing original, high-quality Letters in all 

areas of physics, ranging from condensed matter topics and interdisciplinary research 

to astrophysics, geophysics, plasma and fusion sciences, including those with 

application potential. 

The high profile of the journal combined with the excellent scientific quality of the 

articles continue to ensure EPL is an essential resource for its worldwide audience.  

EPL offers authors global visibility and a great opportunity to share their work with 

others across the whole of the physics community.

Run by active scientists, for scientists 
EPL is reviewed by scientists for scientists, to serve and support the international 

scientific community.  The Editorial Board is a team of active research scientists with 

an expert understanding of the needs of both authors and researchers.

IM
PA

CT 
FA

CTO
R

 2
.7

53
*

*A
s r

an
ke

d b
y I

SI
 2
01

0

www.epljournal.org



 www.epljournal.orgA LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Quality – The 40+ Co-Editors, who are experts in their fields, oversee the 

entire peer-review process, from selection of the referees to making all final 

acceptance decisions

Impact Factor – The 2010 Impact Factor is 2.753; your work will be in the 

right place to be cited by your peers

Speed of processing – We aim to provide you with a quick and efficient 

service; the median time from acceptance to online publication is 30 days

High visibility – All articles are free to read for 30 days from online 

publication date

International reach – Over 2,000 institutions have access to EPL, 

enabling your work to be read by your peers in 100 countries

Open Access – Articles are offered open access for a one-off author 

payment

Details on preparing, submitting and tracking the progress of your manuscript  

from submission to acceptance are available on the EPL submission website 

www.epletters.net.

If you would like further information about our author service or EPL in general, 

please visit www.epljournal.org or e-mail us at info@epljournal.org.

Six good reasons to publish with EPL
We want to work with you to help gain recognition for your high-quality work through 

worldwide visibility and high citations. 2.753*
* As listed in the ISI® 2010 Science  

Citation Index Journal Citation Reports

IMPACT FACTOR

500 000
full text downloads in 2010

OVER

30 DAYS

16 961

average receipt to online 

publication in 2010

citations in 2010
37% increase from 2007

1

2

3

4

5

6

www.epljournal.org

EPL is published in partnership with:

IOP PublishingEDP SciencesEuropean Physical Society Società Italiana di Fisica

“We’ve had a very positive 

experience with EPL, and 

not only on this occasion.  

The fact that one can 

identify an appropriate 

editor, and the editor 

is an active scientist in 

the field, makes a huge 

difference.”

Dr. Ivar Martinv

Los Alamos National Laboratory, 
USA



EPL Compilation Index

Visit the EPL website to read the latest articles published in 
cutting-edge fields of research from across the whole of physics.  

Each compilation is led by its own Co-Editor, who is a leading 
scientist in that field, and who is responsible for overseeing 
the review process, selecting referees and making publication 
decisions for every manuscript.

• Graphene 

• Liquid Crystals 

• High Transition Temperature Superconductors 

• Quantum Information Processing & Communication

• Biological & Soft Matter Physics

• Atomic, Molecular & Optical Physics

• Bose–Einstein Condensates & Ultracold Gases

• Metamaterials, Nanostructures & Magnetic Materials

• Mathematical Methods

• Physics of Gases, Plasmas & Electric Fields

• High Energy Nuclear Physics 

If you are working on research in any of these areas, the Co-Editors would be 

delighted to receive your submission. Articles should be submitted via the 

automated manuscript system at www.epletters.net

If you would like further information about our author service or EPL  

in general, please visit www.epljournal.org or e-mail us at 

info@epljournal.org

Biaxial strain on lens-shaped quantum rings of different inner 

radii, adapted from Zhang et al 2008 EPL 83 67004.

Artistic impression of electrostatic particle–particle  

interactions in dielectrophoresis, adapted from N Aubry 

and P Singh 2006 EPL 74 623.

Artistic impression of velocity and normal stress profiles 

around a sphere that moves through a polymer solution,

adapted from R Tuinier, J K G Dhont and T-H Fan 2006 EPL 

75 929.

 www.epl journal.org

A LETTERS  JOURNAL 

EXPLORING  THE  FRONTIERS 

OF  PHYSICS

Image: Ornamental multiplication of space-time figures of temperature transformation rules 

(adapted from T. S. Bíró and P. Ván 2010 EPL 89 30001; artistic impression by Frédérique Swist).



December 2011

EPL, 96 (2011) 50012 www.epljournal.org

doi: 10.1209/0295-5075/96/50012

Characterizing unidirectional couplings between point

processes and flows

R. G. Andrzejak1(a) and T. Kreuz2

1Department of Information and Communication Technologies, Universitat Pompeu Fabra - Barcelona, Spain, EU
2 Institute for Complex Systems, CNR - Sesto Fiorentino, Italy, EU

received 8 August 2011; accepted in final form 18 October 2011
published online 25 November 2011

PACS 05.45.Tp – Time series analysis
PACS 05.45.Xt – Synchronization; coupled oscillators

Abstract – Experimental data comprising both time-continuous flows and point processes are
recorded in many scientific disciplines. The characterization of causal interactions from such signals
is key to an advanced understanding of the underlying dynamics. We therefore introduce a unified
approach to characterize unidirectional couplings between point processes, between flows, as well
as between point processes and flows. For this purpose we show and exploit the generality of the
asymmetric state similarity conditioning principle. We use Hindmarsh-Rose neuron models and
Lorenz oscillators to illustrate the high sensitivity and specificity of our approach.

Copyright c© EPLA, 2011

Introduction. – The reliable detection of directional
couplings from experimental signals is crucial for the
study of many systems in nature. These signals can
for example be given by sequences of discrete event
times of point processes or by time-continuous variables
measured from flows. Often experiments yield simultane-
ous recordings comprising both point processes and flows.
A prominent example from neuroscience is the recording
of spiking activity of individual neurons and local field
potentials. The characterization of directional interactions
from these different representations of neuronal dynam-
ics can progress the understanding of neuronal informa-
tion processing. While various approaches exist to detect
directional couplings between point processes and between
flows (see [1,2] and references therein), much less attention
has been paid to the hybrid case of directional couplings
between point processes and flows [3]. In this letter we
therefore introduce a unified approach that allows us
to characterize unidirectional couplings between pairs of
point processes, pairs of flows, as well as between point
processes and flows. For this purpose we generalize the
concept of nonlinear interdependence measures, which was
introduced to detect unidirectional couplings from delay
reconstructions obtained from pairs of flows.

Nonlinear interdependence. – Nonlinear interde-
pendence measures are based on the principle of asym-
metric state similarity conditioning (see [2,4]). Suppose

(a)E-mail: ralphandrzejak@yahoo.de

that we have two stationary deterministic dynamics X
and Y with a unidirectional coupling that is not strong
enough to induce a synchronized motion of the two dynam-
ics. Importantly we assume that the sampling is synchro-
nous, i.e. we have states x(ti) and y(ti) at times ti for i=
1, . . . , N . Furthermore, suppose that we have a symmetric
dissimilarity measure between states attained by individ-
ual dynamics at different times: dXij = d

X(x(ti), x(tj)) =

dX(x(tj), x(ti)) for i= 1, . . . , N and j = 1, . . . , N . Let D
X
ij

stand for the dissimilarity matrix containing all N ×N
pairwise dissimilarities dXij . The quantities d

Y
ij and D

Y
ij are

defined analogously, but importantly the definition of the
dissimilarity measure dYij does not have to be the same

as dXij . To test for asymmetric state similarity condition-
ing we quantify, across i and j, the degree to which a low
value of a certain dYij implies a low value of the corre-

sponding dXij . For couplings X→ Y this is expected to be
higher than for uncoupled dynamics and higher than the
degree to which small elements in DXij are mapped to small

elements in DYij . Evidently, to explore this criterion based
on simultaneous recurrences, the aforementioned synchro-
nous sampling of X and Y is indispensable.
Various nonlinear interdependence measures quantify

this signature of directional couplings. Here we use the
measure L, which was shown to be of higher sensitivity
and specificity than a number of previous approaches [2].
To calculate L we carry out the following steps. For each
fixed i and j we denote by gij the rank which d

X
ij takes

in a sorted ascending list of all dissimilarities included in
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the set {dXil }l=1,...N,|i−l|>W . The number of elements in
this set is denoted by Mi (see footnote

1). The parameter
W is used to exclude pairs of states that are similar to
each other simply because they are close to each other
in time (see [5]). We now turn to the Y dynamics and
look up the time index j0 of the spatially nearest neighbor
of the state with time index i by determining dYij0 =

min{dYil }l=1,...N,|l−i|>W . Again temporally close states
within W are excluded. Merging information from both
dynamics we define the conditioned rank Gi(X|Y ) = gij0 .
Above we indicated that for a coupling X→ Y , a low
value of dYij implies a low value of the corresponding d

X
ij .

Accordingly, for couplings X→ Y the quantity Gi(X|Y )
will tend to be small, bounded by a minimum of 1. For
independent dynamics, in contrast, j0 can be regarded
as a random sample from 1, . . . ,Mi. In consequence, the
expected value of Gi(X|Y ) for independent dynamics is
Gi =

Mi+1
2 . Based on these considerations we define

2:

L(X|Y ) =
1

N

N
∑

i=1

Gi−Gi(X|Y )

Gi− 1
(1)

The quantity L(Y |X) is calculated by switching X
and Y in the above definitions, and we use ΔL(X,Y ) =
L(X|Y )−L(Y |X) [2]. Values of L(X|Y ) and L(Y |X) are
expected to be distributed around zero for independent
realizations of independent dynamics. For couplings X→
Y we expect L(X|Y )> 0 and ΔL(X|Y )> 0. Analogously
we expect L(Y |X)> 0 and ΔL(X|Y )< 0 for couplings
Y →X. The upper bounds L(X|Y ) =L(Y |X) = 1 are
obtained for X = Y . We use L to refer entity of L(X|Y ),
L(Y |X), and ΔL(X,Y ).

Synchronous distance matrices for point

processes and flows. – In the following we intro-
duce the dissimilarity matrices DXij and D

Y
ij used as

input for the nonlinear interdependence measure L. At
this point we do not need to specify whether X and Y
are flows or point processes. We only require that both
dynamics are measured simultaneously for a duration of
Q. Key is that the required synchronous sampling of both
dynamics is reached by an isochronous segmentation of
the time interval [0,Q] that is common to both dynamics.
We therefore at first define a sequence of overlapping time
intervals of length q and step size s with s� q≪Q. The
i-th interval spans [(i− 1)s, (i− 1)s+ q] for i= 1, . . . , N ,
where N is obtained by rounding down Q−q

s
+1. For

each segment i we measure time relative to its beginning
τ = t− (i− 1)s.
First we deal with a pair of point processes XP and YP

and assume that both processes are aperiodic and that

1Mi =N − 2W − 1 for W < i<N −W +1. Below and above this
rangeMi increases in steps of 1 and reachesMi =N −W − 1 at i= 1
and i=N .
2Note that in the general definition of the measure L(X|Y ) and

related approaches the index j0 is determined not only for one
nearest neighbor but for k nearest neighbors. See [2] and references
therein.

individual event times in general do not coincide across
the two processes. As an analog to delay coordinates,
vectors of subsequent inter-event intervals can be used to
reconstruct the dynamics underlying the individual point
processes [6]. While these reconstructions can serve as
basis for univariate nonlinear signal analysis of the indi-
vidual dynamics [6,7], inter-event interval vectors cannot
be used as input for nonlinear interdependence measures
since they are not synchronous across XP and YP. There-
fore, instead of reconstructing the dynamics underlying
a point process, we directly quantify the dissimilarity of
segments of the event time sequence.
Various approaches can be applied to quantify the

dissimilarity of the event time sequences, and we use the
recently introduced so-called ISI spike train distance [8].
This particular approach evaluates the ratio of the instan-
taneous inter-event intervals and has the advantage of
being parameter free and time scale independent. Let
the point process XP comprise subsequent event times
within the interval 0� t�Q. For the span of relative
time 0� τ � q of segment i, let Ixi (τ) denote the length
of the interval between the last previous and first subse-
quent event. These previous and subsequent events can
be located in segment i or, in adaptation of the original
approach, in previous or subsequent segments. Prior to
the overall first event across all segments the start of the
inter-event interval is defined as 0. Posterior to the overall
last event across all segments the end of the inter-event
interval is defined as Q. Let

Rxij(τ) =

⎧

⎨

⎩

Ixi (τ)
Ix
j
(τ) − 1, if Ixi (τ)� I

x
j (τ),

1−
Ixj (τ)

Ix
i
(τ) , otherwise.

(2)

If at relative time τ the two segments with index i
and j are similar to each other, in the sense that their
instantaneous inter-event interval Ixi (τ) and I

x
j (τ) are of

similar length, the quantity Rxij(τ) will tend to small
values. Averaging across the relative time yields the
dissimilarity between the two segments with indexes i
and j: dX

P

ij = [R
x
ij(τ)]0�τ�q. The dissimilarity matrix D

XP

ij

contains all pairwise dX
P

ij values. The same steps of

analysis are carried out for the point process YP resulting

in DY
P

ij . Such a definition of an isochronous dissimilarity
matrix for point processes has some analogy to [9] where
recurrence plots were used to study univariate marked
point processes. For marked point processes conventional
spike train distances cannot be applied, and [9] proposed
a corresponding adaptation.
Let us now consider a pair of flows XF and YF. For

the flow XF let x(i)(τn) denote the signal amplitudes
recorded during segment i. The temporal resolution is
determined by the sampling time of the flow as τn = nΔt,
with integer n. The dissimilarity between segment i and
j is defined by the temporal average dX

F

ij = [(x
(i)(τn)−

x(j)(τn))
2]0�τn�q. The matrix D

XF

ij comprises all N ×N

50012-p2
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pairwise dissimilarities dX
F

ij . Again the same steps of

analysis are carried out for the flow YF, resulting in DY
F

ij .

Because all dissimilarity matrices DX
P

ij ,D
YP

ij ,D
XF

ij , and

DY
F

ij are based on the same segmentation of the signals,
they can be used as input for the nonlinear interdepen-
dence measure L. We have to distinguish four differ-
ent pairings. Apart from the cases when both dynamics
are point processes (XP,YP) or flows (XF,YF), we have
to distinguish the two mixed cases (XP,YF) and (XF,YP).
This is necessary since in general results depend on
whether the driver or the response dynamics is a point
process or a flow. We identify specific cases through the
argument of the measures, e.g. L(XP|YF). When we refer
to findings that hold independent of the type of dynamics
we use the general notation L(X|Y ), etc. In all examples
we call the driver X and the response Y . Accordingly, we
expect ΔL(X,Y )> 0 for nonzero couplings.

Application to Hindmarsh-Rose neurons. – As
first example we use Hindmarsh-Rose neuron models
(see [10] and references therein). Here the dynamics XH

ẋ1(t) = x2(t)+ 3x1(t)
2−x1(t)

3−x3(t)+Jx, (3)

ẋ2(t) = 1− 5x1(t)
2−x2(t), (4)

ẋ3(t) = 0.0021(−x3(t)+ 4(x1(t)+ 1.6)), (5)

drives the dynamics YH

ẏ1(t) = y2(t)+ 3y1(t)
2− y1(t)

3− y3(t)+Jy

+ εZ(x1(t)) · (0.3− y1(t)), (6)

ẏ2(t) = 1− 5y1(t)
2− y2(t), (7)

ẏ3(t) = 0.0021(−y3(t)+ 4(y1(t)+ 1.6)), (8)

with coupling strength ε via the coupling function

Ż(x1(t)) =
Z∞(x1(t))−Z(x1(t))

100(1−Z∞(x1(t)))
(9)

with

Z∞(x1(t)) =

{

tanh(x1(t)+ 0.5), if x1(t)>−0.5,

0, otherwise.
(10)

We integrated these equations applying a fourth-order
Runge-Kutta algorithm with step size of 0.1 time units
and sampling step tn = nΔt with n integer and Δt= 0.2
time units. As unit interval we define T = 1000Δt. Apart
from the uncoupled case (ε= 0) we used 60 coupling
values within 10−4 < ε< 0.24 equidistantly distributed
on a logarithmic scale. For each ε we generated 100
independent realizations of the dynamics starting from
random initial conditions. The time interval covering the
first 500T was discarded to let transients of the dynamics
die out. We use 〈·〉 to denote mean values across the
100 independent realizations. Being defined by a set of
differential equations Hindmarsh-Rose neurons represent

2 4 6 8 10

x
1
(t) 

y
1
(t) 

x
1
(t) 

y
1
(t) 

time [T]

Fig. 1: Segments of the Hindemarsh-Rose variables x1(tn) and
y1(tn) for ε= 0 (upper subplot) and ε= 0.05 (lower subplot).
The thresholds for the definition of the events (see [10]) are
depicted as horizontal lines.
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Fig. 2: Dependence of L(X|Y ) (black), L(Y |X) (grey), and
ΔL(X|Y ) on the coupling strength for the Hindmarsh-Rose
model. Results for ε= 0 are displayed by crosses on the ordi-
nates. The type of dynamics is indicated in each panel. In
particular, panel E displays results from the replica surrogates.
Symbols and error bars depict the mean and range of 100 inde-
pendent realizations. Dots mark ε values for which 〈ΔL(X,Y )〉
has a significantly positive mean.

a deterministic flow. Therefore, we can use the first
components of the driving XH dynamics and driven YH
dynamics as flow variables and denote them by XFH : x1(tn)
and YFH: y1(tn), respectively. On the other hand, as a
model for the integrate-and-fire behavior of neurons this
dynamics is a prototype of a point process where the
events are given by the spikes. Accordingly, we define
the event times of a point process to be denoted by XPH
from the times of upward threshold crossings of x1(tn).
Analogously, YPH is defined from threshold crossings of
y1(tn). In both cases a value of Θ= 0.6 is used for the
threshold [10].
In the following we show detailed results for Jx = 3.30

and Jy = 3.28 (figs. 1, 2). For these parameters the driver
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XH exhibits aperiodic spiking with 〈4.8〉 spikes per T .
For the response YH the spikes are fired in aperiodic
bursts. With increasing coupling the characteristics of this
bursting changes. In particular, the mean number of spikes
per T increases from 〈6.3〉 at ε= 0 to 〈9.0〉 at ε= 0.24.
For the calculation of the dissimilarity matrices we fix the
segment length to q= T . The step size is set to s= 0.2T ,
resulting in an overlap of 80% of neighboring segments.
To discard elements of the dissimilarity matrices that
correspond to overlapping segments we setW = q

s
− 1 = 4.

We start with results for the pair of point processes
with a duration of Q= 400T . While 〈L(XPH |Y

P
H)〉 increases

with the coupling strength, 〈L(YPH|X
P
H )〉 remains close to

zero (fig. 2(A)). In consequence, 〈ΔL(XPH ,Y
P
H)〉 becomes

significantly positive3 for ε� 0.002. Before interpreting
these results as a correct detection of the coupling we have
to rule out that they are caused by the aforementioned
asymmetries between the characteristics of the firing
patterns of XPH and Y

P
H or by the increasing mean firing

rate of YPH upon increasing ε. For this purpose we use
replica surrogates. For each realization of XPH and Y

P
H

we generated a replica XP∗H and YP∗H by integrating the
dynamics again but starting from different random initial
conditions. Evidently, the characteristics of the firing
patterns of XP∗H and YP∗H and their dependence on the
coupling for YP∗H are the same as for the original dynamics
XPH and Y

P
H. On the other hand, Y

P∗
H is independent from

XPH . Hence, we can test the specificity of our approach by
determining ΔL(XPH ,Y

P∗
H ). We find that 〈ΔL(X

P
H ,Y

P∗
H )〉 is

never significantly different from zero, i.e., no false positive
detections of directional couplings are found for the replica
surrogates (fig. 2(E)).
So far we considered results for the case that both

dynamics are point processes (XPH ,Y
P
H). Qualitatively

similar results are obtained for the mixed cases (XPH ,Y
F
H)

and (XFH ,Y
P
H), and also when both dynamics are flows

(XFH ,Y
F
H) (fig. 2(B)–(D)). The weakest increase is found

in the latter case. Nonetheless, significantly positive
〈ΔL(XFH ,Y

F
H)〉 values are obtained for most ε� 0.008.

To further compare our results in dependence on the
duration Q, we define ψ as the fraction of nonzero ε
values for which 〈ΔL(X|Y )〉 is significantly positive.
Evidently, this ad hoc definition should only be used as a
relative measure of sensitivity since the ψ values depend
on the range and sampling of ε values as well as on the
number of realizations and the α used for the Wilcoxon
test. Across Q the highest sensitivity is obtained when
both dynamics are point processes (fig. 3). Overall lower
ψ values are found for the two mixed cases and the
lowest sensitivity is obtained when both dynamics are
flows. Accordingly, for the Hindmarsh-Rose example the

3To probe whether the mean 〈∆L(X,Y )〉 is significantly different
from zero, we apply a Wilcoxon signed rank test. Our analysis
involves several levels of multiple testing. Apart from the multiple ε
values and the different types of dynamics we use different Q below.
Therefore, we apply an arbitrary but very small significance level of
α= 5× 10−6 for the Wilcoxon test.
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Q [T]

Fig. 3: (Colour on-line) Dependence of the relative measure of
sensitivity ψ on the duration Q. Refer to fig. 1 and to the mean
number of spikes per T specified in the text to relate these Q-
values to the time scales of the Hindmarsh-Rose dynamics.

coupling can be detected best when focussing on the event
times, and the actual waveform of the Hindmarsh-Rose
variables is less relevant. To reaffirm the specificity of our
approach we repeated the analysis underlying fig. 3(F)
for replica surrogates. Across all Q values and types
of dynamics we found not a single nonzero ψ value.
This very good specificity is inherited from the applied
nonlinear interdependence measure L, which in contrast
to a number of previous approaches has an expected value
of zero for independent dynamics (cf. [2,11]).
By varying Jx and Jy we tested other settings of

unidirectionally coupled Hindmarsh-Rose neurons. These
included settings where both the driver X and response
Y were in the aperiodic bursting regime throughout the
coupling range. In further settings, X was either in the
aperiodic spiking or in the aperiodic bursting regime while
for zero and low coupling Y was in the aperiodic spiking
regime. Here the coupling caused that the response Y
switched to aperiodic bursting. In all investigated cases
we correctly detected the direction of the coupling from
ΔL(X,Y )> 0, regardless of the type of dynamics being
a point process or flow. Results of the replica surrogates
again confirmed the specificity of our approach.

Application to Lorenz dynamics. – To illustrate
the generality of our approach, we present results for
unidirectionally coupled Lorenz dynamics. Here the
dynamics XL,

ẋ1(t) = 10(x2(t)−x1(t)), (11)

ẋ2(t) = 28.5x1(t)−x2(t)−x1(t)x3(t), (12)

ẋ3(t) = x1(t)x2(t)−
8

3
x3(t), (13)

drives the dynamics YL,

ẏ1(t) = 10(y2(t)− y1(t))+ ε(x1(t)− y1(t)), (14)

ẏ2(t) = 27.5y1(t)− y2(t)− y1(t)y3(t), (15)

ẏ3(t) = y1(t)y2(t)−
8

3
y3(t). (16)
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Fig. 4: Analogous to fig. 2, here for the Lorenz dynamics using
the first event definition. The vertical lines mark the ε above
which the dynamics exhibit generalized synchronization.

For each coupling strength ε we integrate 100 indepen-
dent realizations with a fourth-order Runge-Kutta algo-
rithm. We used a step size of 0.005 time units and a
sampling step of tn = nΔt with n integer and Δt= 0.01
time units. The unit interval is again defined as T =
1000Δt. In contrast to the spiking of the Hindmarsh-
Rose model the Lorenz dynamics exhibits no evident point
process behavior. Nonetheless events can be defined, and
the resulting inter-event interval vectors yield a recon-
struction of the individual Lorenz dynamics (e.g. [6,7]).
We apply two different event time definitions.
For the first definition we follow Sauer [6] and drive

an integrate-and-fire process by the x1(tn) variable of
XL. Starting at S(t1) = 0 we integrate S(tn) = S(tn−1)+
(x1(tn)+ 25)Δt. Whenever S(tn) crosses the threshold of
Θ= 12, this time tn0 is used as event time, S(tn0) is reset
to zero, and the integration is restarted. The sequence of
all threshold crossings defines the point process XPS . The
underlying Lorenz variable is used as flow XFS : x1(tn). The
same steps of analysis are carried out for YL resulting in Y

P
S

and YFS . We set Q= 350T , a duration that comprises on
average approximately 〈2600〉 events for both XPS and Y

P
S .

Here the coupling has only little influence on the number
of events in YPS .
For the second definition we follow Ding and Wang [8]

and trigger events for XPD by upward threshold crossings
(Θ= 27) of the variable x3(tn) of XL. The underlying
Lorenz variable x3(tn) is used as flow X

F
D . Again the same

steps of analysis are carried out for YL yielding Y
P
D and

YFD. Here we set q= 2T and Q= 350T , resulting in a total
of approximately 〈2700〉 spikes for XPS . Depending on ε,
between 〈2400〉 and 〈2700〉 spikes are obtained for YPS
during Q. For both definitions we set the segment length
to q= 2T , the step size to s= 0.4T (80% overlap), and
accordingly set W = 4.
Starting at coupling strengths ε around 1, high

ΔL(X,Y ) values are obtained from x1(tn) and events
generated by the integrate-and-fire process driven by
this component (fig. 4). This increase is smaller for
x3(tn) and events generated by threshold crossings of this
component (fig. 5). Nonetheless, the minimal ε leading
to significantly positive ΔL(X,Y ) does not depend
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Fig. 5: Analogous to fig. 4, here for the second event definition.

strongly on the component and the event definition.
Likewise whether the dynamics is a point process or
a flow has only weak influence. This indicates that for
the Lorenz dynamics both the flow waveforms and the
events derived from them contain information relevant
for the detection of the coupling. Close to the onset of
generalized synchronization both L(X|Y ) and L(Y |X)
attain high values, and ΔL(X,Y ) decreases or even
attains negative values. This is in agreement with the fact
that for synchronized dynamics the coupling direction
cannot be determined reliably (see [2] and references
therein). Again no false positive coupling detection was
found for replica surrogates.

Summary and discussion. – We propose a unified
approach that allows us to detect with high sensitivity
and specificity unidirectional couplings between pairs of
point processes, pairs of flows, as well as between point
processes and flows4. We used replica surrogates to probe
the specificity of our approach. These replica surrogates
test the null hypothesis that X and Y are independent,
while no assumption is made about the properties of the
individual dynamics. For experimental data it is in general
not possible to generate replicas of the dynamics. However,
in case multiple realizations of the experimental signals
measured under the same experimental conditions are
available, surrogates can be obtained by shuffling across
these realizations. If that is not the case, surrogates can be
obtained by applying constrained randomizations to the
inter-event sequences and the time continuous variables
(see, e.g., [12,13] and references therein). Alternatively,
surrogates can be constructed by introducing time shifts
between the signals from X and Y . Whatever surrogate
approach is used, it is always essential to specify exactly
what null hypothesis is tested by the surrogates. This
null hypothesis is determined by the constraints that are
applied for generating the surrogates.
None of the parameters of the dynamics, the event

extraction methods, or the measure L were tuned to opti-
mize our results. Key to the unification is a representa-
tion of the dynamics that is common for point processes

4Links to the source code for our approach can be found
at the authors’ homepages: http://www.cns.upf.edu/ralph/ and
http://www.fi.isc.cnr.it/users/thomas.kreuz/.
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and flows. In this letter this representation is given by
the dissimilarity matrices DXij and D

Y
ij which we evaluate

using the nonlinear interdependence measure L. Analo-
gously instantaneous phases can be extracted from both
point processes and flows. Such instantaneous phases can
be analyzed using, e.g., the directional evolution map
approach [14]. This hybrid approach was applied in [3]
to study cardiorespiratory interactions. A further repre-
sentation that can be derived for both point processes
and flows are Fourier spectra. In consequence, spec-
trum based Granger causality ([1] and references therein)
could be used to detect directional interactions between
point processes and flows. To the best of our knowledge,
however, this latter approach has not been tested yet. A
priori, our approach has the advantage over these alterna-
tives that it can be applied to irregular signals measured
from nonlinear deterministic dynamics. Often a meaning-
ful phase cannot be defined for such irregular signals,
and spectrum based approaches might not be sensitive to
couplings of nonlinear deterministic dynamics.
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