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Bivariate surrogate techniques: Necessity, strengths, and caveats
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The concept of surrogates allows testing results from time series analysis against specified null hypotheses.
In application to bivariate model dynamics we here compare different types of surrogates, each designed to test
against a different null hypothesis, e.g., an underlying bivariate linear stochastic process. Two measures that
aim at a characterization of interdependence between nonlinear deterministic dynamics were used as discrimi-
nating statistics. We analyze eight different stochastic and deterministic models not only to demonstrate the
power of the surrogates, but also to reveal some pitfalls and limitations.
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I. INTRODUCTION standing the often linear character of coupling terms used in
model dynamics.

Univariate nonlinear time series analysis provides a num- A straightforward approach to characterizing nonlinear in-
ber of measures for the characterization of nonlinear deteierdependence is to quantify the degree to which close states
ministic dynamicg1]. For most of these measures, however,in the state space of are mapped to close states in the state
the ranges of values obtained for nonlinear deterministic dyspace ofY and vice versa. This criterion for generalized syn-
namics and for linear stochastic dynamics overlap substargronization is used by a growing number of measures
tially [2]. Therefore, it is often problematic to decide whether[4.5.8,17,19,20,27,28,30,88s0me of which are defined to

a given value of a nonlinear measure reflects an underlyin{fSt for asymmetrical driver-response relationships. As we
nonlinear deterministic dynamics or whether it is consisten _'” d_emonstrate in this paper, the Interpretation of nonl_lnear
with a linear stochastic model. This ambiguity has been ad- Ivariate measures can be even more difficult than in the

. univariate case. Just as for univariate measures, linear auto-
dressed by the method of surrogate dé&h which allows . . O .
correlations ofX andY will affect bivariate nonlinear mea-

testing results from nonlinear time series analysis againSto?res A further bias can be caused by asymmetries in the
specified null hypothesis. For this purpose an ensemble tatistical properties ok andY. Most importantly, nonlinear

surroggte time series is constructed from the 'original _timebivariate measures may not be able to distinguish between
series in such a way that they have all properties consistepiyinear interdependence and linear correlations due to ad-
with this null hypothesis in common with the original, but gisive mixing [4,8,12,39. These very ambiguities motivated
are otherwise random. A discriminating statistics, which hasne extension of the concept of surrogates to bivariate time
to be sensitive to at least one property that is inconsistenderies analysif40—43.
with the null hypothesis, is calculated for both the original Despite the existence of different a|gorithms for the gen-
time series and the surrogates. If the result for the originagration of bivariate and multivariate surrogate time series,
falls outside the range of values obtained for the surrogatesnly few studies used them([5,8,11,12,15-17,19—
the null hypothesis can be rejected. 21,23,25,27. Most of these studies dealt exclusively with
In recent years much attention has been paid to the analgxperimental time series af priori unknown dynamics. The
sis of bivariate and multivariate dynamics. Particular emphainterpretation of a rejection or an acceptance of the null hy-
sis has been given to physiological and pathological propotheses of bivariate surrogates, however, remains difficult
cesses such as neuronal dynamics of epilepsy patienfer unknown dynamics, and investigations of model dynam-
[4—-10], of healthy volunteer§11—18, or of animal models ics are rare exceptiori8,17,19,23 A comprehensive appli-
[19-21]. Further studies investigated cardiodynaniz®] or ~ cation to model dynamics with well defined properties is still
cardiorespiratory dynamid®3—27. missing and is therefore the major aim of the present study.
In these works different algorithms were applied whichFor this purpose, we have analyzed time series of various
aim at detection and characterization of interdependence bé&tochastic and deterministic model dynamics using two
tween two nonlinear deterministic dynamical systeiisaad  closely related nonlinear bivariate interdependence measures.
Y) from the analysis of time series measured simultaneouslyve discuss the power, but also a number of problems and
from the two dynamic$4—6,8,17,19,20,24,26-88For the  pitfalls, of different bivariate surrogate techniques.
sake of brevity, in this paper we will use the termanlinear
interdependencas a synonym for interdependence between Il. METHODS
two nonlinear deterministic dynamical systems, notwith- _ _
A. Nonlinear interdependence measures
Suppose two scalar time seri¢g,} and {y,} with n
*Electronic address: r.g.andrzejak@fz-juelich.de =1,... N have been measured from dynamical systefns
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and Y, respectively. At first the dynamics are reconstructedstructure and dimensionality i than R{(Y). To derive a

using delay coordinatggi4]

Xn:(xnv v !Xn—(m—l)rr)!

Yn=Yn, - !yn—(m—l)'rr)! (1)
with an embedding dimensiom and a delay timer, for n
=1,... N* with N*=N—(m—1)7,. Letr,; ands,;, j
=1,... k, denote the time indices of tHenearest Euclid-
ean neighbors of, andy,, respectively. Temporally corre-

lated neighbors are excluded by means of a Theiler corre

tion: |r,;—n|>W and|s, ;—n|>W [45]. For eachy,, the
mean squared Euclidean distance tditearest neighbors is
given by

k
1
RO =1 2 [yn=¥s, 1% v
j=1 m

and theX-conditioned mean squared Euclidean distance is

defined by replacing, ; with r, ;:

k
1
RNV =1 2 Iya=r, % 3
=1 n
The averaged squared distanceypfto all remaining points
in {y,} is given by

N*

> vyt

R (Y)=
(Y N*—1 j=T7#n

4

If the dynamics ofY is independent oK, then there is no

particular relation between, ; ands;, ;, and
Ra(Y)=RE(Y[X)>R{(Y) (5)

holds. In contrast, if closeness Kimplies closeness ifY,
then it follows that
R(Y)=RE(Y[X)~RI(Y). (6)

Based on these considerations, Arnhetdal. [4] defined the
following two measures:

1 N RMy)
S(Y|X)_N_*n§1 W (7)
M= £ S R ®)

CN* AT ROYIX)

If relation (5) holds, it follows that S(Y|X)—0 and
H(Y|X)— 0. Higher values o5(Y|X) andH(Y|X) are ob-
tained if Y is dependent oiX, and relation(6) is true. While
by construction 8<S(Y|X)=<1 holds,H(Y|X) has no upper

normalized measure fromR,(Y), Quian Quirogaet al. [20]
therefore defined

Ra(Y)—RP(Y[X)
Ra(Y)

1 N
N(Y|X)=— 9
(vYIx)= = 2 9
However,N(Y|X)=1 follows only if RI(Y|X)=0, where
RO(YIX)=RM(Y). R¥(Y)=0 in turn holds only for
strictly periodic dynamics. In consequence, even in the case
of identical synchronizatioM(Y|X) will be smaller than 1.

Fow much smaller than 1 is mostly determined R§(Y),

a quantity which is strongly influenced by autocorrelations
and/or finite dimensionality of. To minimize this unwanted
influence we here suggest modifying the definition of &.
according to

¥ Ry(Y) = R®(Y|X)
>

1
M* (Y[X)= —
YPO= & Rn(Y) = R3(Y)

SinceM* (Y|X) can have negative values, we define

M(Y|X)=maxM*(Y|X),0}. (11

The measure$(X|Y) and M(X|Y) are defined in com-
plete analogy to Eqg7) and(11) in order to test whethex
is dependent olY. For independent dynamics all four quan-
tities should tend to zero while in the case of identical syn-
chronization all four will reach their maximal value of 1. In
between these two extremes, asymmetries sud @g|X)
>M(X]Y) and S(Y|X)>S(X]Y) can indicate driver-
response relationships. As already discussed in Refs.
[4,8,12,39, however, differences in the dynamical properties
of X andY can likewise cause such inequalities. While we
will illustrate such an asymmetry by means of one exemplary
dynamical system, we will restrict ourselves to results ob-
tained forS(Y|X) and M (Y|X) for all other dynamics used
here.

Rather than optimizing the analysis parameters for each of
the different model dynamics, we chose a fixed setting for all
dynamics. The calculation & andM was performed using
an embedding dimension ofh=6, a time delayr=6
samples. We used a numberkef 5 nearest neighbors with a
Theiler correction oflW=50 samples.

B. Surrogates

In this section we will introduce the different types of
surrogates used in our study. Each of them has been designed
to test against a certain null hypothesis which will be speci-
fied in the respective subsections. All null hypotheses share
the following common assumptions: The measurement func-
tions by means of whickix,,} and{y,} are derived fromX
andY are invertible but possibly nonlinear. To preserve such
static nonlinearities all surrogate types are based on a permu-
tation of the original sample values. Hence, all surrogates

bound. Nonetheless, it was found to be more robust againstave the amplitude distributions in common with the corre-

noise and easier to interpret th&Y|X) [39]. That is be-

sponding original time series. Furthermore, the dynamics un-

cause the quantityR,(Y) is much less dependent on the der investigation as well as the measurement function are
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assumed to be stationary. Before we describe the differembgates with power spectra practically indistinguishable from
null hypotheses and corresponding types of surrogates, sontiee original one$46]. It is related to a noniterative procedure
technical and notational remarks are necessary. proposed in Ref[3] but overcomes a significant problem of
The periodogram estimator of the power spectrumthe latter technique which was shown to produce surrogates
{IscxZ ={law «€'?«|?} of a time seriedx,} of lengthN is  with a systematic bias in the power spectr{#2,47.
defined fork=—N/2, . . . N/2 via the discrete Fourier trans-  As a seed for the iteration scheme, a random shuffle of the
form which assumes the time series to represent one periaatiginal sample valuebx;}(©) is generatedHere, and in the
of a periodic signal. For real-valued time series the perifollowing, we use tilde symbols to denote surrogate time
odogram is symmetric in its amplitudes and antisymmetric inseries. No tilde symbols are used, however, if the values of
its phases: the surrogate are identical to the original valu€&sach itera-
tion step(i) consists of the following two subprocedures.
A=a_, (1) _Filtering: calculate the Fourier transformed
be=— (12 {a €M of {x:}1) and replace the amplitudds, ,}"
k ke with the original amplitudega, ,} but keep the randomized
Furthermore, the zeroth coefficies§ is real-valued and is phase§{<~ﬁkyx}(') fixed. The inverse Fourier transform of
given by the mean of the time series. {ak,xei #x1(0) results m{;n}(i)_
The linear cross correlation function of two real-valued (2) Rescaling: replace the smallest, second smallest,
time series{x,} and{y,} of lengthN is defined by highest value of{x,}) with the smallest, second small-

] Nl est, ... ,highest value ofx,} resulting in{xz} which is
> xyiyn, 7=0 used to start the next iteration step. _ _
Cyy(7)= N—7 =0 (13 Typically, after a few tens or a few hundreds of iteration
Cy(—7), 7<0 steps the amplitudea,}) will have converged to{a,}.
_ Equivalently, C&(7)® will have converged to the corre-
for 7=—(N—1),... N—1. For the special case dk.}  gponding original function, anfk=}(*1 can be used for one

={yn}, Eq.(13) defines the linear autocorrelation function grrogate realizatiofi56]. We will refer to surrogates de-

Cux(7). Note that the number of summands in Ef3) de-  sjgned to test the null hypothesis of two independent linear
creases for increasing values of the delay so that#or stochastic processes as type- surrogates.

==*(N—1) only one summand remains. If the time series,
however, are assumed to represent each one period of tw
continuous periodic signals the summation can be continue
into the next period:

. ’Hg . Bivariate linear stochastic processes with an arbitrary
degree of linear cross correlation

To test the null hypothesis thxtandY represent a bivari-
ate linear stochastic process with an arbitrary degree of linear
Cross correlationH'(} it is necessary to preserve the linear
(14 . .

cross correlation betwedmw,} and{y,} as well as the linear
Cy(—7), 7<0. autocorrelation of both time series. As in the preceding sec-

- : L tion, any potential nonlinear interdependence betwegh
The periodic cross correlation function is connected to th nd{y,} or nonlinear deterministic structure in any of the

cross spectrum{Cy,(7)}=FT({SSky}), Where the aster- o time series need to be destroyed. In contrast to type-I
isk denotes complex conjugation. In consequence, the Peurrogates, a pair of surrogate time sefieg and{y=} has
odogram and the periodic autocorrelation function are cong, pe generated simultaneously by a bivariate algorithm. For
nected via the Wiener Khinchin theorem{Cl(7)}  the present study we applied a technique proposed by
=FT({Iskxd“D- Schreiber and Schmifz2]. While the generation of the seed
for the iteration and the rescaling subprocedure are carried
out individually for both{x;} and{y;} according to the pre-

To test the null hypothesis thatandY are two indepen- ceding section, the filtering subprocedure has to be modified
dent linear stochastic processés ), one should preserve as follows.
the linear autocorrelation of botkx,} and{y,}. Any poten- For eachk=1, ... N/2 the randomized phasek , and
tial nonlinear deterministic structure {rxn} and in {yn} as Zsky are not preserved but replaced W|th pha%s{ and
well as nonlinear interdependence between them should b@k'y, respectively. These are chosen to minimize
destroyed by means of a randomization scheme. Further-"
more, also a possible significant linear cross correlation ) - ) .
needs to be destroyed. The algorithmic expenditure to gen- h,=|e'x— el %kx| 2+ | Vky— e Pky|? (15
erate surrogates according to this null hypothesis is compara-
tively low: Surrogates for botkix,} _and_{yn} can be gener- - or the constraint
ated separately by means of a univariate technique. We here
employed a technique that iteratively permutes the original
sample values. This scheme is designed to converge to sur- e (kx™¥iy) = gl (Pix= diy), (16)

1 N—-1

— X(n+ 7 , =0
ng(T): ano (n+7)modNYn T

1. H : Two independent linear stochastic processes
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where ¢ , and ¢, , denote the phases of the original time  As we shall discuss in Sec. Ill, however, there is a subtle

series. Equatiori16) is fulfilled if we chooseyy , and ¢,  problem with the use of periodic boundary conditions, and

such that therefore we here introduce type-lllb surrogates. These are
constructed by cutting the midd* /2 samples of one time

Uix— Dux= Yy Py = k- a7 series and shifting this half along the other time series with-

out wrapping. The synchronization measure is calculated

Under this additional constraint the minimization problem ofonly for the respective subsegmentsNf/2 samples. The

h, becomes one dimensional, and an appropriate value fornge of the relative temporal shift is now given ByN* /4

ay is found by first eliminating/y « and ¢, , from Eq. (15 <7,<N*/4. For the calculation o§(Y|X) andM(Y|X) the

which after some algebra reads middle part of{y,} is shifted along{x,}. Here, the middle
part of {y,} is always compared to a different sample of
h=4—2 coS ay— Py x+ Py ) — 2 COS ak—?&k,ﬁ brey)- {xn}. Under stationary conditions, however, the statistical
18) properties of the state space trajectory of the subsegment of
{xn} should not change significantly. In consequence, as for
This is extremal for type-llla the state space structure of bothand Y is pre-
served for type-lllb surrogates. Note that numerous alterna-
N e tive ways could be used which always represent a compro-
tana = Sm(?k'x P +Sm(§fk'y Piy) (199  mise between the maximal shift and the remaining number of
COY Py x~ Pk x) +COL Py y— b y) samples. In general, values 8fand M will depend on the

number of data points, and even systematic deviations for
and minimal if «, is taken in the correct quadrant. The smaller number of data points are possible. Such deviations
phases for negative values lofare chosen according to Eq. would, however, not affect the validity of type-lilb surro-
(12) to assure the real-valuedness of the back transform. Thgates since values are compared only for time series with the
coefficient fork=0 which represents th@erg mean of the  same length, herid* /2 samples. Both type-Illa and type-Iib
time series can be skipped. In analogy to type-I surrogatesurrogates are designed to test the null hypothesisxtiaaid
typically a few tens or a few hundreds of iterations arey can be regarded as processes with arbitrary structure but
needed for the convergence{af .} and{a, ,}" to{a,,}  without nonlinear interdependence and without significant

and {a.,}, respectively. Again, equivalentlyC®(7)(), linear cross correlation{y'). It has to be stressed that nei-

pr(T)(i) converge to the corresponding original values. ASther type-llla nor type-lllb surrogates are surrogates in the

proposed in Reff40] the cross spectrum and theretbyy(r) classical sense of a Monte Carlo simulation. No distribution

! . . of surrogate values of a certain measure is estimated against
is preserved by constructidieq. (17)]. We will refer to sur- which the value for the original time series can be compared

rogates dESigﬂed to test the_ null hypqtheSiS of a biva_riatst a specified level of significance. Rather, rejections can be
linear stochastic processes with an arbitrary degree of I'neaéstablished if a single peak is found in the dependence of the

cross correlation as type-Il surrogates. synchronization measure on the shift

3.7H g : Processes with arbitrary structure but without v
nonlinear interdependence and without significant linear 4.H o : Processes with arbitrary structure and an arbitrary
cross correlation degree of linear cross correlation but without

. ol nonlinear interdependence
As an example of a process consistent v(hilﬂ , We as-

sume two independent nonlinear deterministic dynamics AS an example for a process consistent witlj’ we as-
which have been measured without any mixing. Because theume two independent nonlinear deterministic dynamics
nonlinear deterministic structure of independent processes Which have been measured by some kind of a linear super-
known to be reflected in values &fandM, it was proposed ~ position. For such dynamic{ would be rejected but one

to simply use time shifted signals as surrogates, i.e., to cakould not decide whether this rejection was caused by linear
culate synchronization measures in dependence on a relatiggoss correlations or by nonlinear interdependence between
temporal shift between the two time ser[@€]. The shifting X andY. On the other hand, a rejection bfg can be caused
operation can be carried out quasicontinuoy€®] or by by nonlinear interdependence or by nonlinear deterministic
choosing a set of random delay&l,27]. By using a periodic  structure inX or in Y. In consequence, it is not possible to
boundary condition, i.e., by wrapping around the end of thalistinguish a linear superposition of independent nonlinear
shifted time series to its beginning, the total length of thedeterministic dynamics from interdependent nonlinear deter-
time series can be maintained. The range of the possiblministic dynamics by the combination of type-Il and type-
relative temporal shifts is given by N*/2<7,<N*/2. The llla, lllb surrogates because in both cases both null hypoth-
state space trajectory is invariant under the shifting operatiorses would be rejected. This very discrimination, however,
with periodic boundary condition, except for those few vec-appears important and relevant in many applications to dy-
tors that include both the last and the first point of the un-namical systems in nature, many of which are assumed to
shifted time series in their components. We will refer to con-exhibit nonlinear deterministic structurp$3,49. To test the
tinuously shifted time series with periodic boundary null hypothesis thak andY originate from a linear superpo-
condition as type-llla surrogates. sition of independent nonlinear deterministic dynamics it
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TABLE I. Overview of the different model systems and their respective parameters. Time series for the two exemplary parameter values
given in the fourth and fifth columns are displayed in Fig. 1. Sixth to ninth columns: The &ftdy indicates that the particular dynamic
is (is noY consistent with a certain null hypothesis. As we shall discuss in the text, the consistency of dyHamitbsthe different null
hypotheses depends on the noise lgiel

Model Parameter Example 1  Example 2Hy Hy Hy Hy
A Independent filtered noise Cuttoff frequency f.=0.04 f.=0.32 C C C C
B Bivariate autoregressive process Coupling strengthc,=0.28  ¢,=0.0125 N C C C
C Superposition of independent filtered noise Mixing strength g=0.4 gq=0 N C C C
D Same a<C, but with nonlinear measurement function Mixing strength q=0.4 q=0 N C C C
E Two uncoupled Rssler dynamics Frequency mismatch »=0 v=-—0.00125 N N C C
F Linear superposition of two uncoupled §ber Mixing strength q=0.4 gq=0 N N N Cc
G Coupled Rasler-Lorenz dynamics Coupling strength  ¢=5 e=0 N N N N
H Noisy coupled Rssler-Lorenz dynamics Noise amplitude (=4.4 (=0.87 N C/IN C/IN C/N

would in principle be necessary to maintdix,}, {y,}, and  After a certain number of tested or performed exchanges, the
foremost,CQy(T). Obviously, this would leave no degree of temperaturerl of the thermodynamic system is lowered ac-
freedom for any randomization. In some cases, howevegording to
synchronization measures are calculated primarily in one
state space. For example, f8(Y|X) and M(Y|X) all dis- Thew= Tolae, (22)
tances are calculated Ywhile only indices are used froix.
In such a case, it might be sufficient to preserve diyly}
and Cﬁy(r) and to randomizgx,}. However, at least the
linear properties ofx,} characterized by its autocorrelation
should be prgserved. Ths constraints to simultan_eously pr%’xtremely ineffective. Rather, EqL3) can be used, which
serve{yn}, Ci(7), andCjy(7), however, would still over-  paq the positive side effect that it does not rely on the as-
specify the problem. The only possible surrogatg} would g mption that the time series represents one period of a con-
be an exact copy of the original time serigs,}. As away  {inyous signal, which in fact is violated in most realistic situ-
out of this dilemma, Schreiber proposed to preserve the nonstions. Yet the number of iteration steps is typically of the
periodic correlation function€y,(r) andCyy(7) only up 0 order of several magnitudes higher than that for type-I and
a certain maximum valué, of the delay. This can be type.|| surrogates causing very high computational costs
achieved by minimizing a cost function such as even if optimization strategigg1] are employed.
Furthermore, a reasonably fast convergencé=a$ not
Tmax guaranteed but can only be reached if the parameters
E:WautOZ [Co(7)— Ciz(7)]? Wautos and\_/vcross are adjl_Jsted appropriately. In particular, a
=1 proper choice of the weightw, ;, and w5 Strongly de-
pends on features of the original time series. Therefore, feed-
back loops are needed to adjust the parameters leading to
even higher computational costs. We will refer to surrogates
designed to test against the null hypothesis of two processes
with arbitrary structure and an arbitrary degree of linear
by means of simulated annealifigl]. In this context, the cross correlation but without nonlinear interdependence
cost function is interpreted as the energy of a thermodynamig¢yy 3’) as type-IV surrogates. For the calculationSgfy|X)
system which is annealed slowly in order to reach a groun@mdM(y|x) we keep{y,} and randomizéx,}.
state, i.e., a global minimum d.

with 1>a>0. The computation ofAE requires only the
calculation of those summands of the correlation functions to
which x; and x; contribute. Consequently, a calculation of
the correlation functions via the Fourier transform would be

Tmax

FWeross 2 [Cxy(T)—Cg(n12 (20

7= 7 Tmax

Again a random permutatiofx;}(®) of the original time C. Data

series is generated as a seed for the following iterative pro- _ _ _ _ o

cedure. We analyzed time series from eight different bivariate dy-
We draw two random indices and j from [O,... N namics. These models have been chosen to demonstrate the

—1]. We calculate the change of the energyE) that necessity and strengths of bivariate surrogates, but also to
would result from the exchange &f andx; . If AE is found reveal caveats related to this approach. All models involved
to be negative we carry out the exchange, otherwise perforfin€ continuous control parameter, and the dependence on
the exchange only with a probability according to a Boltz-this parameter was studied in detaif. Table ). The number
mann distribution: of sample points for each pair of time series} and{y,}
wasN=4096. All time series were set to zero mean and unit
variance and all formulas were simplified accordingly.
p=e AFT, (21)  Whenever necessary, a sufficient number of preiterations was
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FIG. 1. Segments of exemplary time series of dynamdiesd. For each model, two examples are shown. In each panel from top to
bottom:{y,}, {x,} for example 1, andy,}, {x,} for example 2. The parameters of these examples are given in Table I. The gquastity
in units of samples.

carried out for the generation of the models to account fortype-l and type-ll. To circumvent this problem, all time
transients. As stated in the preceding section, for the calcuseries were cut from longer epochs such that these disconti-
lation of the discrete Fourier transform time series are im-suities were minimal. For segments of exemplary time series
plicitly assumed as one period of a continuous signal. Henceye refer to Fig. 1.

discontinuities in amplitude and slope between the two ends For dynamicsA, we used independent Gaussian white
of an otherwise smooth signal would cause spurious frenoise for{x,}. For{y,} time series of independent Gaussian
guency components and might lead to a false positive rejeawvhite noise were smoothed by means of a sixth-order low-
tion of the null hypotheses of Fourier based surrogatepass butterworth filter. The cutoff frequenéy of the filter
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was decreased stepwise according ftg,=0.75" with p For dynamics-, the Rssler dynamic$Eq. (27)] was in-
=0, ...,14. Here, the cutoff frequency has been normalizedegrated for a fixed value= —0.0125. In analogy to dynam-
by the bandwidth and hence is dimensionless. Independeits C, the time seriegx,} and{y,} were obtained from a
realizations were generated for each setting of the filter.  linear superposition:;

A second-order bivariate autoregressive model was used

for the generation of dynamids: Xn=(1=Q)va+qWy,
Xn 2 Xn—i én Yn=qQua+(1—=q)wp,. (29)
=> A + (23)
Yo/ i=1 Yn-i n Again, the mixing strengtly was increased fromq=0 (no
with mixing) to g= 0.5 (resulting in{x,} ={y,}) in steps of 0.05.
For dynamicsG andH we used a coupled Reler-Lorenz
( 1.85-¢c, Cp ) 24 system:
A= 24 .
Pl 176c 01=—6(vat3),
and 02=6(v1+0.20,),
-0.87 0 :
A=l o oed (25) v3=6[(v;—5.7v3+0.2], (29)
where ¢, and 7, represent independent identically distrib- W1 =10(—w; +Wwy),
uted white noise with zero mean and unit variance. The dif- _ )
fusive coupling strengthc, was varied according te, W =28W;— Wy~ W W3+ evs,
=0.0125<1.28 with p=0, .. .,19.
For dynamicsC and D two independent realizations of 8

W3:W1W2_ —W3 .

filtered noise,{v,} and {w,}, were generated withf. 3

=0.125. Subsequentlyx,} and{y,} were derived from a

linear superposition of these time series: For dynamicsG, the coupling strength was varied from
=0 toe=5 in steps of 0.2. Time serids,} and{y,} were
Xn=(1=qQ)v,+qW,, sampled directly fromy; andw, with dt=0.025.
For dynamicsH, solutions of Eq(29) for e=5 were su-
Yn=0lqua+(1—a)wy]. (26)  perimposed with isospectral noise at a varying signal to noise

o . o ratio (¢ measured in units of the variance of the noise-free
The mixing strengthy was increased from=0 (no mixing  time series Independent realizations with randomized initial
to q=0.5(resulting in{x,} ={yn}) in steps of 0.05. As mea- conditions of the coupled Rsler-Lorenz dynamics were
surement functions we useg{y)=y for dynamicsC and  generated for each value ¢fwhich was varied according to

a(y)=y\y] for dynamicsD. Independent realizations of {,=0.01x 1.5 with p=0, .. .,25.
{v,} and{w,} were used for each value qgf

DynamicsE and F are based on two nonidentical un- Ill. RESULTS
coupled Rasler systemscf. Refs.[50,51)): '
Values of the interdependence measures for the different

z}lz—(1+ V)Us—U3, model systems in dependence on the respective parameter
readily illustrate the problems related to the interpretation of

vo=(1+v)v,+0.1%,, absolute values dbandM (cf. Fig. 2). The ranges of values
overlap substantially. Thus, depending on the setting of the

ba=(01—10)05+0.2, 27) two systems’ parameters, the one or the other dynamics ap-

pears to be more interdependent. We of course know that for
dynamicsG the parametee indeed controls the strength of
the nonlinear interdependence which is correctly reflected by
an increase o8 andM. However, such an increase can also

le _(1_ V)WZ_W3,

W, = (1—v)w; +0.150,, be caused by static cross correlations due to a linear super-
_ position of univariate linear stochastic proces&dmamics
ws=(w;—10)w3+0.2. C andD) or of independent nonlinear deterministic dynam-

ics (dynamicsF). High values ofSandM can also be related
The quantityr which determines the difference in the meanto dynamical cross correlation of bivariate linear stochastic
periods of the two Rssler systems was varied from  processegdynamicsB) or can be obtained for two nonlinear
=—0.0125 tor=0.0125 in steps of 0.001 25 for dynamics deterministic dynamics that are independent but follow simi-
E. Time series{x,} and{y,} were sampled at a rate dft  lar or identical equations of motioridynamicsE). In some
=0.1 fromv,; andw,, respectively. cases, such as dynamigsor F, either onlyS or only M
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FIG. 2. Values ofS(Y|X) (left pane) andM(Y|X) (right pane) for dynamicsA—H in dependence on the respective paraméteN ;
B, ¢.;C, A DM E A;F* G A H,~.

exhibits high values while the other measures’ values are For dynamicsA, values of S(Y|X), S(X|Y), M(Y|X),
close to zero. In summary, the interpretation of Fig. 2 ap-andM (X|Y) are contrasted with the corresponding surrogate
pears rather problematic without the useaopriori knowl-  distributions in Fig. 8). For the complete range df, both
edge about the dynamics, which is of course not what wevi(Y|X) andM (X|Y) as well as the corresponding surrogate
want for the investigation of unknown dynamics. In conse-distributions are very close to zero, correctly reflecting the
quence, a reliable classification of the different types of dy4ack of any interdependence betweXrand Y. In contrast,
namics cannot be derived from absolute value$ aind M higher and asymmetric values are establishe®(¥Y) and
only. To what extent such a classification can be achieve@(yp()_ This phenomenon, which was also discussed in Ref.
with the help of surrogate time series is the subject of theg], can be explained by different autocorrelations of the two
following discussion. Here, we shall always test first againsindependent subsystems. A very narrow range of the surro-
Hy and’H g . Only if both are rejected, does testing againstgates’ distribution is found. The narrowness of the distribu-
Hy' and’H ( become necessary. We regard a null hypothesision of statistical properties of type-I surrogates has been
as rejected also if it is rejected only f&or only for M. discussed in Refd42,47,52 as a potential cause of false
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FIG. 3. (a) Values of the nonlinear interdependence meas8(¥$Y) andS(Y|X) (upper panelsand forM (X]Y) andM(Y|X) (lower
panel$ for dynamicsA vs f,. (b) Values ofS(Y|X) (left pane} andM(Y|X) (right pane) for dynamicsB in dependence on,. Crosses
depict results calculated for the pair of original time series. Normal and bold error bars indicate the range of 39 type-| and type-Il surrogates,
respectively(c) Same agb) for dynamicsC vs q.
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positive rejections of the null hypothesis. In our case, how-odogram exactly in common with the original data. But in
ever, S values are within the surrogate distribution through-that case the deviation in the amplitude distribution caused a
out the range of the parameter, and also the asymmetry dflse positive rejection dﬁg (results not shown Dynamics
S(X|Y) andS(Y|X) is correctly mimicked by the surrogates. D are also consistent with{ ) but despite the fact that the
The null hypothesis of two independent univariate linear stocross correlation is much better mimicked by type-1V surro-
chastic processes cannot be rejected for dynamjashich  gateqcf. Fig. 4(c)], this null hypothesis is rejected for higher
in fact is correct. The decay &(Y|X) for small values of . values ofq [cf. Fig. 4b)]. These deviations are caused by a
can be explained by a decreaseR,ﬁ'f)(Y) rather than by an  mismatch of the autocorrelation or periodogram, respectively
increase oR((Y|X) [cf. Eq.(7)]. A fixed number of nearest [cf. Fig. 4d)]. This “whitening” of the surrogates’ power
neighbors in state space is simply found in smaller hyperspectrum could not be reduced sufficiently. Even for ex-
sphere radii for smoother signals, a fact also known to potremely low values of the cost function or with the use of
tentially fool estimates of correlation dimension in applica-additional terms in the cost function, a persistent noisiness of
tion to linear stochastic dynamigsf., e.g., Ref[2]). type-IV surrogates could not be suppressed. Whether these

While dynamicsA could be used to illustrate how differ- problems can be solved by possible generalizations of
ent linear autocorrelations ofandY can cause asymmetries univariate techniques, which have been designed to include
betweenS(Y|X) and S(X|Y) we will restrict ourselves to nonmonotonic measurement functions into the null hypoth-
results forS(Y|X) andM(Y|X) for dynamicsB—H. In the  esis[53], shall be the subject of further research. The distinct
following, the distribution of 39 type-l{type-1V) surrogates peaks in the curves of type-lllb surrogates for dynaniics
will be denoted with{S'"} and{M"} ({S"} and{M'’}). [cf. Fig. 4e)] obtained for high values df indicate the cor-

For dynamicsB the null hypothesis of two independent rect rejection ofH{y . We here know that this rejection is
univariate linear stochastic processes is rejected for highefaused by the strong linear cross correlation which is intro-
values ofcy, [cf. Fig. 3b)]. This rejection correctly reflects duced by the linear mixing. For unknown dynamics, how-

that with increasing values af, more and more cross cor- ever, the rejection of{{; would not allow deciding whether
relation betweerK and is introduced. However, at no de- it js caused by linear cross correlation or by nonlinear inter-

gree does such a cross correlation contradict the null hypottyependence.

esis of a bivariate linear stochastic process, which is A further problem with type-IV surrogates is encountered
correctly reflected by the accordance®andM with {S"}  \yhen we deal with strong cross correlations between the
and{M"}, respectively. The nonmonotonic increaseS@ind  original time series: Type-Il and type-IV surrogates are con-
M can be explained by the impact @f on the spectral prop-  structed to have the linear cross correlation in common with
erties ofX and (cf. Fig. 1). the original time series. If we interpret a significant linear
The null hypothesis of two independent univariate linearcross correlation at zero time lag as a similarity relatiof
stochastic processes is also rejected for higher valugsasf  this reads{x,}={y,}={x;}={y;}. (The extreme case of
dynamicsC [cf. Fig. 3¢)]. Here the cross correlation be- (X} ={yte{x:1={y:} has already been discussed along
tweenX andY is introduced via th.e mixing according to. Ed. with dynamicsC for q=0.5) For type-IV surrogates the
(26). The accordance @ andM with {S'} and{M"} again  aqditional constraingx;} ={x,} along with the transitivity of
indicates the correct acceptance Hfo'. As stated above, the similarity relation implies{x,}={yn}={yr}={yn}. In
identical time series are obtained fqr=0.5 resulting inS  consequence, when there exists a significant linear cross cor-
=M=1. Values of exactly 1 for botfS and M are also relation betweer{x,} and{y,}, type-IV surrogates tend to
obtained for all pairs of type-Il surrogates fpr=0.5 because converge towards a copy of the original time sefiefs Fig.
Xn=Yn ¥ n=C, (7=0)=1 holds. Since type-ll surrogates 5). However, even fog= 0.5 the surrogates do not represent
have the linear cross correlation function in common withan exact copy of the original time series resulting{ '}
the original data, pairs of identical surrogate time series arezpM and{SV}<S.
obtained:x;=ys V 1. Before we proceed to results obtained for deterministic
The few deviations obtained for dynamidsC for single  models, let us stress that practically the complete range of
values of parameters are consistent with rejections by chanakefinition of bothSandM is covered by values obtained for
due to a finite value of the nominal size. However, as weour exemplary stochastic modeis-D. For the sake of clar-
shall see in the following, one always has to be aware of théy, results of type-1 surrogates are not shown for the follow-
fact that such rejections can also be caused by systematicg dynamicsE—H. We should mention, however, this'}
biases in the surrogates’ linear properties. As demonstrated is {S'"} and{M'} ~ {M"}. That is because a possibly sig-
Fig. 4(a), there is a false rejection dff '(; for dynamicsD nificant cross correlation of type-Il surrogates will always
throughout the range af. These rejections are caused by aincrease values d8 and M.
significant deviation of the linear properties of the surro- For dynamicsE, values ofSandM are compared to val-
gates, as illustrated in Figs(cid). Here, the iterative process ues of{S'"} and{M"}, respectively, in Fig. @). For a num-
failed to produce surrogates with linear correlations indistin-ber of » values,M significantly deviates frodM"}. Values
guishable from those of the original time series. As indicatedf S are very close to zero and significantly bel¢@/'} for
above it is also possible to stop the algorithm for the generasmall values ofv. We will discuss this seemingly paradoxi-
tion of type-ll surrogates after the filtering step so that thecal finding below and here just note that the null hypothesis
surrogates have the cross correlation function and the peréf a bivariate linear stochastic process is rejected for dynam-
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FIG. 4. (a) Values ofS(Y|X) (left pane) and M (Y|X) (right pane) for dynamicsD vs g. Crosses depict results calculated for the pair
of original time series. Normal and bold error bars indicate the range of 39 type-I and type-Il surrogates, resp@gtisaipe aga) but
here error bars show the range of 39 type-IV surrogd®s/alues of the linear cross correlation function at zero time lag. Crosses depict
results calculated for the pair of original time series. Error bars in the left and right plot indicate the range of 39 type-Il surrogates and
type-IV surrogates, respectivelfd) Periodogram of dynamicB® for q=0.3 (black) in comparison to the periodogram of one exemplary
type-ll surrogate(left, gray and one exemplary type-IV surrogateght, gray. (e) Type-lllb surrogates for dynamids: Values of the
nonlinear interdependence measures in dependence on the relative time wihiifiout periodic boundary condition fay=0.5 (thick solid
line), q=0.30 (thin solid line, andq=0.05 (dashed ling The gquantityz is in units of samples.

ics E. Therefore, this hypothesis test does not provide a conics E would need to be as follows: The peakednes¥gf)
sistent model for dynamicE&, necessitating one to test represents a rejection @€ g , in other words, dynamicg
against a different null hypothesis. exhibits significant cross correlation and/or nonlinear inter-
Results for type-llla surrogates are shown in Figh)or ~ dependence. Sind&('& was also rejected, some kind of non-
three exemplary values of. While values ofS are very linear interdependence might be favored. The small but non-
close to zero throughout the rangewprominent peaks are zero time lags of the maxima d&fl (7) could indicate some
found for M. Recall thatM (7,=0) corresponds td1(v) in  delay in this interdependence. We know, however, that this
Fig. 6(a) for a given value ofv. While no clear structure is interpretation would be wrong, as there is no nonlinear inter-
found for v=—0.0075, i.e., a value corresponding to the dependence in dynami&s nor is there any significant linear
flat tails of M(v), broad peaks with maxima at~0 are  cross correlation. Hence, this rejection?asﬂ)” is false.
established fow=—0.0025 and in particular for=0, val- To disclose the underlying problem it is at first necessary
ues corresponding to the flanks and maxima of the peaks ito understand the peaks in tiM(v) curves. DynamicE
M(v). So far, an interpretation of these findings for dynam-obeys strong periodic components corresponding to long lin-
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' ' ' surrogates will in general introduce a phase slip in the shifted
WWW“NWW“WMWWWWN signal which in turn decreases the overall periodicity of re-
——————————————————— currences with increasing temporal shifts. These consider-

WWMWWWWMW ations explain the peaks &f (7) obtained for dynamicg&.

___________________ Doubtless dynamick is particularly well suited to fully re-

MWWWWWMWWWMWWWWWW veal this artifact which might be far less prominent in other

cases. But, nonetheless, we here propose to use time shifted
’“\,MM\MW surrogates only without periodic boundary condition. Results
WI\IMW”MWWMWM for these type-Ilib surrogates are shown in Figg)6No clear
——————————————————— peaks are established in th(7) curves: The null hypoth-
WMWWWMWMMWM’VPMMWNW esis of two arbitrary but uncorrelated and independent pro-
——————————————————— cesses is correctly accepted for dynantcs
Y Y W TV TN NI WS We still need to discuss why for dynamiEsvalues ofS
: : . are lower than any of théS"} throughout the range of the
0 500 1000 1500 n 2000 parametew [cf. Fig. 6a)]. This can readily be explained by
. . the deterministic structure of the Bsler dynamics which is
FIG. 5. Segments of exemplary time series of dynantiand . (k)
. reflected in low values oR;”(Y). The surrogates lack any
corresponding type-1V surrogates. From bottom to o}, {y.}, n . o
and {y:} for q=0.15 and{x.}, {y.}, {y:} for q=0.45. For the structure and therefore result in h|gher valuesRY (Y).
latter value ofg, which corresponds to a high linear cross correla- 1N€ same phenomenon is established for dynarfidsr
tion, the surrogatéy=} strongly resembles the original time series Which results are shown in Fig(&. Here forq=<0.45 values
{y,}. The quantityn is in units of samples. of Sare below the distribution§S''}. Also M deviates sig-
nificantly from{M"} for an intermediate range of the mixing
ear autocorrelation times. The mean frequencies of thesgarameten. Here,M is higher than any of théM'} which
components foiX and Y become similar and identical for might be misinterpreted to indicate nonlinear interdepen-
small and zero values of, respectively. In consequence, dence for these dynamics. Like for dynami€sthe caseq
both X andY exhibit almost periodic spatial recurrences with =0.5 corresponds to identical original time series and pair-
similar recurrence times resulting in high values Mf{r  wise identical type-ll surrogate time series. Therefore, all
—0). Here, the periodic boundary conditions of type-lllb interdependence measures correctly attain their maximal
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FIG. 6. (a) Values ofS(Y|X) (left pane) andM (Y|X) (right pane) for dynamicsE in dependence on. Crosses depict results calculated
for the pair of original time series. Error bars indicate the range of 39 type-Il surrogaxdype-llla surrogates for dynamids Values of
the nonlinear interdependence measures in dependence on the relative timgwitifperiodic boundary condition far= —0.0075(thick
solid ling), v=—0.0025 (dashed ling and »v=0 (thin solid ling. (c) Same as b butvithout periodic boundary conditioritype-llib
surrogateps For both(c) and(d) 75 is in units of samples.
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FIG. 7. () Values ofS(Y|X) (left pane) andM(Y|X) (right pane) for dynamicsF vs g. Crosses depict results calculated for the pair of
original time series. Bold and normal error bars indicate the range of 39 type-Il and type-IV surrogates, resp@gtiwgie-Illb surrogates
for dynamicsF: Values of the nonlinear interdependence measures in dependence on the relatiyensthitiut periodic boundary condition
for g=0.2 (thick solid ling, 0.35(dashed ling and 0.5(thin solid ling. The guantityr, is in units of samples.

value of 1 forq=0.5. For all other values of, the deter- dynamicsF. Therefore, it is not sufficient to preserve the
ministic structure of the two independent $ter dynamics ~Structure of one time series, as is done for the generation of
causes a rejection ¢, necessitating one to test against atype-1V surrogates, to test agairigty’ .

different null hypothesis. But alsi {)' is rejected for dynam- ~ As a coupled nonlinear deterministic dynamics our ex-
ics F for higher values ofy [cf. Fig. 7(b)]. This rejection is ampleG is not consistent with any of the null hypotheses
correct and can be explained by the cross correlation whickested here. Therefore, the rejectionstof and H ' [Fig.

is introduced with increasing values @f Despite the consis- 8(a)] and ofH'(}' [Fig. 8b)] are correct. In analogy to dy-
tency of these cross correlations wity' there are signifi- namicsF, values ofSare below the distributiofiS'"} for low
cant deviations ofS from {SV} and of M from {M"}, re-  values of the coupling:. Here, the distributiongS"} are
spectively, as can be seen from Figa)7 Only for small  closer to the original values and encloSdor ¢=0. This
values ofq do we find an accordance &with {SV}. This  finding further demonstrates that for independent dynaics
further supports that the decreaseSbelow {S'} is solely  is mostly dominated bR (Y), respectively.

related to small values ®2((Y), since these quantities are  While for /=0 dynamicsH is a nonlinear coupled deter-
preserved by construction for type-IV surrogates. But stillministic dynamics, a purely linear stochastic process is ob-
our results demonstrate a false positive rejectiorﬂé}f for  tained for the limit{—oc. Since independent noise is super-
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imposed on{x,} and {y,}, no significant linear cross But also refined or new concepts will not be infallible and
correlation is expected in the purely stochastic extreme. Asnight not account for any known or unforeseen caveats.
illustrated in Figs. €a,b all null hypotheses are accepted Hence, the method of surrogates can be regarded as a
approximately at a noise levej~1. In the context of noisy complementary concept in the progress of nonlinear time
dynamics, surrogates can be used to determine the noise ageries analysis.
plitude up to which a certain measure is able to distinguish However, as also pointed out, e.g., in R¢#2,47), and
noisy nonlinear interdependence from isospectral noise witllemonstrated here by various examples, the method of sur-
the same linear cross correlation. rogates should not be misunderstood as an omnipotent and
foolproof framework. When surrogates are used to test
against a null hypothesi, it is very important to keep in
mind that the complementary hypothest$,, is very com-
Analyzing various bivariate model dynamics, we havePrehensive. Suppose, for example, we had rejet@dvith
demonstrated that the interpretation of measures aiming at@0r M as test statistics. Since these measures were specifi-
characterization of nonlinear interdependence can be quiteally designed to characterize nonlinear interdependence,
problematic. In line with previous studid#,8,12,39 we this rejection might of course correctly indicate an underly-
showed that different linear and nonlinear properties of théng nonlinear interdependencef. dynamicsG and H).
two dynamics which are not necessarily related to nonlineaNonetheless, a rejection of this null hypothesis at whatever
interdependence strongly influence valuesSoand M. In level of significance cannot prove that we are dealing with
consequence, these measures do not allow the distinguishifignlinear interdependence. Alternative reasons for a rejec-
of coupled nonlinear deterministic systems from bivariatetion can be read from the inversion of the null hypothesis
linear stochastic processes with different degrees of linedtself: e.g., a non-Gaussian random process, nonstationarity
cross correlation. Our results clearly demonstrate that thegef one or both dynamical systeni§4], a nonmonotonic
shortcomings can successfully be approached by the concefeasurement functiop47,53, or deterministic structure in
of surrogates. A rejection or an acceptance of a surrogatetqie dynamicgcf. dynamicsE andF). Even if one could rule
null hypothesis is nonredundant to the information obtainedut such reasons, countless further reasons would remain,
from the sole use of a nonlinear interdependence measur@ost of which one might not be aware of. But as demon-
and to a great extent a reliable discrimination of differentstrated by dynamic®, the surrogate algorithms might also
dynamical systems can be derived from a combination ofail to produce time series which really match the original
nonlinear interdependence measures with the method of suiime series in all the specified properties. And as pointed out
rogates. by Kugiumtzis it is always important to test your surrogates
Each of the biases & andM could be understood using before you test your datpd7]. On the other hand, iHB
a priori knowledge about the investigated dynamics. How-cannot be rejected this does not prove its correctness. The
ever, as stated above, such knowledge is not at hand whetiscriminative power of the measure used for the hypothesis
we analyze unknown dynamics. Doubtless the understandingst might simply be too low to detect nonlinear interdepen-
of such problems and pitfalls should be used for an improvedence from the analysis of time series with a finite length and
ment of existing measures or the development of new stratimited precision which might furthermore be superimposed
egies for the characterization of nonlinear interdependencavith noise(cf. dynamicsH). Strictly speaking, a rejection of

IV. DISCUSSION
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the null hypothesis of a bivariate linear stochastic process iperformance was obtained which was even surpassed by lin-
neither necessary nor sufficient to conclude for the concluear measures. Clearly, the highest performance was obtained
sion of a nonlinear interdependence. for the combination of the nonlinear measures with type-|
Doubtless a number of issues remain open and unsolvedurrogates. Hence, the surrogates allowed one to extract ad-
In the context of dynamic® we have investigated many ditional information which could not be derived by nonlinear
different nonlinear measurement functions and always enmeasures alone. These findings appear to be of high value for
countered a significant mismatch of the cross correlatioraiagnostic purposes. To what extent such promising findings
and/OI’ autOCOI‘relation. The most Cha”enging question St|” i%an be extrap()'ated to the case of bivariate nonlinear mea-
how to discern a linear SUperpOSition of independent nonlinsures in app”cation to e|ectroencepha|ographic

ear deterministic dynamics from interdependent nonlinearecordings of epilepsy patients is subject to current investi-
deterministic dynamics. gations.

In closing, we should not overstress these limitations but
rather emphasize that the concept of surrogates is a powerful
tool in the framework of nonlinear t|me series analysus. This ACKNOWLEDGMENTS
holds true not only from an academic point of view but also
has practical applications: In the context of univariate time We are grateful to Peter Grassberger, Klaus Lehnertz, and
series analysis of electroencephalographic recordings of epEhristoph Rieke for countless valuable discussions. We wish
lepsy patients, we compared the performance of differento thank Peter Grassberger for carefully reading this manu-
kinds of measures for the localization of the seizure generascript. T.K. and F.M. acknowledge support from the Deut-
ing structure[55]. For nonlinear measures, a rather weaksche Forschungsgemeinschaft.
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