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Bivariate surrogate techniques: Necessity, strengths, and caveats
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The concept of surrogates allows testing results from time series analysis against specified null hypotheses.
In application to bivariate model dynamics we here compare different types of surrogates, each designed to test
against a different null hypothesis, e.g., an underlying bivariate linear stochastic process. Two measures that
aim at a characterization of interdependence between nonlinear deterministic dynamics were used as discrimi-
nating statistics. We analyze eight different stochastic and deterministic models not only to demonstrate the
power of the surrogates, but also to reveal some pitfalls and limitations.
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I. INTRODUCTION

Univariate nonlinear time series analysis provides a nu
ber of measures for the characterization of nonlinear de
ministic dynamics@1#. For most of these measures, howev
the ranges of values obtained for nonlinear deterministic
namics and for linear stochastic dynamics overlap subs
tially @2#. Therefore, it is often problematic to decide wheth
a given value of a nonlinear measure reflects an underly
nonlinear deterministic dynamics or whether it is consist
with a linear stochastic model. This ambiguity has been
dressed by the method of surrogate data@3#, which allows
testing results from nonlinear time series analysis again
specified null hypothesis. For this purpose an ensembl
surrogate time series is constructed from the original ti
series in such a way that they have all properties consis
with this null hypothesis in common with the original, b
are otherwise random. A discriminating statistics, which h
to be sensitive to at least one property that is inconsis
with the null hypothesis, is calculated for both the origin
time series and the surrogates. If the result for the orig
falls outside the range of values obtained for the surroga
the null hypothesis can be rejected.

In recent years much attention has been paid to the an
sis of bivariate and multivariate dynamics. Particular emp
sis has been given to physiological and pathological p
cesses such as neuronal dynamics of epilepsy pat
@4–10#, of healthy volunteers@11–18#, or of animal models
@19–21#. Further studies investigated cardiodynamics@22# or
cardiorespiratory dynamics@23–27#.

In these works different algorithms were applied whi
aim at detection and characterization of interdependence
tween two nonlinear deterministic dynamical systems (X and
Y) from the analysis of time series measured simultaneo
from the two dynamics@4–6,8,17,19,20,24,26–38#. For the
sake of brevity, in this paper we will use the termnonlinear
interdependenceas a synonym for interdependence betwe
two nonlinear deterministic dynamical systems, notwi
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standing the often linear character of coupling terms use
model dynamics.

A straightforward approach to characterizing nonlinear
terdependence is to quantify the degree to which close st
in the state space ofX are mapped to close states in the st
space ofY and vice versa. This criterion for generalized sy
chronization is used by a growing number of measu
@4,5,8,17,19,20,27,28,30,38#, some of which are defined to
test for asymmetrical driver-response relationships. As
will demonstrate in this paper, the interpretation of nonline
bivariate measures can be even more difficult than in
univariate case. Just as for univariate measures, linear a
correlations ofX and Y will affect bivariate nonlinear mea
sures. A further bias can be caused by asymmetries in
statistical properties ofX andY. Most importantly, nonlinear
bivariate measures may not be able to distinguish betw
nonlinear interdependence and linear correlations due to
ditive mixing @4,8,12,39#. These very ambiguities motivate
the extension of the concept of surrogates to bivariate t
series analysis@40–43#.

Despite the existence of different algorithms for the ge
eration of bivariate and multivariate surrogate time seri
only few studies used them @5,8,11,12,15–17,19–
21,23,25,27#. Most of these studies dealt exclusively wi
experimental time series ofa priori unknown dynamics. The
interpretation of a rejection or an acceptance of the null
potheses of bivariate surrogates, however, remains diffi
for unknown dynamics, and investigations of model dyna
ics are rare exceptions@8,17,19,23#. A comprehensive appli-
cation to model dynamics with well defined properties is s
missing and is therefore the major aim of the present stu
For this purpose, we have analyzed time series of vari
stochastic and deterministic model dynamics using t
closely related nonlinear bivariate interdependence measu
We discuss the power, but also a number of problems
pitfalls, of different bivariate surrogate techniques.

II. METHODS

A. Nonlinear interdependence measures

Suppose two scalar time series$xn% and $yn% with n
51, . . . ,N have been measured from dynamical systemX
©2003 The American Physical Society02-1



te

-
re

s

in

e

ase

ns

n-
n-

n

efs.
es
e

ary
b-

h of
all

a

f
gned
ci-
are
nc-

ch
rmu-
tes
re-
un-
are

ANDRZEJAK et al. PHYSICAL REVIEW E 68, 066202 ~2003!
and Y, respectively. At first the dynamics are reconstruc
using delay coordinates@44#

xn5~xn , . . . ,xn2(m21)tr
!,

yn5~yn , . . . ,yn2(m21)tr
!, ~1!

with an embedding dimensionm and a delay timet r for n
51, . . . ,N* with N* 5N2(m21)t r . Let r n, j and sn, j , j
51, . . . ,k, denote the time indices of thek nearest Euclid-
ean neighbors ofxn andyn , respectively. Temporally corre
lated neighbors are excluded by means of a Theiler cor
tion: ur n, j2nu.W and usn, j2nu.W @45#. For eachyn , the
mean squared Euclidean distance to itsk nearest neighbors i
given by

Rn
(k)~Y!5

1

k (
j 51

k

uyn2ysn, j
u2, ~2!

and theX-conditioned mean squared Euclidean distance
defined by replacingsn, j with r n, j :

Rn
(k)~YuX!5

1

k (
j 51

k

uyn2yr n, j
u2. ~3!

The averaged squared distance ofyn to all remaining points
in $yn% is given by

Rn~Y!5
1

N* 21
(

j 51,j Þn

N*

uyn2yj u2. ~4!

If the dynamics ofY is independent ofX, then there is no
particular relation betweenr n, j andsn, j , and

Rn~Y!'Rn
(k)~YuX!@Rn

(k)~Y! ~5!

holds. In contrast, if closeness inX implies closeness inY,
then it follows that

Rn~Y!@Rn
(k)~YuX!'Rn

(k)~Y!. ~6!

Based on these considerations, Arnholdet al. @4# defined the
following two measures:

S~YuX!5
1

N*
(
n51

N* Rn
(k)~Y!

Rn
(k)~YuX!

, ~7!

H~YuX!5
1

N*
(
n51

N*

ln
Rn~Y!

Rn
(k)~YuX!

. ~8!

If relation ~5! holds, it follows that S(YuX)→0 and
H(YuX)→0. Higher values ofS(YuX) andH(YuX) are ob-
tained if Y is dependent onX, and relation~6! is true. While
by construction 0,S(YuX)<1 holds,H(YuX) has no upper
bound. Nonetheless, it was found to be more robust aga
noise and easier to interpret thanS(YuX) @39#. That is be-
cause the quantityRn(Y) is much less dependent on th
06620
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structure and dimensionality inY thanRn
(k)(Y). To derive a

normalized measure fromRn(Y), Quian Quirogaet al. @20#
therefore defined

N~YuX!5
1

N*
(
n51

N* Rn~Y!2Rn
(k)~YuX!

Rn~Y!
. ~9!

However,N(YuX)51 follows only if Rn
(k)(YuX)50, where

Rn
(k)(YuX)>Rn

(k)(Y). Rn
(k)(Y)50 in turn holds only for

strictly periodic dynamics. In consequence, even in the c
of identical synchronizationN(YuX) will be smaller than 1.
How much smaller than 1 is mostly determined byRn

(k)(Y),
a quantity which is strongly influenced by autocorrelatio
and/or finite dimensionality ofY. To minimize this unwanted
influence we here suggest modifying the definition of Eq.~9!
according to

M* ~YuX!5
1

N*
(
n51

N* Rn~Y!2Rn
(k)~YuX!

Rn~Y!2Rn
k~Y!

. ~10!

SinceM* (YuX) can have negative values, we define

M ~YuX!5max$M* ~YuX!,0%. ~11!

The measuresS(XuY) and M (XuY) are defined in com-
plete analogy to Eqs.~7! and~11! in order to test whetherX
is dependent onY. For independent dynamics all four qua
tities should tend to zero while in the case of identical sy
chronization all four will reach their maximal value of 1. I
between these two extremes, asymmetries such asM (YuX)
.M (XuY) and S(YuX).S(XuY) can indicate driver-
response relationships. As already discussed in R
@4,8,12,39#, however, differences in the dynamical properti
of X and Y can likewise cause such inequalities. While w
will illustrate such an asymmetry by means of one exempl
dynamical system, we will restrict ourselves to results o
tained forS(YuX) andM (YuX) for all other dynamics used
here.

Rather than optimizing the analysis parameters for eac
the different model dynamics, we chose a fixed setting for
dynamics. The calculation ofS andM was performed using
an embedding dimension ofm56, a time delayt56
samples. We used a number ofk55 nearest neighbors with
Theiler correction ofW550 samples.

B. Surrogates

In this section we will introduce the different types o
surrogates used in our study. Each of them has been desi
to test against a certain null hypothesis which will be spe
fied in the respective subsections. All null hypotheses sh
the following common assumptions: The measurement fu
tions by means of which$xn% and $yn% are derived fromX
andY are invertible but possibly nonlinear. To preserve su
static nonlinearities all surrogate types are based on a pe
tation of the original sample values. Hence, all surroga
have the amplitude distributions in common with the cor
sponding original time series. Furthermore, the dynamics
der investigation as well as the measurement function
2-2
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assumed to be stationary. Before we describe the diffe
null hypotheses and corresponding types of surrogates, s
technical and notational remarks are necessary.

The periodogram estimator of the power spectr
$usk,xu2%5$uak,xe

ifk,xu2% of a time series$xn% of lengthN is
defined fork52N/2, . . . ,N/2 via the discrete Fourier trans
form which assumes the time series to represent one pe
of a periodic signal. For real-valued time series the pe
odogram is symmetric in its amplitudes and antisymmetric
its phases:

ak5a2k ,

fk52f2k . ~12!

Furthermore, the zeroth coefficients0 is real-valued and is
given by the mean of the time series.

The linear cross correlation function of two real-valu
time series$xn% and$yn% of lengthN is defined by

Cxy~t!5H 1

N2t (
n50

N2t21

xn1tyn , t>0

Cyx~2t!, t,0

~13!

for t52(N21), . . . ,N21. For the special case of$xn%
5$yn%, Eq. ~13! defines the linear autocorrelation functio
Cxx(t). Note that the number of summands in Eq.~13! de-
creases for increasing values of the delay so that fot
56(N21) only one summand remains. If the time seri
however, are assumed to represent each one period of
continuous periodic signals the summation can be contin
into the next period:

Cxy
p ~t!5H 1

N (
n50

N21

x(n1t)modNyn , t>0

Cyx~2t!, t,0.

~14!

The periodic cross correlation function is connected to
cross spectrum:$Cxy

p (t)%5FT($sk,xsk,y* %), where the aster-
isk denotes complex conjugation. In consequence, the p
odogram and the periodic autocorrelation function are c
nected via the Wiener Khinchin theorem:$Cxx

p (t)%
5FT($usk,xu2%).

1.H 0
I : Two independent linear stochastic processes

To test the null hypothesis thatX andY are two indepen-
dent linear stochastic processes (H 0

I ), one should preserve
the linear autocorrelation of both$xn% and$yn%. Any poten-
tial nonlinear deterministic structure in$xn% and in $yn% as
well as nonlinear interdependence between them shoul
destroyed by means of a randomization scheme. Furt
more, also a possible significant linear cross correlat
needs to be destroyed. The algorithmic expenditure to g
erate surrogates according to this null hypothesis is comp
tively low: Surrogates for both$xn% and $yn% can be gener-
ated separately by means of a univariate technique. We
employed a technique that iteratively permutes the orig
sample values. This scheme is designed to converge to
06620
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rogates with power spectra practically indistinguishable fr
the original ones@46#. It is related to a noniterative procedur
proposed in Ref.@3# but overcomes a significant problem o
the latter technique which was shown to produce surrog
with a systematic bias in the power spectrum@42,47#.

As a seed for the iteration scheme, a random shuffle of
original sample values$xñ%

(0) is generated.~Here, and in the
following, we use tilde symbols to denote surrogate tim
series. No tilde symbols are used, however, if the values
the surrogate are identical to the original values.! Each itera-
tion step~i! consists of the following two subprocedures.

~1! Filtering: calculate the Fourier transforme

$ãk,xe
i f̃k,x%( i ) of $xñ%

( i ) and replace the amplitudes$ãk,x%
( i )

with the original amplitudes$ak,x% but keep the randomized
phases$f̃k,x%

( i ) fixed. The inverse Fourier transform o

$ak,xe
i f̃k,x% ( i ) results in$x̃n%

( i ).
~2! Rescaling: replace the smallest, second smallest, . . . ,

highest value of$x̃n%
( i ) with the smallest, second smal

est, . . . ,highest value of$xn% resulting in $xñ% which is
used to start the next iteration step.

Typically, after a few tens or a few hundreds of iteratio
steps the amplitudes$ãk%

( i ) will have converged to$ak%.
Equivalently, Cx̃x̃

p (t)( i ) will have converged to the corre
sponding original function, and$xñ%

( i 11) can be used for one
surrogate realization@56#. We will refer to surrogates de
signed to test the null hypothesis of two independent lin
stochastic processes as type-I surrogates.

2.H 0
II : Bivariate linear stochastic processes with an arbitrary

degree of linear cross correlation

To test the null hypothesis thatX andY represent a bivari-
ate linear stochastic process with an arbitrary degree of lin
cross correlationH 0

II it is necessary to preserve the line
cross correlation between$xn% and$yn% as well as the linear
autocorrelation of both time series. As in the preceding s
tion, any potential nonlinear interdependence between$xn%
and $yn% or nonlinear deterministic structure in any of th
two time series need to be destroyed. In contrast to typ
surrogates, a pair of surrogate time series$xñ% and$yñ% has
to be generated simultaneously by a bivariate algorithm.
the present study we applied a technique proposed
Schreiber and Schmitz@42#. While the generation of the see
for the iteration and the rescaling subprocedure are car
out individually for both$xñ% and$yñ% according to the pre-
ceding section, the filtering subprocedure has to be modi
as follows.

For eachk51, . . . ,N/2 the randomized phasesf̃k,x and
f̃k,y are not preserved but replaced with phasesck,x and
ck,y , respectively. These are chosen to minimize

hk5ueick,x2ei f̃k,xu21ueick,y2ei f̃k,yu2 ~15!

under the constraint

ei (ck,x2ck,y)5ei (fk,x2fk,y), ~16!
2-3
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wherefk,x and fk,y denote the phases of the original tim
series. Equation~16! is fulfilled if we chooseck,x andck,y
such that

ck,x2fk,x5ck,y2fk,y5ak . ~17!

Under this additional constraint the minimization problem
hk becomes one dimensional, and an appropriate value
ak is found by first eliminatingck,x andck,y from Eq. ~15!
which after some algebra reads

hk5422 cos~ak2f̃k,x1fk,x!22 cos~ak2f̃k,y1fk,y!.
~18!

This is extremal for

tanak5
sin~f̃k,x2fk,x!1sin~f̃k,y2fk,y!

cos~f̃k,x2fk,x!1cos~f̃k,y2fk,y!
~19!

and minimal if ak is taken in the correct quadrant. Th
phases for negative values ofk are chosen according to Eq
~12! to assure the real-valuedness of the back transform.
coefficient fork50 which represents the~zero! mean of the
time series can be skipped. In analogy to type-I surroga
typically a few tens or a few hundreds of iterations a
needed for the convergence of$ãk,x%

( i ) and$ãk,y%
( i ) to $ak,x%

and $ak,y%, respectively. Again, equivalently,Cx̃x̃
p (t)( i ),

Cỹỹ
p (t)( i ) converge to the corresponding original values.

proposed in Ref.@40# the cross spectrum and therebyCxy
p (t)

is preserved by construction@Eq. ~17!#. We will refer to sur-
rogates designed to test the null hypothesis of a bivar
linear stochastic processes with an arbitrary degree of lin
cross correlation as type-II surrogates.

3.H 0
III : Processes with arbitrary structure but without

nonlinear interdependence and without significant linear
cross correlation

As an example of a process consistent withH 0
III , we as-

sume two independent nonlinear deterministic dynam
which have been measured without any mixing. Because
nonlinear deterministic structure of independent processe
known to be reflected in values ofS andM, it was proposed
to simply use time shifted signals as surrogates, i.e., to
culate synchronization measures in dependence on a rel
temporal shift between the two time series@20#. The shifting
operation can be carried out quasicontinuously@20# or by
choosing a set of random delays@21,27#. By using a periodic
boundary condition, i.e., by wrapping around the end of
shifted time series to its beginning, the total length of t
time series can be maintained. The range of the poss
relative temporal shifts is given by2N* /2,ts,N* /2. The
state space trajectory is invariant under the shifting opera
with periodic boundary condition, except for those few ve
tors that include both the last and the first point of the u
shifted time series in their components. We will refer to co
tinuously shifted time series with periodic bounda
condition as type-IIIa surrogates.
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As we shall discuss in Sec. III, however, there is a sub
problem with the use of periodic boundary conditions, a
therefore we here introduce type-IIIb surrogates. These
constructed by cutting the middleN* /2 samples of one time
series and shifting this half along the other time series w
out wrapping. The synchronization measure is calcula
only for the respective subsegments ofN* /2 samples. The
range of the relative temporal shift is now given by2N* /4
,ts,N* /4. For the calculation ofS(YuX) andM (YuX) the
middle part of$yn% is shifted along$xn%. Here, the middle
part of $yn% is always compared to a different sample
$xn%. Under stationary conditions, however, the statisti
properties of the state space trajectory of the subsegme
$xn% should not change significantly. In consequence, as
type-IIIa the state space structure of bothX and Y is pre-
served for type-IIIb surrogates. Note that numerous alter
tive ways could be used which always represent a comp
mise between the maximal shift and the remaining numbe
samples. In general, values ofS and M will depend on the
number of data points, and even systematic deviations
smaller number of data points are possible. Such deviat
would, however, not affect the validity of type-IIIb surro
gates since values are compared only for time series with
same length, hereN* /2 samples. Both type-IIIa and type-IIIb
surrogates are designed to test the null hypothesis thatX and
Y can be regarded as processes with arbitrary structure
without nonlinear interdependence and without signific
linear cross correlation (H 0

III ). It has to be stressed that ne
ther type-IIIa nor type-IIIb surrogates are surrogates in
classical sense of a Monte Carlo simulation. No distribut
of surrogate values of a certain measure is estimated ag
which the value for the original time series can be compa
at a specified level of significance. Rather, rejections can
established if a single peak is found in the dependence of
synchronization measure on the shiftts .

4.H 0
IV : Processes with arbitrary structure and an arbitrary

degree of linear cross correlation but without
nonlinear interdependence

As an example for a process consistent withH 0
IV we as-

sume two independent nonlinear deterministic dynam
which have been measured by some kind of a linear su
position. For such dynamics,H 0

III would be rejected but one
could not decide whether this rejection was caused by lin
cross correlations or by nonlinear interdependence betw
X andY. On the other hand, a rejection ofH 0

II can be caused
by nonlinear interdependence or by nonlinear determini
structure inX or in Y. In consequence, it is not possible
distinguish a linear superposition of independent nonlin
deterministic dynamics from interdependent nonlinear de
ministic dynamics by the combination of type-II and typ
IIIa, IIIb surrogates because in both cases both null hypo
eses would be rejected. This very discrimination, howev
appears important and relevant in many applications to
namical systems in nature, many of which are assume
exhibit nonlinear deterministic structures@48,49#. To test the
null hypothesis thatX andY originate from a linear superpo
sition of independent nonlinear deterministic dynamics
2-4
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TABLE I. Overview of the different model systems and their respective parameters. Time series for the two exemplary paramet
given in the fourth and fifth columns are displayed in Fig. 1. Sixth to ninth columns: The letterC ~N! indicates that the particular dynami
is ~is not! consistent with a certain null hypothesis. As we shall discuss in the text, the consistency of dynamicsH with the different null
hypotheses depends on the noise levelz.

Model Parameter Example 1 Example 2 H 0
I H 0

II H 0
III H 0

IV

A Independent filtered noise Cuttoff frequency f c50.04 f c50.32 C C C C
B Bivariate autoregressive process Coupling strengthcp50.28 cp50.0125 N C C C
C Superposition of independent filtered noise Mixing strength q50.4 q50 N C C C
D Same asC, but with nonlinear measurement function Mixing strength q50.4 q50 N C C C
E Two uncoupled Ro¨ssler dynamics Frequency mismatch n50 n520.00125 N N C C
F Linear superposition of two uncoupled Ro¨ssler Mixing strength q50.4 q50 N N N C
G Coupled Ro¨ssler-Lorenz dynamics Coupling strength «55 «50 N N N N
H Noisy coupled Ro¨ssler-Lorenz dynamics Noise amplitude z54.4 z50.87 N C/N C/N C/N
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would in principle be necessary to maintain$xn%, $yn%, and
foremost,Cxy

p (t). Obviously, this would leave no degree
freedom for any randomization. In some cases, howe
synchronization measures are calculated primarily in
state space. For example, forS(YuX) and M (YuX) all dis-
tances are calculated inY while only indices are used fromX.
In such a case, it might be sufficient to preserve only$yn%
and Cxy

p (t) and to randomize$xn%. However, at least the
linear properties of$xn% characterized by its autocorrelatio
should be preserved. The constraints to simultaneously
serve$yn%, Cxx

p (t), andCxy
p (t), however, would still over-

specify the problem. The only possible surrogate$xñ% would
be an exact copy of the original time series$xn%. As a way
out of this dilemma, Schreiber proposed to preserve the n
periodic correlation functionsCxx(t) andCxy(t) only up to
a certain maximum valuetmax of the delay. This can be
achieved by minimizing a cost function such as

E5wauto(
t51

tmax

@Cxx~t!2Cx̃x̃~t!#2

1wcross (
t52tmax

tmax

@Cxy~t!2Cxỹ~t!#2 ~20!

by means of simulated annealing@41#. In this context, the
cost function is interpreted as the energy of a thermodyna
system which is annealed slowly in order to reach a gro
state, i.e., a global minimum ofE.

Again a random permutation$xñ%
(0) of the original time

series is generated as a seed for the following iterative
cedure.

We draw two random indicesi and j from @0, . . . ,N
21#. We calculate the change of the energy (DE) that
would result from the exchange ofxi andxj . If DE is found
to be negative we carry out the exchange, otherwise perf
the exchange only with a probability according to a Bol
mann distribution:

p5e2DE/T. ~21!
06620
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After a certain number of tested or performed exchanges,
temperatureT of the thermodynamic system is lowered a
cording to

Tnew5Tolda, ~22!

with 1.a@0. The computation ofDE requires only the
calculation of those summands of the correlation functions
which xi and xj contribute. Consequently, a calculation
the correlation functions via the Fourier transform would
extremely ineffective. Rather, Eq.~13! can be used, which
has the positive side effect that it does not rely on the
sumption that the time series represents one period of a
tinuous signal, which in fact is violated in most realistic sit
ations. Yet the number of iteration steps is typically of t
order of several magnitudes higher than that for type-I a
type-II surrogates causing very high computational co
even if optimization strategies@41# are employed.

Furthermore, a reasonably fast convergence ofE is not
guaranteed but can only be reached if the parametersa,
wauto , andwcross are adjusted appropriately. In particular,
proper choice of the weightswauto and wcross strongly de-
pends on features of the original time series. Therefore, fe
back loops are needed to adjust the parameters leadin
even higher computational costs. We will refer to surroga
designed to test against the null hypothesis of two proce
with arbitrary structure and an arbitrary degree of line
cross correlation but without nonlinear interdependen
(H 0

IV) as type-IV surrogates. For the calculation ofS(YuX)
andM (YuX) we keep$yn% and randomize$xn%.

C. Data

We analyzed time series from eight different bivariate d
namics. These models have been chosen to demonstrat
necessity and strengths of bivariate surrogates, but als
reveal caveats related to this approach. All models involv
one continuous control parameter, and the dependenc
this parameter was studied in detail~cf. Table I!. The number
of sample points for each pair of time series$xn% and $yn%
wasN54096. All time series were set to zero mean and u
variance and all formulas were simplified according
Whenever necessary, a sufficient number of preiterations
2-5
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FIG. 1. Segments of exemplary time series of dynamicsA–H. For each model, two examples are shown. In each panel from to
bottom:$yn%, $xn% for example 1, and$yn%, $xn% for example 2. The parameters of these examples are given in Table I. The quantitn is
in units of samples.
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carried out for the generation of the models to account
transients. As stated in the preceding section, for the ca
lation of the discrete Fourier transform time series are
plicitly assumed as one period of a continuous signal. Hen
discontinuities in amplitude and slope between the two e
of an otherwise smooth signal would cause spurious
quency components and might lead to a false positive re
tion of the null hypotheses of Fourier based surroga
06620
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-
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s
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~type-I and type-II!. To circumvent this problem, all time
series were cut from longer epochs such that these disc
nuities were minimal. For segments of exemplary time se
we refer to Fig. 1.

For dynamicsA, we used independent Gaussian wh
noise for$xn%. For $yn% time series of independent Gaussi
white noise were smoothed by means of a sixth-order lo
pass butterworth filter. The cutoff frequencyf c of the filter
2-6
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was decreased stepwise according tof c,p50.75p with p
50, . . .,14. Here, the cutoff frequency has been normaliz
by the bandwidth and hence is dimensionless. Indepen
realizations were generated for each setting of the filter.

A second-order bivariate autoregressive model was u
for the generation of dynamicsB:

S xn

yn
D 5(

i 51

2

A i S xn2 i

yn2 i
D 1S jn

hn
D ~23!

with

A15S 1.852cp cp

cp 1.762cp
D ~24!

and

A25S 20.87 0

0 20.82D , ~25!

where jn and hn represent independent identically distri
uted white noise with zero mean and unit variance. The
fusive coupling strengthcp was varied according tocp
50.012531.25p with p50, . . .,19.

For dynamicsC and D two independent realizations o
filtered noise, $vn% and $wn%, were generated withf c
50.125. Subsequently,$xn% and $yn% were derived from a
linear superposition of these time series:

xn5~12q!vn1qwn ,

yn5g@qvn1~12q!wn#. ~26!

The mixing strengthq was increased fromq50 ~no mixing!
to q50.5 ~resulting in$xn%5$yn%) in steps of 0.05. As mea
surement functions we usedg(y)5y for dynamicsC and
g(y)5yAuyu for dynamicsD. Independent realizations o
$vn% and$wn% were used for each value ofq.

Dynamics E and F are based on two nonidentical un
coupled Ro¨ssler systems~cf. Refs.@50,51#!:

v̇152~11n!v22v3 ,

v̇25~11n!v110.15v2 ,

v̇35~v1210!v310.2, ~27!

ẇ152~12n!w22w3 ,

ẇ25~12n!w110.15w2 ,

ẇ35~w1210!w310.2.

The quantityn which determines the difference in the me
periods of the two Ro¨ssler systems was varied fromn
520.0125 ton50.0125 in steps of 0.001 25 for dynamic
E. Time series$xn% and $yn% were sampled at a rate ofdt
50.1 fromv1 andw1, respectively.
06620
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For dynamicsF, the Rössler dynamics@Eq. ~27!# was in-
tegrated for a fixed valuen520.0125. In analogy to dynam
ics C, the time series$xn% and $yn% were obtained from a
linear superposition:

xn5~12q!vn1qwn ,

yn5qvn1~12q!wn . ~28!

Again, the mixing strengthq was increased fromq50 ~no
mixing! to q50.5 ~resulting in$xn%5$yn%) in steps of 0.05.

For dynamicsG andH we used a coupled Ro¨ssler-Lorenz
system:

v̇1526~v21v3!,

v̇256~v110.2v2!,

v̇356@~v125.7!v310.2#, ~29!

ẇ1510~2w11w2!,

ẇ2528w12w22w1w31«v2
2 ,

ẇ35w1w22
8

3
w3 .

For dynamicsG, the coupling strength was varied from«
50 to «55 in steps of 0.2. Time series$xn% and$yn% were
sampled directly fromv1 andw1 with dt50.025.

For dynamicsH, solutions of Eq.~29! for «55 were su-
perimposed with isospectral noise at a varying signal to no
ratio (z measured in units of the variance of the noise-fr
time series!. Independent realizations with randomized initi
conditions of the coupled Ro¨ssler-Lorenz dynamics wer
generated for each value ofz which was varied according to
zp50.0131.5p with p50, . . .,25.

III. RESULTS

Values of the interdependence measures for the diffe
model systems in dependence on the respective param
readily illustrate the problems related to the interpretation
absolute values ofSandM ~cf. Fig. 2!. The ranges of values
overlap substantially. Thus, depending on the setting of
two systems’ parameters, the one or the other dynamics
pears to be more interdependent. We of course know tha
dynamicsG the parameter« indeed controls the strength o
the nonlinear interdependence which is correctly reflected
an increase ofS andM. However, such an increase can al
be caused by static cross correlations due to a linear su
position of univariate linear stochastic processes~dynamics
C andD) or of independent nonlinear deterministic dynam
ics ~dynamicsF). High values ofSandM can also be related
to dynamical cross correlation of bivariate linear stochas
processes~dynamicsB) or can be obtained for two nonlinea
deterministic dynamics that are independent but follow sim
lar or identical equations of motions~dynamicsE). In some
cases, such as dynamicsA or F, either only S or only M
2-7



ANDRZEJAK et al. PHYSICAL REVIEW E 68, 066202 ~2003!
FIG. 2. Values ofS(YuX) ~left panel! andM (YuX) ~right panel! for dynamicsA–H in dependence on the respective parameter.A, .;
B, l; C, m; D, j; E, m; F, *; G, m; H, !.
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exhibits high values while the other measures’ values
close to zero. In summary, the interpretation of Fig. 2 a
pears rather problematic without the use ofa priori knowl-
edge about the dynamics, which is of course not what
want for the investigation of unknown dynamics. In cons
quence, a reliable classification of the different types of
namics cannot be derived from absolute values ofS and M
only. To what extent such a classification can be achie
with the help of surrogate time series is the subject of
following discussion. Here, we shall always test first agai
H 0

I andH 0
II . Only if both are rejected, does testing again

H 0
III andH 0

IV become necessary. We regard a null hypothe
as rejected also if it is rejected only forS or only for M.
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For dynamicsA, values ofS(YuX), S(XuY), M (YuX),
andM (XuY) are contrasted with the corresponding surrog
distributions in Fig. 3~a!. For the complete range off c both
M (YuX) andM (XuY) as well as the corresponding surroga
distributions are very close to zero, correctly reflecting t
lack of any interdependence betweenX and Y. In contrast,
higher and asymmetric values are established forS(XuY) and
S(YuX). This phenomenon, which was also discussed in R
@8#, can be explained by different autocorrelations of the t
independent subsystems. A very narrow range of the su
gates’ distribution is found. The narrowness of the distrib
tion of statistical properties of type-I surrogates has be
discussed in Refs.@42,47,52# as a potential cause of fals
rrogates,
FIG. 3. ~a! Values of the nonlinear interdependence measuresS(XuY) andS(YuX) ~upper panels! and forM (XuY) andM (YuX) ~lower
panels! for dynamicsA vs f q . ~b! Values ofS(YuX) ~left panel! andM (YuX) ~right panel! for dynamicsB in dependence oncp . Crosses
depict results calculated for the pair of original time series. Normal and bold error bars indicate the range of 39 type-I and type-II su
respectively.~c! Same as~b! for dynamicsC vs q.
2-8
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BIVARIATE SURROGATE TECHNIQUES: NECESSITY, . . . PHYSICAL REVIEW E 68, 066202 ~2003!
positive rejections of the null hypothesis. In our case, ho
ever,S values are within the surrogate distribution throug
out the range of the parameter, and also the asymmetr
S(XuY) andS(YuX) is correctly mimicked by the surrogate
The null hypothesis of two independent univariate linear s
chastic processes cannot be rejected for dynamicsA, which
in fact is correct. The decay ofS(YuX) for small values off c

can be explained by a decrease ofRn
(k)(Y) rather than by an

increase ofRn
(k)(YuX) @cf. Eq.~7!#. A fixed number of neares

neighbors in state space is simply found in smaller hyp
sphere radii for smoother signals, a fact also known to
tentially fool estimates of correlation dimension in applic
tion to linear stochastic dynamics~cf., e.g., Ref.@2#!.

While dynamicsA could be used to illustrate how differ
ent linear autocorrelations ofX andY can cause asymmetrie
betweenS(YuX) and S(XuY) we will restrict ourselves to
results forS(YuX) and M (YuX) for dynamicsB–H. In the
following, the distribution of 39 type-II~type-IV! surrogates
will be denoted with$SII% and$M II% ($SIV% and$M IV%).

For dynamicsB the null hypothesis of two independe
univariate linear stochastic processes is rejected for hig
values ofcp @cf. Fig. 3~b!#. This rejection correctly reflects
that with increasing values ofcp more and more cross cor
relation betweenX andY is introduced. However, at no de
gree does such a cross correlation contradict the null hyp
esis of a bivariate linear stochastic process, which
correctly reflected by the accordance ofS andM with $SII%
and$M II%, respectively. The nonmonotonic increase ofSand
M can be explained by the impact ofcp on the spectral prop
erties ofX andY ~cf. Fig. 1!.

The null hypothesis of two independent univariate line
stochastic processes is also rejected for higher values ofq for
dynamicsC @cf. Fig. 3~c!#. Here the cross correlation be
tweenX andY is introduced via the mixing according to Eq
~26!. The accordance ofS andM with $SII% and$M II% again
indicates the correct acceptance ofH 0

II . As stated above
identical time series are obtained forq50.5 resulting inS
5M51. Values of exactly 1 for bothS and M are also
obtained for all pairs of type-II surrogates forq50.5 because
xn5yn ; n⇔Cxy(t50)51 holds. Since type-II surrogate
have the linear cross correlation function in common w
the original data, pairs of identical surrogate time series
obtained:xñ5yñ ; ñ.

The few deviations obtained for dynamicsA-C for single
values of parameters are consistent with rejections by cha
due to a finite value of the nominal size. However, as
shall see in the following, one always has to be aware of
fact that such rejections can also be caused by system
biases in the surrogates’ linear properties. As demonstrate
Fig. 4~a!, there is a false rejection ofH 0

II for dynamicsD
throughout the range ofq. These rejections are caused by
significant deviation of the linear properties of the sur
gates, as illustrated in Figs. 4~c,d!. Here, the iterative proces
failed to produce surrogates with linear correlations indis
guishable from those of the original time series. As indica
above it is also possible to stop the algorithm for the gene
tion of type-II surrogates after the filtering step so that
surrogates have the cross correlation function and the p
06620
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odogram exactly in common with the original data. But
that case the deviation in the amplitude distribution cause
false positive rejection ofH 0

II ~results not shown!. Dynamics
D are also consistent withH 0

IV but despite the fact that th
cross correlation is much better mimicked by type-IV sur
gates@cf. Fig. 4~c!#, this null hypothesis is rejected for highe
values ofq @cf. Fig. 4~b!#. These deviations are caused by
mismatch of the autocorrelation or periodogram, respectiv
@cf. Fig. 4~d!#. This ‘‘whitening’’ of the surrogates’ power
spectrum could not be reduced sufficiently. Even for e
tremely low values of the cost function or with the use
additional terms in the cost function, a persistent noisines
type-IV surrogates could not be suppressed. Whether th
problems can be solved by possible generalizations
univariate techniques, which have been designed to incl
nonmonotonic measurement functions into the null hypo
esis@53#, shall be the subject of further research. The disti
peaks in the curves of type-IIIb surrogates for dynamicsD
@cf. Fig. 4~e!# obtained for high values ofq indicate the cor-
rect rejection ofH 0

III . We here know that this rejection i
caused by the strong linear cross correlation which is in
duced by the linear mixing. For unknown dynamics, ho
ever, the rejection ofH 0

III would not allow deciding whethe
it is caused by linear cross correlation or by nonlinear int
dependence.

A further problem with type-IV surrogates is encounter
when we deal with strong cross correlations between
original time series: Type-II and type-IV surrogates are co
structed to have the linear cross correlation in common w
the original time series. If we interpret a significant line
cross correlation at zero time lag as a similarity relation~.!
this reads$xn%.$yn%⇔$xñ%.$yñ%. ~The extreme case o
$xn%5$yn%⇔$xñ%5$yñ% has already been discussed alo
with dynamicsC for q50.5.! For type-IV surrogates the
additional constraint$xñ%5$xn% along with the transitivity of
the similarity relation implies$xn%.$yn%⇒$yñ%.$yn%. In
consequence, when there exists a significant linear cross
relation between$xn% and $yn%, type-IV surrogates tend to
converge towards a copy of the original time series~cf. Fig.
5!. However, even forq50.5 the surrogates do not represe
an exact copy of the original time series resulting in$M IV%
,M and$SIV%,S.

Before we proceed to results obtained for determinis
models, let us stress that practically the complete range
definition of bothS andM is covered by values obtained fo
our exemplary stochastic modelsA–D. For the sake of clar-
ity, results of type-I surrogates are not shown for the follo
ing dynamicsE–H. We should mention, however, that$SI%
' $SII% and $M I% ' $M II%. That is because a possibly sig
nificant cross correlation of type-II surrogates will alwa
increase values ofS andM.

For dynamicsE, values ofS andM are compared to val-
ues of$SII% and$M II%, respectively, in Fig. 6~a!. For a num-
ber of n values,M significantly deviates from$M II%. Values
of S are very close to zero and significantly below$SII% for
small values ofn. We will discuss this seemingly paradox
cal finding below and here just note that the null hypothe
of a bivariate linear stochastic process is rejected for dyn
2-9



air

epict
tes and
ry

ANDRZEJAK et al. PHYSICAL REVIEW E 68, 066202 ~2003!
FIG. 4. ~a! Values ofS(YuX) ~left panel! andM (YuX) ~right panel! for dynamicsD vs q. Crosses depict results calculated for the p
of original time series. Normal and bold error bars indicate the range of 39 type-I and type-II surrogates, respectively.~b! Same as~a! but
here error bars show the range of 39 type-IV surrogates.~c! Values of the linear cross correlation function at zero time lag. Crosses d
results calculated for the pair of original time series. Error bars in the left and right plot indicate the range of 39 type-II surroga
type-IV surrogates, respectively.~d! Periodogram of dynamicsD for q50.3 ~black! in comparison to the periodogram of one exempla
type-II surrogate~left, gray! and one exemplary type-IV surrogate~right, gray!. ~e! Type-IIIb surrogates for dynamicsD: Values of the
nonlinear interdependence measures in dependence on the relative time shiftts without periodic boundary condition forq50.5 ~thick solid
line!, q50.30 ~thin solid line!, andq50.05 ~dashed line!. The quantityts is in units of samples.
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lin-
ics E. Therefore, this hypothesis test does not provide a c
sistent model for dynamicsE, necessitating one to tes
against a different null hypothesis.

Results for type-IIIa surrogates are shown in Fig. 6~b! for
three exemplary values ofn. While values ofS are very
close to zero throughout the range ofn prominent peaks are
found for M. Recall thatM (ts50) corresponds toM (n) in
Fig. 6~a! for a given value ofn. While no clear structure is
found for n520.0075, i.e., an value corresponding to th
flat tails of M (n), broad peaks with maxima att'0 are
established forn520.0025 and in particular forn50, val-
ues corresponding to the flanks and maxima of the peak
M (n). So far, an interpretation of these findings for dyna
06620
n-

in
-

ics E would need to be as follows: The peakedness ofM (t)
represents a rejection ofH 0

III , in other words, dynamicsE
exhibits significant cross correlation and/or nonlinear int
dependence. SinceH 0

II was also rejected, some kind of non
linear interdependence might be favored. The small but n
zero time lags of the maxima ofM (t) could indicate some
delay in this interdependence. We know, however, that
interpretation would be wrong, as there is no nonlinear in
dependence in dynamicsE, nor is there any significant linea
cross correlation. Hence, this rejection ofH 0

III is false.
To disclose the underlying problem it is at first necess

to understand the peaks in theM (n) curves. DynamicsE
obeys strong periodic components corresponding to long
2-10
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BIVARIATE SURROGATE TECHNIQUES: NECESSITY, . . . PHYSICAL REVIEW E 68, 066202 ~2003!
ear autocorrelation times. The mean frequencies of th
components forX and Y become similar and identical fo
small and zero values ofn, respectively. In consequenc
bothX andY exhibit almost periodic spatial recurrences w
similar recurrence times resulting in high values ofM (n
→0). Here, the periodic boundary conditions of type-II

FIG. 5. Segments of exemplary time series of dynamicsC and
corresponding type-IV surrogates. From bottom to top:$xn%, $yn%,
and $yñ% for q50.15 and$xn%, $yn%, $yñ% for q50.45. For the
latter value ofq, which corresponds to a high linear cross corre
tion, the surrogate$yñ% strongly resembles the original time seri
$yn%. The quantityn is in units of samples.
06620
se

surrogates will in general introduce a phase slip in the shif
signal which in turn decreases the overall periodicity of
currences with increasing temporal shifts. These consi
ations explain the peaks ofM (t) obtained for dynamicsE.
Doubtless dynamicsE is particularly well suited to fully re-
veal this artifact which might be far less prominent in oth
cases. But, nonetheless, we here propose to use time sh
surrogates only without periodic boundary condition. Resu
for these type-IIIb surrogates are shown in Fig. 6~c!. No clear
peaks are established in theM (t) curves: The null hypoth-
esis of two arbitrary but uncorrelated and independent p
cesses is correctly accepted for dynamicsE.

We still need to discuss why for dynamicsE values ofS
are lower than any of the$SII% throughout the range of the
parametern @cf. Fig. 6~a!#. This can readily be explained b
the deterministic structure of the Ro¨ssler dynamics which is
reflected in low values ofRn

(k)(Y). The surrogates lack an
structure and therefore result in higher values ofRn

(k)(Y).
The same phenomenon is established for dynamicsF for
which results are shown in Fig. 7~a!. Here forq<0.45 values
of S are below the distributions$SII%. Also M deviates sig-
nificantly from$M II% for an intermediate range of the mixin
parameterq. Here,M is higher than any of the$M II% which
might be misinterpreted to indicate nonlinear interdep
dence for these dynamics. Like for dynamicsC the caseq
50.5 corresponds to identical original time series and p
wise identical type-II surrogate time series. Therefore,
interdependence measures correctly attain their maxi

-

d
FIG. 6. ~a! Values ofS(YuX) ~left panel! andM (YuX) ~right panel! for dynamicsE in dependence onn. Crosses depict results calculate
for the pair of original time series. Error bars indicate the range of 39 type-II surrogates.~b! Type-IIIa surrogates for dynamicsE: Values of
the nonlinear interdependence measures in dependence on the relative time shiftts with periodic boundary condition forn520.0075~thick
solid line!, n520.0025 ~dashed line!, and n50 ~thin solid line!. ~c! Same as b butwithout periodic boundary condition~type-IIIb
surrogates!. For both~c! and ~d! ts is in units of samples.
2-11
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FIG. 7. ~a! Values ofS(YuX) ~left panel! andM (YuX) ~right panel! for dynamicsF vs q. Crosses depict results calculated for the pair
original time series. Bold and normal error bars indicate the range of 39 type-II and type-IV surrogates, respectively.~b! Type-IIIb surrogates
for dynamicsF: Values of the nonlinear interdependence measures in dependence on the relative shiftts without periodic boundary condition
for q50.2 ~thick solid line!, 0.35 ~dashed line!, and 0.5~thin solid line!. The quantityts is in units of samples.
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value of 1 forq50.5. For all other values ofq, the deter-
ministic structure of the two independent Ro¨ssler dynamics
causes a rejection ofH 0

II , necessitating one to test agains
different null hypothesis. But alsoH 0

III is rejected for dynam-
ics F for higher values ofq @cf. Fig. 7~b!#. This rejection is
correct and can be explained by the cross correlation wh
is introduced with increasing values ofq. Despite the consis
tency of these cross correlations withH 0

IV there are signifi-
cant deviations ofS from $SIV% and of M from $M IV%, re-
spectively, as can be seen from Fig. 7~a!. Only for small
values ofq do we find an accordance ofS with $SIV%. This
further supports that the decrease ofS below $SII% is solely
related to small values ofRn

(k)(Y), since these quantities ar
preserved by construction for type-IV surrogates. But s
our results demonstrate a false positive rejection ofH 0

IV for
06620
h

ll

dynamicsF. Therefore, it is not sufficient to preserve th
structure of one time series, as is done for the generatio
type-IV surrogates, to test againstH 0

IV .
As a coupled nonlinear deterministic dynamics our e

ample G is not consistent with any of the null hypothes
tested here. Therefore, the rejections ofH 0

II and H 0
IV @Fig.

8~a!# and of H 0
III @Fig. 8~b!# are correct. In analogy to dy

namicsF, values ofSare below the distribution$SII% for low
values of the coupling«. Here, the distributions$SIV% are
closer to the original values and encloseS for «50. This
finding further demonstrates that for independent dynamicS
is mostly dominated byRn

(k)(Y), respectively.
While for z50 dynamicsH is a nonlinear coupled deter

ministic dynamics, a purely linear stochastic process is
tained for the limitz→`. Since independent noise is supe
air
FIG. 8. ~a! Values ofS(YuX) ~left panel! andM (YuX) ~right panel! for dynamicsF vs «. Crosses depict results calculated for the p
of original time series. Bold and normal error bars indicate the range of 39 type-II and type-IV surrogates, respectively.~b! Type-IIIb
surrogates for dynamicsG: Values of the nonlinear interdependence measures in dependence on the relative shiftts without periodic
boundary condition for«55 ~thin solid line!, 1.8 ~dashed line!, and 0 ~thick solid line!. The quantityts is in units of samples.
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FIG. 9. ~a! Values ofS(YuX) ~left panel! andM (YuX) ~right panel! for dynamicsH in dependence onh. Crosses depict results calculate
for the pair of original time series. Bold and normal error bars indicate the range of 39 type-II and type-IV surrogates, respect!
Type-IIIb surrogates for dynamicsH: Values of the nonlinear interdependence measures in dependence on the relative shiftts without
periodic boundary condition forh50.05~thin solid line!, 0.38~dashed line!, and 2.9~thick solid line!. The quantityts is in units of samples.
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imposed on $xn% and $yn%, no significant linear cross
correlation is expected in the purely stochastic extreme.
illustrated in Figs. 9~a,b! all null hypotheses are accepte
approximately at a noise levelh'1. In the context of noisy
dynamics, surrogates can be used to determine the noise
plitude up to which a certain measure is able to distingu
noisy nonlinear interdependence from isospectral noise w
the same linear cross correlation.

IV. DISCUSSION

Analyzing various bivariate model dynamics, we ha
demonstrated that the interpretation of measures aiming
characterization of nonlinear interdependence can be q
problematic. In line with previous studies@4,8,12,39# we
showed that different linear and nonlinear properties of
two dynamics which are not necessarily related to nonlin
interdependence strongly influence values ofS and M. In
consequence, these measures do not allow the distinguis
of coupled nonlinear deterministic systems from bivari
linear stochastic processes with different degrees of lin
cross correlation. Our results clearly demonstrate that th
shortcomings can successfully be approached by the con
of surrogates. A rejection or an acceptance of a surroga
null hypothesis is nonredundant to the information obtain
from the sole use of a nonlinear interdependence meas
and to a great extent a reliable discrimination of differe
dynamical systems can be derived from a combination
nonlinear interdependence measures with the method of
rogates.

Each of the biases ofS andM could be understood usin
a priori knowledge about the investigated dynamics. Ho
ever, as stated above, such knowledge is not at hand w
we analyze unknown dynamics. Doubtless the understan
of such problems and pitfalls should be used for an impro
ment of existing measures or the development of new s
egies for the characterization of nonlinear interdepende
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But also refined or new concepts will not be infallible an
might not account for any known or unforeseen cavea
Hence, the method of surrogates can be regarded a
complementary concept in the progress of nonlinear ti
series analysis.

However, as also pointed out, e.g., in Refs.@42,47#, and
demonstrated here by various examples, the method of
rogates should not be misunderstood as an omnipotent
foolproof framework. When surrogates are used to t
against a null hypothesisH0 it is very important to keep in
mind that the complementary hypothesis,H1 , is very com-
prehensive. Suppose, for example, we had rejectedH 0

II with
S or M as test statistics. Since these measures were spe
cally designed to characterize nonlinear interdepende
this rejection might of course correctly indicate an under
ing nonlinear interdependence~cf. dynamics G and H).
Nonetheless, a rejection of this null hypothesis at whate
level of significance cannot prove that we are dealing w
nonlinear interdependence. Alternative reasons for a re
tion can be read from the inversion of the null hypothe
itself: e.g., a non-Gaussian random process, nonstation
of one or both dynamical systems@54#, a nonmonotonic
measurement function@47,53#, or deterministic structure in
the dynamics~cf. dynamicsE andF). Even if one could rule
out such reasons, countless further reasons would rem
most of which one might not be aware of. But as demo
strated by dynamicsD, the surrogate algorithms might als
fail to produce time series which really match the origin
time series in all the specified properties. And as pointed
by Kugiumtzis it is always important to test your surrogat
before you test your data@47#. On the other hand, ifH 0

II

cannot be rejected this does not prove its correctness.
discriminative power of the measure used for the hypothe
test might simply be too low to detect nonlinear interdepe
dence from the analysis of time series with a finite length a
limited precision which might furthermore be superimpos
with noise~cf. dynamicsH). Strictly speaking, a rejection o
2-13
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the null hypothesis of a bivariate linear stochastic proces
neither necessary nor sufficient to conclude for the con
sion of a nonlinear interdependence.

Doubtless a number of issues remain open and unsol
In the context of dynamicsD we have investigated man
different nonlinear measurement functions and always
countered a significant mismatch of the cross correla
and/or autocorrelation. The most challenging question sti
how to discern a linear superposition of independent non
ear deterministic dynamics from interdependent nonlin
deterministic dynamics.

In closing, we should not overstress these limitations
rather emphasize that the concept of surrogates is a pow
tool in the framework of nonlinear time series analysis. T
holds true not only from an academic point of view but a
has practical applications: In the context of univariate ti
series analysis of electroencephalographic recordings of
lepsy patients, we compared the performance of differ
kinds of measures for the localization of the seizure gene
ing structure@55#. For nonlinear measures, a rather we
s
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performance was obtained which was even surpassed by
ear measures. Clearly, the highest performance was obta
for the combination of the nonlinear measures with typ
surrogates. Hence, the surrogates allowed one to extrac
ditional information which could not be derived by nonline
measures alone. These findings appear to be of high valu
diagnostic purposes. To what extent such promising findi
can be extrapolated to the case of bivariate nonlinear m
sures in application to electroencephalograp
recordings of epilepsy patients is subject to current inve
gations.
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