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Abstract. Nonlinear interdependence measures can be used to detect directional
couplings between stationary dynamical systems from a pair of signals measured
from them. For many dynamics, however, intermittent directional couplings arise
in causal relation to distinct events on timescales that are often too short to be
resolved by nonlinear interdependence measures. On the other hand, in many
experimental settings signals are measured for multiple instances of such events.
We demonstrate how these multiple realizations can be exploited to reliably detect
event-related time-dependent directional couplings. For this purpose, we propose
the general concept of time-resolved causal statistics derived from embeddings
across multiple realizations of time-dependent dynamics. Surrogates constructed
by permuting the order of realizations can be used to test specified null hypotheses.
We adapt a conventional nonlinear interdependence measure to serve as a time-
resolved causal statistic and apply it to exemplary coupled Lorenz dynamics. This
approach allows detecting event-related time-dependent directional couplings
based on only a few tens of realizations. Changes of the coupling direction
can be detected within one oscillation of the dynamics. Beyond this particular
application, any metric bivariate or univariate measure can be adapted to serve
as time-resolved causal statistics to characterize various aspects of event-related
time-dependent dynamics.

A detection of directional couplings between two distinct dynamical systems X and Y from the
analysis of pairs of signals measured from them is key to an understanding of many dynamics in
nature. To detect directional couplings phase dynamics estimates [1] as well as estimates based
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on the reconstruction of state spaces (e.g. [2]-[4]) have been proposed. Recent applications can
be found in many different scientific disciplines [5]-[10] and moving window techniques are
commonly used to track time-dependent couplings. In particular, in [4] the moving window is
implemented already in the coupling detection statistics. For a wide variety of dynamics in nature,
however, it can be conjectured that short intermittent couplings arise in causal relation to certain
events and that the timescales of these processes are too short to be resolved by moving window
techniques. On the other hand, in many experimental settings signals are measured for multiple
instances of such events. Therefore, multiple realizations of the corresponding transient dynamics
are available. For example, in neuroscience the collection of multivariate signals obtained time-
locked to repeated presentations of identical stimuli is very common. Apart from such external
events imposed on the system, events related to coupling changes can be inherent to the system,
for example epileptic spikes or seismic events, and coupling changes might either be the cause
or the consequence of these events. For such internal events, multiple realizations can readily be
obtained retrospectively by aligning segments of continuous recordings with regard to the events.
In this paper, we show how multiple realizations can be exploited to reliably detect event-related
time-dependent directional couplings.

Consider first a single pair of time series {x;} and {y;} measured from X and Y at discrete
times i = 0, ...n. To determine whether X and Y are coupled, at first delay vectors [11] can be
used to reconstruct the dynamics: x; = (x;, ... Xi—m—1)> ¥i = Vis - - - Yi—m—1)z)- Here, m and ©
denote the embedding dimension and delay time, respectively, for i = 5, ...n with embedding
window 1 = (m — 1)t. Subsequently, some nonlinear interdependence measure [2]-[4] can be
used to detect a directional coupling between X and Y from {x;, y;}i=y . ». A metric measure
was proposed in [3]: the averaged squared distance of x; to all other points in {x;},—, , is

R/(X) = ﬁ Z?:w i |x; — x,|>. Denoting the time indices of the g nearest neighbours of y;
among {y;}i=n,..» by {rishi=1,. .. the Y-conditioned mean-squared Euclidean distance for each

x; is defined by R;(X|Y) = é Zle lx; — x5, 2. Finally, one defines:

HX|Y) = — nl Ri(X) 1
(|)—m;0gm- (D)

The quantity H(Y|X) is defined by reversing the roles of X and Y. In the limit of an infinite
number of data points and nearest neighbours the following relations hold: if X and Y are
independent then both H(X|Y) and H(Y|X) go to zero. If there is a coupling from X to
Y we get H(X|Y) > H(Y|X) > 0, and analogously H(Y|X) > H(X|Y) > O for the other
coupling direction. Hence, the coupling direction can be read from the difference of H(X|Y)
and H(Y|X). For a more thorough discussion see [3, 12, 13]. However, note that for finite
samples certain offsets can occur as we will discuss below in more detail. Furthermore, these
relations hold only for moderately weak couplings resulting in unsynchronized motion. For strong
couplings inducing synchronous motion the information of directionality cannot be properly
derived [1, 3]. The calculation of H, by which we denote the pair H(X|Y) and H(Y|X), from
{xi, y;}i=n,.n assumes X and Y to be stationary. Time-dependent couplings (f) cannot be resolved
because H is obtained from a temporal average. _ _

Consider now an ensemble of pairs of time series {x/} and {y/} (i=0,...n) for k
realizations of an experiment (j = 1,...k). Here, i does not measure absolute time, but
the time elapsed since the start of the respective experiment. Furthermore assume that each
experiment starts with independent initial conditions (x}, y{) and that the time-dependence of
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the coupling between X and Y is the same for all realizations, €' (1) = - - - = £*(¢). Now construct
(n — n+ 1)k conventional pairs of delay vectors {x{ , y{ }f:,:,]: For each i, form embeddings
across realizations by grouping k pairs of delay vectors {x{ , y{ }/=1--k In this way we get
separate embeddings for each time point, and statistics can be calculated in a causal way from
a sequence of such embeddings. In the particular case of H, realization indices take the role

of time indices and correspondingly time averages become ensemble averages: for each x;/
: . il :
determine R{(X|Y) = é S% Jx/ — x7' |2, where /' denotes the realization index of the /th

nearest neighbour of y/ among {y/}/="*. Further, define R}(X) = 1 Zf:“# x] — xi 2,

k J
H(X|Y) = %Zlog’fl%x), 2)
= T RIXIY)

and H;(Y|X) analogously.® Everything stated in the paragraph subsequent to Equation (1) directly
transfers to H;. But H; is a function of time and can be used to estimate time-dependent couplings.
In particular, it relies only on the most recent past namely on information from the preceding
embedding window 7. Note that the number of realizations in an embedding across realizations
cannot be directly compared to the number of time points in an embedding across time. To
construct k delay vectors across realizations, k x m scalar samples of the time series are used.
All k delay vectors are mutually independent, no sample is used twice. Hence, there is no
need to exclude temporally correlated points from the nearest neighbours [14]. In contrast, in
conventional embeddings across time n* delay vectors are based on only n = n* + n — 1 scalar
samples of the time series, except for samples at the time series’ ends, each individual scalar
sample is used m times.

As we shall see below, nonzero values of H (and of H;) can be obtained also for uncoupled
dynamics. Furthermore, changes of H; versus time might not be specific for time-dependent
couplings but might likewise indicate a time-dependence of X and Y themselves. Such potential
biases are no peculiarity of H; but represent a pitfall of many nonlinear measures [15], which
has been successfully addressed by the concept of surrogates [16]. In our setting, a surrogate of
{x/, ¥/} can be generated by permuting the indices j of Y, keeping those of X fixed. Through
this shuffling, the realization-wise pairings of the time series are destroyed whereas the time
series themselves are maintained. Applying the statistics H; to both the original and a set of
such surrogates, each generated using a different random permutation, allows testing the null
hypotheses that X and Y are arbitrary but independent processes. As described below, we here
use these surrogates not primarily to test this null hypotheses but rather for an offset correction.
To test further null hypothesis, e.g. ‘changes of H; versus time are sufficiently explained by
time-dependent linear correlations between X and Y’, standard bivariate surrogates can be used
[16, 17].

We illustrate our approach on coupled Lorenz dynamics [18, 19]. A 4th order Runge—Kutta
routine with step size 0.005 and sampling interval Ar = 0.03 was used to integrate the dynamics

of Xand Y:
u=10(wv —u) + ¥a — u),
X3 0=35 —v—uw, 3)
: 8

w=uv — sw,

3 The code for the calculation for H; is enclosed as Supplementary material.
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a=10b —a) +a(u — a),

Y{b=39a — b — ac, 4)
¢c=ab— %c.
For j =1, ...k realizations the dynamics were integrated starting from k different random

initial conditions. A number of 10° pre-iterations with © = « = 0 were performed to ensure
that at i = O the k different trials were distributed according to the natural invariant measure
of the uncoupled Lorenz dynamics. Subsequently, for each realization, i =0, ...799 steps
were integrated using the time-dependent coupling scheme: ¥ = « = Ofori € A = [0, ...199];
¥ =0,a=¢forbothi € B=[200,...399]andi € D = [500,...799]; and ¢ = &, o = O for
i € C = [400,...499]. The corresponding 800 samples of u and a were used as time series {x/}
and {y/}, respectively (figure 1(a)). If not stated otherwise we used & = 4 and k = 100. Results
are shown for m = 10, t = 2 and g = 1. This represents a reasonable parameter setting with
regard to common guidelines [15] and the problem at hand. Similar results are obtained for
adjacent parameter settings, and we deliberately refrained from any in-sample fine-tuning with
regard to results presented below.

Results for the original dynamics, H;, and the range obtained for 39 surrogates, (H iqlg=1,...39
are shown in figures 1(b) and (d). First of all, note that consistently H; > 0 also for the uncoupled
dynamics during 4. This offset from zero is due to a bias in H when calculated using only very
few nearest neighbours*, and, correspondingly, this offset is found also in the surrogates. Except
for short intermittent excursions, H;(X|Y) and H;(Y|X) are within their respective surrogate
distribution. Hence, for the vast majority of samples in .4, the surrogates successfully ruled out
that nonzero H; values indicate a coupling between X and Y. The number of remaining false
positive null hypotheses rejections can be reduced using a higher number of surrogates. For
the other intervals, we find sustained deviations of H;(X|Y) and H;(Y|X) from the surrogates,
and hence the null hypotheses of X and Y being independent is correctly rejected for most
samples in B, C and D. A determination of the significance of a certain number of rejections
for subsequent samples is nontrivial as they are obtained from subsequent values of the Lorenz
dynamics. Hence, these values are correlated, and the tests are dependent. However, it is not
the aim of this paper to address this issue, but rather we here use the surrogates to perform
the offset correction H; = H; — max{H i.q}- Negative values of H; are set to zero. The resulting
curves H; ;(X1]Y) and HI(Y|X ) are shown in figures 1(c) and (e). During B there is coupling
from X to Y. According to the considerations subsequent to Equation (1), this should result in
AH ;= H (XY) — H ;(Y1X) > 0.Indeed AH ; attains positive values shortly after the coupling
onset and stays positive until shortly after the onset of the opposite coupling direction at the
beginning of C (figure 1(f)). Hence, the coupling from X to Y during B can be determined

4 To understand this bias, consider some symmetric distribution with mean p from which independent random
samples are drawn. For each sample with value A calculate y = log(u/A), and take the average ¥ of y over all
samples. Now perform a notional pairing of the samples such that for each A = p + 8 a corresponding ' = u — §
is chosen. With a large number of samples this pairing can always be done, at least approximately. Then y + ' > 0,
and hence ¥ has a positive offset. Another offset occurs for asymmetric distributions. Both offsets diminish if at
first g individual samples are drawn, and their average is used for A, since this average will always tend to u for
increasing g. These considerations transfer to the calculation of H; from independent dynamics using only very few
versus many nearest neighbours g. As we here calculate H; with g = 1, we get a very strong bias.

New Journal of Physics 8 (2006) 6 (http://www.njp.org/)


http://www.njp.org/

5 Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

< X <K< X< X
amplitude [a.u.]

(0] o (e} o
o o = o o =
o (6)] o o1 = U o (6)] o o1 = O,
. HYIX)  H(YIX) H(XIY)  H(X1Y)

|
| 1
0 200 400 600 i 800

Figure 1. (a) Time series for three exemplary realizations. (b and d) Results for
the original dynamics (thick red lines) and the range for 39 surrogates (thin black
lines). (c and e) Offset corrected results. (f) The difference between the latter. In
all panels, vertical lines correspond to the limits between A and D.

correctly from A H;. Furthermore, negative A H; values during C, and again positive A H; values
during D, correctly indicate the respective coupling direction present in these intervals, again
very shortly after the coupling onset.

To study the influence of different parameters, we define the following ad hoc performance
measures. At first, we determine the sample index i, at which the correct result AH i > 01is
found for the first time in 5. The difference between the beginning of B and iy is denoted by
0. The fractions of samples in 3 for which the correct (AI:I > 0) and wrong (AI:I < 0) result
is found between i and the end of B are denoted by ¥ and v, respectlvely If both H; (X 1Y)
and H;(Y|X) are within the respective surrogate range, H, (X|Y) = H, Y1X) =0; AH; =0,
and the corresponding sample will neither contribute to vz nor to ¥}, hence ¥z + ¥ < 1. The
quantities ¢ p, Ve, p, and Y 1, are calculated in analogy, taking the opposite coupling direction
during C into account. We drop the subscripts when we refer to the entire set of measures.

Before we look at the dependence of § and ¥ on the number of realizations, coupling
strength, and noise level (figure 2), we shall recall that the dynamics are asymmetric with regard
to X and Y. Hence, the impact of a coupling from X to ¥ with o = ¢ will not be the same
as the impact of a coupling from Y to X with the same coupling strength ¢ = €. Furthermore,
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Figure 2. Dependence of § (x), ¥ (m) and {/* (e) on the coupling strength ¢,
number of realizations k, and noise level & calculated for 50 independent sets
of each k realizations. Symbols and error bars correspond to the mean £ 1 S.D.
obtained for these 50 sets.

differences in § can be due to both this asymmetry and the different preceding states (uncoupled
state for B and the opposite coupling direction for C, D). For ¢ also the length of the different
intervals will be of influence. Therefore, we do not average § and i over B, C and D but rather
consider individual values.

A decrease in the number of realizations k must lead to decreased discriminative power of
H;. Starting at § < 10 for k = 100, a detection is still achieved within the first 20 samples down to
k ~ 40for all three intervals (figure 2). Here and in the following we refer to the mean values of the
performance measures. Furthermore, values of k & 50 suffice to yield ¥» > 0.5. Only for smaller
k values, a reliable detection of the coupling direction becomes unfeasible. Distributions of
and ¢* start overlapping, and § values rise strongly. We deliberately truncated the axis of § at 50.
Broad distributions of § with higher mean values are compatible with scattered chance detections
related to the nonzero size of the surrogate test and should not be further interpreted. The fact that
only a few tens of realizations suffice to correctly track the time-dependent directional coupling
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underlines the power of the proposed method. A view to the dependence on the coupling strength
reveals thatdown to ¢ & 2.5 areliable detection of the coupling direction is possible. For very long
time series from stationary dynamics certainly smaller couplings can be detected using statistics
such as H (e.g. [13]). Nonetheless, the sensitivity of H; for weak couplings appears very good. In
analogy to conventional measures of directional coupling [1, 3], the information of directionality
cannot be properly derived from H; for very strong couplings resulting in synchronous motion.
The entire coupling range investigated here corresponds to non-synchronous motion since the
maximal conditional Lyapunov exponent becomes negative only at ¢ &~ 13 and 10 for couplings
from X to Y and Y to X, respectively.’ Finally, we added uncorrelated Gaussian noise to both
signals with amplitudes quantified by the ratio of the variances & = o2, ./ Uszignal' Uptoé& ~ 0.3,
we get ¢ > 0.5 and 6 < 20. Only for higher noise levels i and y* start overlapping. The
performance of H; degrades smoothly with increasing noise levels. We emphasize that one
oscillation of the dynamics corresponds to about 20 samples (figure 1(a)). Hence, for wide
ranges of k, € and &, our approach allows detecting the directional couplings within the first
oscillation after their onset. Such a high temporal resolution could certainly not be obtained by
means of conventional moving window techniques.

Dealing with the same setting addressed here, [20] pooled all delay vectors {x], y/ }l’;lf
(cf [21, 22]) and proposed a specific constraint on the nearest neighbour search. However, in
contrast to our approach, this technique is acausal. For any given time, information from the entire
time series can enter the statistics. In particular, an interference of information from uncoupled
and coupled periods can occur, potentially resulting in false positive and false negative detections
of directional couplings.

In neuroscience, time-resolved averages across realizations are standard in the analysis of
so-called event-related potentials [23]. In this context, phase synchronization measures based on
temporal averages of phase differences have been adapted to estimate phase clustering across
realizations [24]. While, in this respect, these techniques are similar to our approach, they do not
allow determining coupling directions. To determine the direction of the coupling underlying
phase clustering across realizations, an adaptation of the evolution map approach [1] should be
considered. Directional information can be obtained from linear causality measures applied in
a time-resolved manner across realizations [25]. However, linear measures are not in general
sensitive to couplings between nonlinear dynamics.

The application to a Lorenz dynamics illustrated the power of our approach, and we are
confident that H; inherits the wide applicability to various dynamics from H (e.g. [12, 13]).
Furthermore, the surrogate procedure applied here can also account for time-dependent offsets
due to non-stationarities unrelated to time-dependent couplings. In conclusion, our technique
can significantly advance the analysis of event-related time-dependent directional couplings.
Furthermore, note that H; itself is only an example of an application of embeddings across
realizations. Any metric bi- or univariate measure such as mutual information or correlation
dimension [15] can be adapted to serve as time-resolved causal statistics to characterize various
aspects of time-dependent state space structures.® Hence, beyond the particular application
proposed here, our approach is of general applicability.

> Note that we are aware of the discrepancy of the latter zero crossing with results reported in [19].
® Dynamical measures such as (mutual) prediction errors [15], which explicitly analyse the interrelation of
subsequent samples, cannot be used.
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