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Abstract. This paper considers robust estimation of moment condition models with time series data.

Researchers frequently use moment condition models in dynamic econometric analysis. These models

are particularly useful when one wishes to avoid fully parameterizing the dynamics in the data. It is

nevertheless desirable to use an estimation method that is robust against deviations from the model

assumptions. For example, measurement errors can contaminate observations and thereby lead to

such deviations. This is an important issue for time series data: in addition to conventional sources

of mismeasurement, it is known that an inappropriate treatment of seasonality can cause serially

correlated measurement errors. Efficiency is also a critical issue since time series sample sizes are often

limited. This paper addresses these problems. Our estimator has three features: (i) it achieves an

asymptotic optimal robust property, (ii) it treats time series dependence nonparametrically by a data

blocking technique, and (iii) it is asymptotically as efficient as the optimally weighted GMM if indeed

the model assumptions hold. A small scale simulation experiment suggests that our estimator performs

favorably compared to other estimators including GMM, thereby supporting our theoretical findings.

1. Introduction

It is a common practice in empirical economics to estimate a dynamic economic model based

on moment conditions. Moment condition-based estimation is often computationally convenient; the

GMM estimator (Hansen, 1982) is a prime example. It is argued that moment condition models impose

only mild assumptions and thereby enable the researcher to conduct robust analysis, especially when

economic theory provides little guidance for dynamic specifications. Also, GMM is generally regarded

as a robust procedure. The last notion, however, deserves further investigation. Indeed, this paper
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demonstrates that an alternative estimator, which is termed the blockwise minimum Hellinger distance

estimator (the blockwise MHDE), possesses a desirable robust property. The GMM estimator does not

share this property, and our experimental result indicates that the latter can be sensitive to deviations

from the model assumptions.

Let us introduce some notation to formalize our problem concerning robustness. Consider

a measurable space (Ω,F). Throughout this paper we consider a time series of X -valued random

variables, where X ∈ Rd and define X∞ = X ×X × . . .. Let A∞ signify the Borel σ-algebra on X∞. A

measurable function X∞ : Ω→ X∞ determines an infinite sequence X∞(ω) = {Xt(ω)}∞t=−∞ for each

ω ∈ Ω. Let g : X × Θ → Rm be a vector-valued function parameterized by a p-dimensional vector θ

which resides in Θ ⊂ Rp. Let P0 be a probability measure on the complete space of full trajectories

(Ω,F), and suppose a random sequence X∞ is strictly stationary under P0. Moreover, suppose a

moment restriction of the following form holds for P0:

(1.1) EP0 [g(Xt, θ0)] =

∫
g(Xt(ω), θ0)P0(dω) = 0,

at some θ0 ∈ Θ. The goal of the econometrician is to estimate the unknown θ0. Note that the

parameter θ0 is identified by the marginal distribution of Xt only.

The model (1.1) imposes only mild restrictions on P0, both in terms of distributional assump-

tions and dynamic specifications. It is, nevertheless, realistic to assume that the data observed by the

researcher is drawn from a probability measure that is not P0 in the model (1.1), but its perturbed

version, due to, say, measurement errors. Let Q denote such a “perturbed” probability measure. The

econometrician observes data (x1, . . . , xn), n consecutive values in a realization of the random element

X∞ that obeys Q, and calculates an estimator θ̂ = θ̂(x1, . . . , xn). The goal is to obtain an estimator

whose deviation from θ0 (which corresponds to P0) remains stable as far as Q is reasonably close to

P0.

This paper develops a formal theory of robust estimation for moment condition model with

dependent data. There is a vast literature on robust methods in econometrics and statistics. A line

of research that is highly relevant to the current paper is initiated by a seminal paper by Beran

(1977). It considers robust estimation of parametric models with IID data, and shows that the

MHDE has desirable properties. This parametric MHDE is robust in the sense that it is relatively

insensitive to perturbations in the density that generates observations. Moreover, in the absence of

such perturbations it is asymptotically equivalent to the maximum likelihood estimator and therefore

asymptotically efficient, at least to the first order. Thus the MHDE is robust and asymptotically
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efficient at the same time. Further theoretical developments on this finding can be found, for example,

in Donoho and Liu (1988) and Rieder (1994). Kitamura, Otsu and Evdokimov (2013) consider the

moment condition model as presented above, under the assumption that the data is IID. They develop

a robustness theory that deals with the semiparametric nature of the moment condition model, and

show that the MHDE applied to the moment restriction model (the moment restriction MHDE)

possesses an asymptotic minimax optimal robustness property. Also, analogous to Beran’s result

for the parametric MHDE, the moment restriction MHDE remains to be semiparametrically efficient

in the absence of perturbations. Thus the moment restriction MHDE is robust and efficient in a

semiparametric sense.

The present paper extends the above research on robustness to time series data. This is a

practically important problem. For example, in addition to conventional mis-measurements, it has

been pointed out that an inadequate seasonal adjustment yields serially correlated measurement errors

that are very hard to deal with (see, Ashley and Vaughgan, 1986, for example). In spite of this, robust

estimation has been mainly studied in the IID context. Dependent data introduces new challenges into

the analysis. For instance, the study of Kitamura, Otsu and Evdokimov (2013) employs Le Cam-type

results but no such results are known for the case of dependent data, hence a different approach is

needed.

For dependent data, the literature has focused on parametric time series models (Martin and

Yohai, 1986) or location parameter estimation in Gaussian time series with infinite dimensional corre-

lation matrix (Andrews, 1982, 1988). The model considered here is semiparametric as it does not make

distributional assumptions, and it also involves nonparametric treatments of dependence. This pro-

blem poses novel and important theoretical challenges. For example, robustness analysis as developed

by Bickel (1981), Beran (1977, 1984) and Rieder (1994) requires a definition of infinitesimal neighbor-

hoods (of probability measures) against which one wishes to remain robust. This has been considered

extensively in the literature for IID data, though an appropriate its extension to weakly dependent

data is not obvious. Our analysis of optimal robustness also entails intricate technical problems: for

example, an appropriate least favorable distributions is an important building block of our minimax

optimality theory, and obtaining it under dependence and blocking calls for new techniques. Need-

less to say, derivations of asymptotic distributions require appropriate treatments of dependence as

well. The paper addresses these problems.



4 ROBUST ESTIMATION OF MOMENT CONDITION MODELS WITH WEAKLY DEPENDENT DATA

2. The Estimator

As in Andrews (1982) and Kitamura, Otsu and Evdokimov (2013), the notion of MHDE plays

a central role in this paper. The Hellinger distance between two probability measures is defined as

follows:

Definition 2.1. Let P and Q be probability measures on X s := ⊗si=1X with densities p and q with

respect to a dominating measure ν. The Hellinger distance between P and Q is then given by

H(P,Q) :=

{∫
X s

(p1/2 − q1/2)dν

}1/2

=

{
2− 2

∫
X s
p1/2q1/2dν

}1/2

.

One may rewrite the above as

H(P,Q) =

{∫
(dP 1/2 − dQ1/2)2

}1/2

=

{
2− 2

∫
dP 1/2dQ1/2

}1/2

which is convenient as it avoids an explicit use of the dominating measure.1 Note that the above

definition can be used to define the distance between two s-dimensional joint distributions for an

arbitrary s, and the dimensionality s is treated implicitly in the notation.

The Hellinger distance H yields a natural method for estimating θ0 in (1.1). This is straig-

htforward to see, at least when the data is IID. Suppose {Xt}nt=1 is an IID sequence with each Xt

distributed according to a measure µ0 defined on X . Under this extra assumption (1.1) becomes

(2.1)

∫
X
g(x, θ0)dµ0 = 0.

Let µ � µ0 mean a measure µ is absolutely continuous with respect to µ0. Consider the following

population problem:

v(θ) := min
µ�µ0

H(µ, µ0) s.t.

∫
g(x, θ)dµ = 0,

∫
dµ = 1.

An application of convex duality yields

v(θ) = max
γ∈Rm

−
∫

1

1 + γ′g(x, θ)
dµ0

(see, for example, Kitamura (2007) for details). But if θ0 is identified in (2.1), minimizing v(θ) over

θ ∈ Θ leads to θ0 = arg minθ∈Θ v(θ). In sum,

θ0 = arg min
θ∈Θ

max
γ∈Rm

−
∫

1

1 + γ′g(x, θ)
dµ0.

1Note that the Hellinger distance does not depend on the choice of the dominating measure (see e.g., Pollard, 2002,

p. 61).
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Form a natural sample analogue, we define

θ̂ = arg min
θ∈Θ

max
γ∈Rm

− 1

n

n∑
t=1

1

1 + γ′g(Xt, θ)
.

This is the moment restriction MHDE for the IID setting. If the data is dependent, however, it is less

efficient than the optimally weighted GMM when the model assumption holds for the data. A way

to deal with this issue fully nonparametrically is data blocking (see Kitamura, 1997, and Kitamura

and Stutzer, 1997, for applications of data blocking in empirical likelihood type estimators). Consider

data blocks {Bj}nBj=1 of length M , where Bj = (X(j−1)L+1, . . . , X(j−1)L+M ), nB = b(n−M)/Lc + 1,

and b·c denotes the integer part of ·. The positive integer L ≤ M is the distance between starting

points of blocks. Define the “smoothed moment function” φ(Bj , θ) = M−1/2
∑M

l=1 g(X(j−1)L+l, θ),

j = 1, . . . , nB. In addition, by using the Dirac measure δ, define the empirical measure P
(M)
n on the

blocks as

P (M)
n =

1

nB

nB∑
j=1

δ(X(j−1)L+1,...,X(j−1)L+M ).

Applying the moment restriction MHDE to the smoothed moment functions, one obtains

(2.2) θ̂H = arg min
θ∈Θ

max
γ∈Rm

−
∫

1

1 + γ′φ(b, θ)
dP (M)

n = arg min
θ∈Θ

max
γ∈Rm

− 1

nB

nB∑
j=1

1

1 + γ′φ(Bj , θ)
.

This will be called the blockwise MHDE in this paper. Note that it can be seen as a mapping of

the empirical probability measure on blocks of length M to the parameter space, i.e. θ̂H = T (P
(M)
n ),

where T (·) is defined by (2.2). This estimator enjoys a nice asymptotic efficiency property if the

model assumption holds for the observations, in the sense that the data obeys the law P0 satisfying

(1.1). In this ideal scenario it is easy to show that
√
n(θ̂H − θ0)

d→ N(0,Σ−1), where Σ = G′V −1G,

G = EP0 [∂g(Xt, θ0)/∂θ′], and V =
∑∞

j=−∞EP0 [g(Xt, θ0)g(Xt−j , θ0)′] under mild regularity conditions.

The blockwise MHDE is therefore as efficient as the optimally weighted GMM in the absence of data

perturbation. The subsequent sections show that it has desirable robustness properties as well. The

blockwise MHDE is, therefore, robust and efficient under weak dependence.

In contrast to the MHDE in Kitamura, Otsu and Evdokimov (2013) for the IID data, the

blockwise MHDE requires to choose a smoothing constant, the block length M . We note that this

smoothing is introduced to recover the asymptotic efficiency under the ideal measure P0, and is

analogous to smoothing for the optimal GMM weight under dependent data. Therefore, this smoothing

is different from the one for density estimation in Beran’s (1977) parametric MHDE. For the choice

of M , we can apply the conventional selection methods for the heteroskedasticity autocorrelation
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consistent (HAC) covariance matrix estimator (e.g., Andrews, 1991, and Newey and West, 1994).

Although it is beyond the scope of this paper, another interesting direction is to extend our MSE

result in Theorem (3.2) below to accommodate the higher order term so that the optimal M can be

chosen to minimize the worst MSE over local neighborhoods around P0.

To implement the blockwise MHDE (2.2), we can apply the nested optimization method as in

computation of the empirical likelihood estimator (Chapter 12 of Owen, 2001, and Kitamura, 2007).

In particular, we prepare a subroutine for the inner loop optimization to evaluate the profile objective

function `H(θ) = maxγ∈Rm − 1
nB

∑nB
j=1

1
1+γ′φ(Bj ,θ)

for each θ. Note that this inner loop optimization is

with respect to γ, where the Jacobian and Hessian are

1

nB

nB∑
j=1

φ(Bj , θ)

{1 + γ′φ(Bj , θ)}2
and − 2

nB

nB∑
j=1

φ(Bj , θ)φ(Bj , θ)
′

{1 + γ′φ(Bj , θ)}3
,

respectively. Thus, Newton type methods typically work. Then the blockwise MHDE can be computed

by the outer loop optimization, i.e., minimization of the profile objective function `H(θ) for θ.

3. Main Results

The focus of this paper is estimation of the parameter θ when the data are generated by a

locally perturbed version of the probability measure P0 that satisfies the model (1.1). In particular,

we seek for an estimator that has small asymptotic MSE as far as the probability law of the data stays

within a shrinking neighborhood of P0. Since we study dependent data, an appropriate definition of

local neighborhoods needs to take dependence into account.

To motivate our choice of neighborhood, consider the so-called α-divergence family for proba-

bility measures P and Q on the s-fold product space X s with densities p and q with respect to a

dominating measure ν:

Iα(P,Q) =
1

α(1− α)

∫ (
1−

(
p

q

)α)
qdν,

for α ∈ R. The cases of α = 0, 1 are defined by taking the limits using L’Hospital’s rule: I1 and I0

correspond to the well-known Kullback-Leibler (KL) divergence measure from P to Q and Q to P ,

respectively.2 The α-divergence includes the Hellinger distance as a special case, in the sense that

H2(P,Q) = I1/2(P,Q)/2.

Define the corresponding Iα-divergence balls around a probability measure P with radius δ > 0:

Bα(P, δ) = {Q :
√
Iα(Q,P ) ≤ δ}.

2If P is not absolutely continuous respect to Q, then
∫
I{p > 0, q = 0}dν > 0, and as a consequence Iα(P,Q) = ∞

for α ≥ 1. A similar argument shows that Iα(P,Q) =∞ if Q is not absolutely continuous respect to P and α ≤ 0.
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Kitamura, Otsu and Evdokimov (2013, Lemma 2.1) implies that

(3.1) ∪α∈[1/2−L,1/2+U ]BIα(P, δ) ⊂ BI1/2(P,
√

2C(L,U)δ),

for any constants L > 0, U > 0, and C(L,U) := (1/2 + max{L,U})−1. Therefore, any Iα-based

neighborhood for α ∈ [1/2 − L, 1/2 + U ] is covered by the Hellinger neighborhood BI1/2 with a

larger radius 2
√
C(L,U). From the inclusion relationship (3.1), the Hellinger neighborhood BI1/2 is

large enough to cover other neighborhood systems based on Iα with α ∈ [1/2 − L, 1/2 + U ] for

an appropriately large radius. On the other hand, the relation (3.1) does not hold if the Hellinger

distance I1/2 on the right hand side is replaced by other divergences Iα with α 6= 1/2. This shows a

distinguishing feature of the Hellinger distance in the α-divergence family.

Since the goal of robust estimation is to guard against a large set of perturbations, the above

motivates using Hellinger distance for constructing neighborhoods. However, the above result only

applies to distributions of random vectors. It is not clear how to extend the notion of α-divergence

or Hellinger distance to stochastic processes. Yet, the neighborhoods we consider need to capture not

only the potential perturbations of the marginal distribution of Xt, but also the perturbations of the

dependence structure of the time series. To take into account the dependence aspects of the stochastic

process {Xt} we consider the Hellinger distance on expanding blocks.

Let us introduce some additional notation. For a probability measure P defined on (Ω,F),

let the notation P (k,t) signify the d × k-dimensional marginal distribution of (Xt(ω), . . . , Xt+k−1(ω))

under P . If the process X∞ that obeys P is strictly stationary, P (k,t) does not depend on t, and

the notation P (k) is used to denote it. The following definition of neighborhoods is suitable for the

development of our robustness theory for weakly dependent data (recall that P0 is assumed to be

strictly stationary).

Definition 3.1. For any r > 0 and n ∈ N, let Bn(r) be the set of all probability measures Q that

satisfy the following three conditions:

(i): H(Q(1,t), P
(1)
0 ) ≤ r/

√
n for each t,

(ii): for any pair of integers (t, t′) with |t − t′| ≤ M , the bivariate marginals of (Xt(ω), Xt′(ω))

implied from Q and P0 have the Hellinger distance less than an with an → 0,

(iii): a process X∞ that obeys Q is strong mixing with α-mixing coefficients α(k) satisfying∑∞
k=1 α(k)1−2/η <∞ for η > 2 defined in Assumption 3.1 (v) below;

(iv): for each t, EQ[supθ∈Θ |g(Xt, θ)|η] <∞ for η > 2 defined in Assumption 3.1 (v) below.
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Let M → ∞ be such that M/n → 0 as n → ∞. Sequences of local neighborhoods of the

form Bn(r) are used throughout our theoretical analysis in this section. We consider the effect of

perturbations of P0 within Bn(r), that is, we analyze the maximum MSE of estimators when the

probability law Q of the data varies within Bn(r). Note that the true parameter θ0 and the true

probability measure P0 do not depend on the sample size.

The neighborhood Bn(r) shrinks as n increases because we assume that M/n→ 0 as n→∞.

Its local nature has the effect of balancing the stochastic orders of the bias and standard error of an

estimator, thereby allowing comparison of estimators according to their MSE.

In the above setup, the distance between probability laws is defined by the Hellinger dis-

tance between the M -dimensional marginal distributions of the probability laws, where M grows

with the sample size n. An increase in the block length M is “balanced” by the factor M in the

radius of the neighborhood Bn(r). Since the block length M is growing with n, the distance measure

H(Q(M,t), P
(M)
0 ) in (i) incorporates further information about the dependence in the process as n

increases.

Note that we do not assume the perturbed measure Q to be stationary. Therefore, the finite

dimensional distributions on different blocks may differ (although we will impose that the process X∞

under P0 is strictly stationary; see Assumption 3.1). Condition (ii) imposes a mixing condition on Q.

This does not seem to follow directly from (i) and Assumption 3.1 (i), which is a mixing condition on

P0.

The local neighborhood system {Bn(r)}n∈N introduced above has some connections with other

definitions of neighborhood systems used in the robust estimation literature. Beran (1977, 1978, 1980)

investigates robust estimation of parametric models in cross-sectional settings using the “standard”

definition of Hellinger neighborhood. Suppose the statistical model is given by {Pθ}θ∈Θ where Θ is

a finite dimensional parameter space. Beran considers estimation of θ0 ∈ Θ from a random sample

drawn from a probability measure Q that satisfies H(Q,Pθ0) ≤ r/
√
n for all n. Beran (1982) considers

a similar problem with i.n.i.d. data, by introducing a definition of contamination neighborhood

appropriate for nonidentical distributions. Kitamura, Otsu and Evdokimov (2013) consider robust

estimation when data are IID draws from a perturbed probability law of a semiparametric model,

using a Hellinger-based neighborhood system as used in Beran (1977, 1978, 1980). Andrews (1988), in

a weak dependence setting, considers estimation of location parameter with data being perturbations

of a Gaussian stochastic process. Due to his interest in location parameter Andrews only assumes that

marginal distribution of the stochastic process lie in a neighborhood shrinking at the
√
n rate and
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imposes weak restrictions on the perturbations of the dependence structure of the process. The current

paper differs from Andrews (1988) as it considers general moment condition models. Moreover, this

paper seeks robustness within neighborhoods defined for joint distributions of stochastic processes

over time by considering M -dimensional distribution with M → ∞, in contrast to neighborhoods

defined by (one-period) marginals in Andrews (1988).

One may also be interested in considering distances that result in even larger neighborhoods

than the Hellinger distance allows, such as Kolmogorov-Smirnov distance. However, an estimator that

is robust to such a wide variety of perturbations will be less efficient than the GMM estimator when

the data does not contain perturbations. In contrast, blockwise MHDE estimator of this paper is

asymptotically as efficient as the optimally weighted GMM when the model assumptions hold. Thus,

blockwise MHDE possesses an optimal robustness property without sacrificing efficiency.

Let τ : Θ→ R be a possibly nonlinear transformation of the parameter. One may, for example,

choose τ(θ) = c′θ for a constant vector c. We study the estimation problem of the transformed

parameter τ(θ0), as in Rieder (1994). Transforming the vector valued θ to a scalar τ(θ) is convenient

in calculating MSE’s in our main theorem, which compares the asymptotic MSE of the blockwise

MHDE with that of alternative estimators.

We impose the following assumptions.

Assumption 3.1. The following conditions hold:

(i): The process X∞ under the probability measure P0 is strictly stationary and α-mixing with

the α-mixing coefficients α(k) satisfying
∑∞

k=1 α(k)1−2/η <∞, where η is defined in (v) below;

(ii): Θ ⊂ Rp is compact;

(iii): θ0 ∈ int(Θ) is a unique solution to EP0 [g(Xt, θ)] = 0;

(iv): for each θ ∈ Θ, g(x, θ) is continuous for all x ∈ X ;

(v): EP0 [supθ∈Θ |g(Xt, θ)|η] <∞ for some η > 2, g(x, θ) is continuously differentiable a.s. in an

open neighborhood U around θ0, EP0 [supθ∈U |g(Xt, θ)|4] < ∞, EP0 [supθ∈U |∂g(Xt, θ)/∂θ
′|η] <

∞, and supx∈Xn,θ∈U |∂g(x, θ)/∂θ′| ≤ o(n1/2), where Xn is defined in the Appendix;

(vi): G has the full column rank and V is positive definite;

(vii): M is implicitly assumed to depend on n, and satisfies M = O(nα) for 0 < α < η2−2η
2(η2−1)

;

(viii): τ is continuously differentiable at θ0.

Assumption 3.1 (i)-(vi) are standard in the literature of the GMM. Assumption (i) is a regu-

larity condition needed to guarantee that a Central Limit Theorem holds. Assumption 3.1 (iii) is a
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global identification condition of the true parameter θ0. Assumption 3.1 (v) contains the smoothness

and boundedness conditions for the moment function and its derivatives. This is stronger than the

assumptions needed to derive the standard asymptotic normality result without data perturbation.

Assumption 3.1 (vi) is a local identification condition for θ0. This assumption guarantees that the

asymptotic variance matrix Σ−1 is well defined. Assumption 3.1 (iv) is imposed to guarantee the

continuity of the truncated MHDE mapping of block-measures Q(M) to Θ that are used in the proof

of main results; see Appendix for the details. Assumption 3.1 (vii) restricts the rate of growth of block

length with the sample size. This restriction allows introduction of a trimming sequence mn, which

plays an important role in the theoretical arguments.3 Assumption (vii) is only a sufficient condition;

we give a more general, but more complicated condition in the Appendix. Assumption 3.1 (viii) is a

standard requirement for the parameter transformation τ .

In addition we need some regularity conditions on the alternative estimators Ta(X1, . . . , Xn).

We assume that an estimator Ta satisfies the following property:

Assumption 3.2. There exists a sequence of functions ϕn : X → Rp such that for every r > 0,

ξ ∈ Rp, and sequence {Qn}n∈N satisfying

Qn ∈ Bn(r) ∩ {P : EP [g(Xt, θ0 + n−1/2ξ)] = 0 for all t},

the following holds

(3.2)
√
n{Ta(X1, . . . , Xn)− θ0} − ξ −

1√
n

n∑
t=1

ϕn(Xt)
p→ 0, under Qn,

where EQn [n−1/2
∑n

t=1 ϕn(Xt)] → 0 for all t, and EQn [n−1
∑n

t=1

∑n
τ=1 ϕn(Xt)ϕn(Xτ )′] converges to

a positive definite matrix Aϕϕ′ such that Aϕϕ′ − Σ−1 is positive semidefinite.

The above assumption is an asymptotic linearity condition, and satisfied by standard estima-

tors. The condition Aϕϕ′ ≥ Σ−1 is reasonable and holds for the optimal GMM/CUE and appropriate

blockwise versions of GEL estimators.

The next assumption is only used to derive the minmax bound. It is not needed to show the

properties of the blockwise MHDE estimator θ̂H .

Assumption 3.3. (i) All components of Xt are continuously distributed; (ii) η > 4.

3However, no trimming is needed for the estimation procedure.
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Assumption 3.3 is restrictive and is used to construct appropriate least favorable distributions,

which are important building blocks of our minimax optimality theory. These constructions turn out

to be more complicated in the case of weakly dependent data than in the case of IID data. Assumption

3.3 (i) allows to use an integral transform in a part of the proof. It may be possible to relax this

condition at the expense of extra complexity in the proofs. Assumption 3.3 (ii) is strong. Section

6.1 of Appendix introduces a trimming sequence mn → ∞ and trimmed moment condition function

φn(b, θ) such that |φn(b, θ)| ≤ mn for all b. On the one hand, the trimming sequence should diverge

fast enough, so that |EP0 [φn(B, θ0)]| = o(
√
M/n), i.e. the moment condition based on the φn(B, θ)

is close enough to the original moment condition (1.1). On the other hand, the behavior of φn(B, θ)

should not be driven by the tail events, so mn should not grow too fast. To guarantee the compatibility

of these two requirements we impose the condition that supθ∈Θ |g(Xt, θ)| has more than four moments

bounded (under P0). Note that no trimming is necessary if moment condition function is bounded.

Our main result is the following optimal MSE property of the blockwise MHDE estimator.

Theorem 3.2. Suppose that Assumption 3.1 holds. Define B∗ =
(
∂τ(θ0)
∂θ

)′
Σ−1

(
∂τ(θ0)
∂θ

)
. Then the

following holds for each r > 0:

(i): If an alternative estimator Ta satisfies the regularity Assumption 3.2 and Assumption 3.3

holds, then

lim
κ→∞

lim inf
n→∞

sup
Q∈Bn(r)

∫
κ ∧ n{τ ◦ Ta(x1, . . . , xn)− τ(θ0)}2dQ ≥ (1 + 4r2)B∗.

(ii): The blockwise MHDE estimator θ̂H = T (P
(M)
n ) satisfies

lim
κ→∞

lim
n→∞

sup
Q∈Bn(r)

∫
κ ∧ n{τ(θ̂H)− τ(θ0)}2dQ = (1 + 4r2)B∗.

This theorem compares the asymptotic MSE of the blockwise MHDE T (P
(M)
n ) = θ̂H with that of an

alternative estimator Ta = Ta(x1, . . . , xn). In particular, the theorem compares the maximum values

of their MSEs as the probability of law of data varies over Bn(r).

Part (i) of the theorem derives the minmax bound for the (truncated) Mean Squared Error

(MSE) of any estimator satisfying (3.2). Part (ii) of the theorem shows that the bound of part (i)

is actually tight and that blockwise MHDE estimator attains it. Since Σ is positive definite from

Assumption 3.1 (vi), the lower bound (1 + 4r2)B∗ is positive and finite.
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Parameter κ guarantees that the loss function is bounded, i.e. the theorem takes truncated

MSE as a loss function. Without an upper bound the MSE may be infinite, prohibiting any mea-

ningful comparison. This use of asymptotic truncation scheme is standard in the literature of robust

estimation. That κ→∞ in the limit theory allows the truncation parameter to be arbitrarily large.

The theorem does not require stationarity of the perturbed measure Qn. Only the true me-

asure P0 is assumed to be stationary. Measure Qn may, for example, be nonstationary if the data

contains seasonal measurement error. Alternatively, for data covering large time periods it is possible

that the measurement of the first observations is different from the measurement error in the last

observations, for instance, one may think that the variance of measurement error decreases with time

due to improvements in accounting techniques.

It is important to note that the theorem concerns estimation of the true value θ0, not of a

pseudo-true value under global misspecification. It therefore differs from the results in White (1982),

Kitamura (1998), Kitamura (2002), and Schennach (2007). Also, Dahlhaus and Wefelmeyer (1996)

studied efficient estimation of the pseudo-true values of globally misspecified parametric time series

models.

The proof of Theorem 3.2 consists of the following steps. We first obtain the maximum bias

of τ ◦ Ta over the neighborhoods Bn(r). Second, we use this maximum bias to calculate the lower

bound for maximum MSE over Bn(r). Then, we introduce trimmed blockwise MHDE T̄ (·) and show

that it achieves the lower bounds of bias and MSE on Bn(r) derived earlier. Finally, we show that

the difference between MSE of trimmed estimator T̄ (P
(M)
n ) and MSE of blockwise MHDE T (P

(M)
n ) is

negligible and hence blockwise MHDE T (P
(M)
n ) achieves the lower bound.

In this paper, we focus on robustness of point estimation methods under moment conditions.

It is natural to expect that analogous optimal robustness analysis can be done for hypothesis testing

problems. For parametric models, the issue of optimal robust testing under local deviations from

the model assumption was investigated by Rieder (1978) and Beran (1981). For moment condition

models with IID data, Kitamura and Otsu (2010) demonstrated that the Wald type test based on the

MHDE (without blocking) possesses desirable optimal robustness properties for testing the parameter

hypothesis H0 : τ(θ0) = 0. First, Kitamura and Otsu (2010) showed that in certain ‘regular’ class

of tests (which include the conventional GMM-based Wald, likelihood ratio, and score tests), the

MHDE Wald test using the asymptotic chi-squared critical value has the smallest size distortion

under local perturbations. For the IID case, this result is derived by applying the minimax optimal

bias property of the MHDE (Kitamura, Otsu and Evdokimov, 2013, Theorem 3.1) to the context
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of hypothesis testing. For the time series case, we establish an analogous bias optimality of the

blockwise MHDE in Lemma A.3. Therefore, although formal investigation is beyond the scope of this

paper, a similar argument to Kitamura and Otsu (2010) will guarantee that the Wald test by using

blockwise MHDE Wald test minimizes the worst size distortion under local perturbations over Bn(r).

Second, for the IID data, Kitamura and Otsu (2010) also provided a Neyman-Pearson type power

optimality result, i.e., under certain restriction on the size property, the MHDE Wald test minimizes

the worst type II error probability over a locally perturbed set of measures around the conventional

local alternative hypotheses. For the IID case, this result is established by applying the minimax

bias and risk robustness properties of the MHDE (Kitamura, Otsu and Evdokimov, 2013, Theorems

3.1, and 3.3). In addition to the bias robustness in Lemma A.3, the risk robustness of the blockwise

MHDE can be obtained by applying Lemma B.10. Thus, we can expect that the Neyman-Pearson

type power optimality may be also established for the Wald blockwise MHDE for the time series case.

4. Monte-Carlo Experiments

4.1. Experiment 1. Our Monte-Carlo experiments are based on the nonlinear moment condition

model considered by Hall and Horowitz (1996). The data are a bivariate trajectory of the stochastic

process {Xt, Zt}nt=1, where

Xt =
1

1− α2

∞∑
j=0

αjuxt−j , Zt =
1

1− α2

∞∑
j=0

αjuzt−j ,(4.1)

(uxt , u
z
t )
′ ∼ i.i.d. N(0, 0.42(1− α2)−1I2),(4.2)

where I2 denotes the 2 × 2 identity matrix. Thus, Xt and Zt are independent AR(1) processes with

autocorrelation α = 0.75 (the initial values are taken to be (ux0 , u
z
0)′ ∼ N(0, 0.42I2)). Define

g(x, z, θ) = [exp{−0.72− θ(x+ z) + 3z} − 1](1, z)′,

then the moment restriction E[g(Xt, Zt, θ0)] = 0 identifies θ0 = 3.

Our first Monte-Carlo experiment considers how various estimators perform in the presence

of infrequent but relatively large measurement error. Here I2 denotes the 2 × 2 identity matrix. We

assume that the true data generating process is (4.1), however econometrician only observes (X̃t, Z̃t),

where

(X̃t, Z̃t) =

(Xt, Zt) with probability 0.95,

(Xt, Zt) + c · ξt with probability 0.05.
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Where ξt is a 1×2 random vector of independent zero mean components, which may be interpreted as

measurement error. We are going to compare the results of estimation using the two-step generalized

method of moments (GMM) of Hansen (1982), the continuous updating GMM (CUE) of Hansen,

Heaton and Yaron (1996) with optimal weighting, the blockwise empirical likelihood estimator (EL)

of Kitamura (1997) (which is a blockwise version of the EL estimator as in Qin and Lawless (1994),

Imbens, Spady and Johnson (1998), and Owen (2001)), the time-smoothed exponential tilting estima-

tor (ET) of Kitamura and Stutzer (1997), and the blockwise minimum Hellinger distance estimator

(MHDE) of equation (2.2). The results are based on 10000 replications for each specification. Each

estimator is is obtained by minimizing its criterion function on a fine grid over Θ = [0, 10]. As discus-

sed earlier, EL, MHDE, and ET use block moment conditions, with fully overlapping blocks of length

M . Correspondingly, for GMM and CUE estimators the weighting matrix is taken to be the inverse

of HAC covariance matrix of Newey and West (1987) with Bartlett kernel and M − 1 lags. In the

experiments with n = 100 observations M = 5 and M = 10 are considered. When n = 400, block

lengths M = 10 and M = 20 are considered. The results are presented in Tables 1 and 2.

The data generating process corresponding to the first row of Table 1 has c = 0 and represents

the true model (4.1). For each scenario we report the Root Mean Squared Error (RMSE) and the

probabilities Pr{|θ̂ − θ0| > 1.0} (Pr{|θ̂ − θ0| > 0.5} in Table 2) for each estimator. Confirming the

theoretical findings of Newey and Smith (2004) and Kitamura and Otsu (2005) EL is superior on the

basis of both criteria. At the same time the Minimum Hellinger Distance estimator is only marginally

inferior to Empirical Likelihood estimator. We find that in a wide range of circumstances the finite

sample criterion function of MHDE is very close to the criterion function of the EL. ET is inferior

to both EL and MHDE, although only marginally. Two-step GMM is less efficient than the EL and

MHDE, especially with the larger sample. The results of the Continuous Updating GMM estimator

are inferior to all other methods. Even with a restricted parameter space Θ we find that finite sample

criterion function of CUE frequently has global minimum on the boundaries of Θ. Such behavior of

CUE in estimation of nonlinear models was noticed earlier by Hansen, Heaton, and Yaron (1996, see

p.272, Figure 5)?.

In the presence of measurement error EL, MHDE, and ET still outperform GMM and CUE,

often by a wide margin. When measurement error is small EL may still outperform MHDE and

ET thanks to its higher order properties. When measurement errors become large none of the three

methods seems to dominate the other. Note that Theorem 3.2 does not imply that MHDE should be

optimal in all situations, but it rather shows its minimax property in terms of asymptotic MSE.
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The column labeled “%f” is concerned with a computation issue of EL, MHDE, and ET. In

finite samples, it is possible that there exists no value of θ such that the zero vector is contained in

the convex hull of vectors {φ(bj , θ)}nBj=1. This is a situation where observations are providing strong

evidence against the validity of the moment condition model (1.1). EL, MHDE, and ET are not

well-defined in this case. The simulation experiment discards such replications in calculations of the

summary statistics. Column “%f” of Tables 1 and 2 reports the percentage of such replications. As

can be seen from Table 1, such cases are very rare in most cases, though become more likely for larger

c, especially in the case of the −χ2
1 measurement errors.

4.2. Experiment 2. The independent measurement error model of the previous subsection may be

somewhat restrictive, since in practice measurement errors could be correlated with the original data.

To explore this and other forms of deviations from the model assumptions, the following experiment

studies the effects of a family of local perturbations of the data generating process (4.1)-(4.2).

Note that the joint distributionQ(M) of the data blockB = (X1, . . . , XM , Z1, . . . , ZM )′ of length

M is fully determined by the bivariate distribution of the disturbances (uxt , u
z
t )
′. The model (4.1)-

(4.2) assumes that vector (uxt , u
z
t )
′ has normal distribution with zero means and covariance matrix

Σ0 = 0.42(1 − α2)−1I2, i.e. (uxt , u
z
t )
′ has independent components with equal variance. Following

the notation introduced in Section 3, let P
(M)
0 denote the distribution of B under (4.1)-(4.2). To

investigate the performance of the estimators we would like to consider various small perturbations of

this probabilistic model. One way to build a family of such perturbations is to allow the components

of the random vector (uxt , u
z
t )
′ to have unequal variances and to be correlated, i.e. to have bivariate

normal distribution with the covariance matrix

Σ(δ,ρ) =
0.42

1− α2

 (1 + δ)2 ρ(1 + δ)

ρ(1 + δ) 1

 ,

which is a perturbation of the matrix Σ0 when δ and ρ are small. The form of covariance ma-

trix is chosen so that V (Xt)/V (Zt) = V (uxt )/V (uzt ) = (1 + δ)2 and the correlation Corr(Xt, Zt) =

Corr(uxt , u
z
t ) = ρ. Note that Σ(0,0) = Σ0.

Each pair of parameters (δ, ρ) corresponds to a probability distribution on the block B; we

denote this distribution by P
(M)
(δ,ρ). Note that P

(M)
(0,0) = P

(M)
0 and hence measure P

(M)
(δ,ρ) can be seen as a

perturbed version of the measure P
(M)
0 .

The idea here is to investigate finite sample properties of the estimators as the data distribution

P
(M)
(δ,ρ) varies around the measure P

(M)
0 keeping at an approximately constant distance from it. One
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RMSE Pr{|θ̂ − θ0| > 1.0}

c ξtj EL MHDE ET GMM CUE EL MHDE ET GMM CUE %f

n = 100, M = 5

0 0.745 0.884 1.063 0.933 3.338 0.114 0.125 0.140 0.208 0.359 0.01

0.5 N 0.695 0.797 0.964 0.879 3.094 0.103 0.112 0.126 0.188 0.323 0.00

1 N 0.695 0.763 0.879 0.966 2.838 0.109 0.117 0.126 0.257 0.305 0.00

2 N 0.936 0.923 0.949 1.434 2.465 0.316 0.275 0.260 0.594 0.411 0.25

0.5 χ2
1 0.742 0.889 1.056 0.911 3.266 0.109 0.121 0.135 0.204 0.345 0.00

1 χ2
1 0.637 0.731 0.879 0.834 3.027 0.082 0.091 0.103 0.162 0.298 0.00

2 χ2
1 0.614 0.650 0.719 0.871 2.829 0.076 0.080 0.087 0.214 0.275 0.00

0.5 −χ2
1 0.735 0.860 0.991 0.944 3.098 0.119 0.132 0.144 0.227 0.331 0.00

1 −χ2
1 0.788 0.847 0.960 1.161 2.826 0.173 0.170 0.174 0.363 0.347 0.30

2 −χ2
1 1.011 0.990 1.041 1.497 2.580 0.290 0.247 0.241 0.527 0.390 2.27

0.5 t3 0.735 0.851 1.007 0.931 3.164 0.114 0.123 0.137 0.211 0.339 0.01

1 t3 0.717 0.794 0.911 0.996 2.897 0.122 0.126 0.132 0.252 0.310 0.18

2 t3 0.872 0.878 0.940 1.299 2.568 0.228 0.203 0.198 0.457 0.348 0.68

n = 100, M = 10

0 0.833 0.993 1.139 0.917 3.111 0.124 0.134 0.148 0.201 0.340 0.19

0.5 N 0.738 0.869 1.014 0.862 2.906 0.110 0.121 0.132 0.181 0.308 0.13

1 N 0.729 0.822 0.918 0.961 2.677 0.118 0.128 0.136 0.260 0.293 0.06

2 N 0.957 0.961 0.992 1.443 2.378 0.320 0.282 0.271 0.597 0.408 0.29

0.5 χ2
1 0.815 0.969 1.110 0.885 3.077 0.122 0.132 0.143 0.195 0.328 0.14

1 χ2
1 0.686 0.804 0.938 0.817 2.800 0.090 0.102 0.114 0.156 0.277 0.04

2 χ2
1 0.635 0.676 0.742 0.878 2.667 0.080 0.087 0.094 0.223 0.259 0.02

0.5 −χ2
1 0.799 0.943 1.070 0.934 2.911 0.131 0.140 0.152 0.225 0.319 0.08

1 −χ2
1 0.823 0.900 0.996 1.153 2.675 0.182 0.183 0.188 0.363 0.337 0.39

2 −χ2
1 1.047 1.014 1.069 1.497 2.458 0.305 0.258 0.250 0.525 0.388 2.29

0.5 t3 0.808 0.931 1.053 0.907 2.979 0.124 0.134 0.146 0.200 0.323 0.09

1 t3 0.776 0.864 0.973 0.989 2.714 0.130 0.135 0.143 0.251 0.297 0.29

2 t3 0.898 0.922 0.969 1.298 2.429 0.236 0.212 0.210 0.457 0.340 0.77

Table 1. In the second column (ξtj) N , χ2
1, −χ2

1, and t3 denote, respectively,

N(0, 1),(χ2
1 − 1)/

√
2,−(χ2

1 − 1)/
√

2, and Student-t3/
√

3 distributions of ξtj .
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RMSE Pr{|θ̂ − θ0| > 0.5}

c ξtj EL MHDE ET GMM CUE EL MHDE ET GMM CUE %f

n = 400, M = 10

0 0.292 0.294 0.309 0.409 2.668 0.082 0.084 0.089 0.111 0.229 0.00

0.5 N 0.282 0.286 0.296 0.400 2.679 0.074 0.075 0.078 0.104 0.222 0.00

1 N 0.281 0.281 0.290 0.383 2.452 0.070 0.071 0.074 0.103 0.203 0.00

2 N 0.473 0.455 0.444 0.678 2.609 0.305 0.276 0.263 0.486 0.409 0.00

0.5 χ2
1 0.284 0.286 0.293 0.397 2.662 0.076 0.078 0.082 0.105 0.223 0.00

1 χ2
1 0.278 0.279 0.284 0.377 2.586 0.067 0.069 0.072 0.092 0.206 0.00

2 χ2
1 0.268 0.269 0.274 0.339 2.422 0.058 0.058 0.059 0.087 0.182 0.00

0.5 −χ2
1 0.290 0.292 0.298 0.412 2.618 0.083 0.084 0.086 0.117 0.227 0.00

1 −χ2
1 0.367 0.358 0.358 0.589 2.371 0.142 0.133 0.133 0.255 0.264 0.01

2 −χ2
1 0.713 0.643 0.612 1.167 2.213 0.432 0.365 0.337 0.656 0.481 0.58

0.5 t3 0.286 0.287 0.294 0.407 2.677 0.078 0.079 0.081 0.110 0.225 0.01

1 t3 0.317 0.312 0.315 0.476 2.418 0.095 0.092 0.092 0.148 0.219 0.05

2 t3 0.494 0.461 0.447 0.800 2.297 0.237 0.210 0.198 0.403 0.329 0.42

n = 400, M = 20

0 0.300 0.310 0.317 0.401 2.533 0.088 0.091 0.094 0.111 0.218 0.00

0.5 N 0.290 0.294 0.305 0.384 2.545 0.079 0.081 0.084 0.101 0.212 0.00

1 N 0.285 0.291 0.297 0.374 2.326 0.074 0.075 0.077 0.105 0.194 0.00

2 N 0.473 0.455 0.448 0.693 2.527 0.302 0.278 0.265 0.501 0.404 0.00

0.5 χ2
1 0.292 0.296 0.303 0.385 2.544 0.083 0.085 0.087 0.103 0.216 0.00

1 χ2
1 0.285 0.287 0.292 0.363 2.465 0.076 0.076 0.078 0.093 0.198 0.00

2 χ2
1 0.273 0.275 0.279 0.333 2.283 0.062 0.063 0.064 0.087 0.170 0.00

0.5 −χ2
1 0.296 0.299 0.313 0.401 2.487 0.087 0.088 0.092 0.115 0.215 0.00

1 −χ2
1 0.372 0.365 0.365 0.590 2.259 0.150 0.142 0.139 0.260 0.257 0.01

2 −χ2
1 0.723 0.649 0.621 1.182 2.165 0.437 0.370 0.344 0.662 0.479 0.56

0.5 t3 0.293 0.296 0.305 0.398 2.553 0.083 0.084 0.087 0.107 0.216 0.01

1 t3 0.324 0.319 0.323 0.472 2.305 0.099 0.099 0.099 0.149 0.210 0.06

2 t3 0.499 0.465 0.451 0.809 2.204 0.242 0.216 0.203 0.412 0.323 0.43

Table 2. In the second column (ξtj) N , χ2
1, −χ2

1, and t3 denote, respectively,

N(0, 1),(χ2
1 − 1)/

√
2,−(χ2

1 − 1)/
√

2, and Student-t3/
√

3 distributions of ξtj .
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can calculate that the Hellinger distance between the true and perturbed probability measures on

the block is H(P
(M)
0 , P

(M)
(δ,ρ)) ≈

√
M/4

√
2δ2 + ρ2 for small ρ and δ. Therefore values of (δ, ρ) that

satisfy c2 = δ2 + ρ2/2 for some constant c are considered. We consider 64 different designs indexed by

j ∈ {0, . . . , 63}. In the j-th design we set ωj = j/64, δj = c sin(2πωj), ρj =
√

2c cos(2πωj).
4 In the

Monte Carlo experiment we set c = 0.1, α = 0.75, and n = 400. Estimation is performed with fully

overlapping blocks of length 10. For each design 10000 replications are computed.

The results are presented in Figure 4.1. The top panels plot RMSE of the estimators as

function of ωj . The bottom panels show the estimated probabilities Pr{|θ̂− θ0| > 1.0}. As in the first

experiment, RMSE and Pr{|θ̂− θ0| > 1.0} of CUE are much larger than those of other estimators. To

provide better insights on the relative performance of other estimators, the right panels of the figure

present the same plots as the left ones but exclude CUE. MHDE, EL, and ET outperform GMM.

Interestingly, EL and MHDE are very close for all scenarios. ET is close to EL and MHDE although

appears to be slightly less robust against a range of misspecifications.

Before closing this section it might be beneficial to discuss a possible interpretation of the

simulation results in light of the main theoretical results such as Theorem 3.2. Consider minimizing

the α-divergence in Definition 2.1, with the measure Q replaced by the blockwise empirical measure

P
(M)
n as we did in (2.2), subject to the moment constraint

∫
φ(b, θ)dQ = 0, θ ∈ Θ. This gives rise to

a family of estimator indexed by α, including the blockwise MHDE as a special case of α being 1
2 ,

which is optimally robust according to our Theorem 3.2. Note that the value of the estimator that

minimizes the α-divergence varies continuously with the value of α. Thus one expects that estimators

with their α close to the optimal 1
2 remain comparatively robust, and as α moves away from 1

2 the

corresponding estimator would grow increasingly susceptible to the effects of data contamination,

which is the paper’s major concern. The experimental results are consistent with this prediction: the

MHDE (α = 1
2) performs well over a wide range of data generating processes in both experiments, and

the same applies to the estimators with their corresponding values α relatively close to the optimal

value α = 1
2 , namely EL (α = 1), and ET (α = 0). On the other hand, the finite sample performance

of CUE, which has the α value of 2 and thus quantitatively very different from the asymptotically

optimal MHDE, is poor. As GMM and CUE are both based on a closely related quadratic measure,

this also explains the erratic performance of GMM. Overall, the simulations provide strong support

for the theoretical results obtained in Section 3.

4Note that design with ω = 1 coincides with the ω = 0 design, i.e., the graphs are closed loops.
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Figure 4.1. Local neighborhood of the true model.

5. Conclusion

This paper studied robust estimation of moment restriction models with time series data.

Often the data used in empirical analysis is not ideal and is subject to errors, for instance due to
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data contamination or incorrect deseasonalization. In such cases, the distribution of data at hand is

a perturbed version of the true data distribution. This paper studies robustness of a large class of

estimation procedures to perturbations in the data generating probability measure. The main result

of the paper is demonstrating that the blockwise MHDE possesses optimal minimax robust properties.

The paper derives minimax lower bound of MSE risk and shows that the blockwise MHDE estimator

achieves this bound. At the same time, blockwise MHDE is known to be semiparametrically efficient

in the ideal scenario of error-free data. Thus, blockwise MHDE estimator is both robust and efficient.

The Monte Carlo experiments suggest that GMM and Continuously Updated GMM are sensitive to

data perturbations, while MHDE is not.

Acknowledgements: The research of the first author was supported by the Cowles Foundation at

Yale University and the G. C. Chow Econometric Research Program at Princeton University, and the

National Science Foundation grant SES-1459993. The research of the second author was supported by

the National Science Foundation grants SES-0551271, SES-0851759, and SES-1156266. The research

of the third author was supported by the National Science Foundation grant SES-0720961 and the

ERC Consolidator Grant (SNP 615882).



ROBUST ESTIMATION OF MOMENT CONDITION MODELS WITH WEAKLY DEPENDENT DATA 21

Appendix A. Main Proofs

Notation. Let C > 0 be a generic positive constant, | · | be the Euclidean norm, ‖·‖ be

the L2-metric on the appropriate space, and I{·} be the indicator function. When a measure P is

strictly stationary, the time subscript t for the marginal is unnecessary and omitted. Also, for a finite

dimensional measure P (k,t) of P , we sometimes omit the superscript (k, t) when it is clear from the

context which finite dimensional measure is used. Let M denote the set of all probability measures

that are defined on A∞. Let MS ⊂ M denote the set of all probability measures under which the

process X∞(ω) is strictly stationary. In the proofs, we also use the following notation:

θn = θ0 + n−1/2ξ, b = (x1, . . . , xM ) ∈ XM ,

Λ =
√
MG′V −1φ(b, θ0), Λn =

√
MG′V −1φn(b, θ0),

Rn(Q(M), θ, γ) = −
∫

1

1 + γ′φn(b, θ)
dQ(M), P̄

(M)

θ,Q(M) = arg min
P (M)∈P̄(M)

θ ,P (M)�Q(M)

H(P (M), Q(M)),

ψ
n,Q

(M)
n

= −2

(∫
ΛnΛ′ndQ

(M)
n

)−1 ∫
Λn

(√
dQ

(M)
n −

√
dP̄

(M)
θ0,Qn

)√
dQ

(M)
n ,

BH(P
(M)
0 , δ) = {Q(M) ∈M(M) : H(Q(M), P

(M)
0 ) ≤ δ},

τθ =
∂τ(θ0)

∂θ
,

where M(M) is the set of all probability measures for the Borel σ-algebra of XM . The abbreviation

w.p.a.1 should be read as “with probability approaching 1 as n → ∞”, UWLLN stands for Uniform

Weak Law of Large Numbers, see for example Andrews (1987) or Pötscher and Prucha (1989), and

CLT denotes the Central Limit Theorem of Herrndorf (1984).

The first subsection of this Appendix introduces a trimmed estimator used in the proofs. The

second subsection gives several important lemmas that are used in the third subsection to prove

Theorem 3.2. Auxiliary lemmas are given in Section B.

A.1. Trimming. An essential tool of the proofs is the following mapping from M(M) to Θ defined

by a trimmed moment function:

T̄ (Q(M)) = arg min
θ∈Θ

{
inf

P (M)∈P̄(M)
θ ,P (M)�Q(M)

H(P (M), Q(M))

}
,
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where

P̄(M)
θ =

{
P (M) ∈M(M)

S :

∫
φn(b, θ)dP (M) = 0

}
,

φn(bj , θ) =
1√
M

M∑
l=1

gn(x(j−1)L+l, θ) =
1√
M

M∑
l=1

g(x(j−1)L+l, θ)I{x(j−1)L+l ∈ Xn},

Xn =

{
x ∈ X : sup

θ∈Θ
|g(x, θ)| ≤ mn

}
,

where {mn}n∈N is a sequence of positive numbers satisfying mn → ∞. Thus the set P̄(M)
θ is the

collection of probability measures satisfying the trimmed moment condition EP (M) [φn(B, θ)] = 0.

Trimming is needed to guarantee existence of the mapping T̄ (Q(M)). Lemma B.1 (i) shows that for

each n ∈ N and Q(M) ∈M(M)
S the value T̄ (Q(M)) exists. To simplify the notation below we sometimes

denote T̄Q = T̄ (Q) for a measure Q.

We may take the trimming sequence {mn}n∈N to satisfy

0 < lim infn→∞mn/n
β ≤ lim supn→∞mn/n

β <∞,

(A.1)
1

2(η − 1)
+
α

η
< β < min

{
1

2
− α, 1

η

}
,

where α is from Assumption 3.1 (vii). Note that the restrictions imposed on α by Assumption 3.1 (vii)

guarantee existence of β that satisfies (A.1). Assumption 3.1 (vii) together with (A.1) are sufficient

to guarantee that

(A.2) max{M1−1/ηm1−η
n n1/2,M3/4m−3

n n1/2,Mmnn
−1/2, nm−ηn ,M3n−1} → 0,

which is used in the proofs below.

A.2. Key Lemmas. Take any r > 0. The key to show Part (i) of Theorem 3.2 is to construct a

strictly stationary probability measure P̃θn on (Ω,F) such that P̃θn ∈ Bn(r) for all n large enough and

its marginal P̃
(1)
θn

satisfies E
P̃

(1)
θn

[g(X, θn)] = 0 for all n large enough. Then the lower bound in Part

(i) of Theorem 3.2 is given by evaluating the asymptotic MSE under this measure.

Definition A.1. For any ξ ∈ Rp and n large enough (so that θn ∈ Θ) define a stochastic process {Zt}

in the following way. Let {Xt} be a stochastic process generated from P0 and define Υ(Xt), where for
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any γ = (γ1, . . . , γd)
′, the r-th component of the vector transformation Υ is defined as

Υr(γ) =

G
−1
r| (Fr|(γr|γr−1, . . . , γ1)|(Υr−1(γ), . . . ,Υ1(γ))), if r = 2, . . . , d,

G−1
1 (F1(γ1)), if r = 1,

where Fr|(γr|γr−1, . . . , γ1) is the cumulative distribution function of the r-th component of Xt, conditi-

onal on the first (r−1) components of this vector. Thus Fr| is fully defined by the cumulative distribu-

tion function F (·) of Xt, which corresponds to the the probability measure P
(1)
0 . Similarly, G−1

r| is the

inverse (in the first argument) of the conditional cumulative distribution function Gr|(γr|γr−1, . . . , γ1),

which is defined by the probability measure P̃
(1)
θn

having the density

(A.3)
dP̃

(1)
θn

dP
(1)
0

(x) =
1 + ζ ′ngn(x, θn)∫

(1 + ζ ′ngn(x, θn))dP
(1)
0 (x)

,

where ζn = −E
P

(1)
0

[g(X, θn)gn(X, θn)′]−1E
P

(1)
0

[g(X, θn)]. Denote the probability measure of the pro-

cess {Υ(Xt)} by P̃θn .

Since P0 generating {Xt} is strictly stationary and satisfies the mixing condition in Definition

3.1, so is P̃θn generating {Υ(Xt)}. Also, by construction, the marginal measure of Υ(Xt) is given by

P̃
(1)
θn

and satisfies E
P̃

(1)
θn

[g(X, θn)] = 0.

Lemma A.2. Suppose that Assumptions 3.1 and 3.3 hold. Then for all r > 0 and ε ∈ (0, r2) satisfying

1
4ξ
′G′V −1

1 Gξ ≤ r2 − ε, the probability measure P̃θn satisfies P̃θn ∈ Bn(r) for all n large enough.

Proof. Pick any r > 0 and ε ∈ (0, r2) such that 1
4ξ
′G′V −1

1 Gξ ≤ r2− ε. First, we show that P̃θn

satisfies Definition 3.1 (i) for all n large enough. Denote fn(x, ζn) =

√
dP̃

(1)
θn

dP
(1)
0

(x). By Taylor expansion,

(A.4) H(P̃
(1)
θn
, P

(1)
0 ) =

∥∥∥∥∥ζ ′n∂fn(x, 0)

∂ζn

√
dP

(1)
0 +

1

2
ζ ′n
∂fn(x, ζ̇n)

∂ζn∂ζ ′n
ζn

√
dP

(1)
0

∥∥∥∥∥ ,
where each element of ζ̇n is between the corresponding element of ζn and 0. Then

∂fn(x, 0)

∂ζn
=

1

2
{gn(x, θn)− E

P
(1)
0

[gn(X, θn)]},
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and

∂fn(x, ζn)

∂ζn∂ζ ′n

= −1

4
{1 + ζ ′ngn(x, θn)}−3/2{1 + ζ ′nEP (1)

0

[gn(X, θn)]}−1/2gn(x, θn)gn(x, θn)′

+
3

4
{1 + ζ ′ngn(x, θn)}1/2{1 + ζ ′nEP (1)

0

[gn(X, θn)]}−5/2E
P

(1)
0

[gn(X, θn)]E
P

(1)
0

[gn(X, θn)]′

−1

4
{1 + ζ ′ngn(x, θn)}−1/2{1 + ζ ′nEP (1)

0

[gn(X, θn)]}−3/2

×{gn(x, θn)E
P

(1)
0

[gn(X, θn)]′ + E
P

(1)
0

[gn(X, θn)]gn(x, θn)′}.

By modifying the proof of Lemma B.4 (for the case of M = 1), we obtain ζn = O(n−1/2) and thus

supx∈X ζ
′
ngn(x, θn) = o(1) (due to condition (A.2). So, Taylor expansions and Lemma B.4 (adapted

for the case of M = 1), we have

nH(P̃
(1)
θn
, P

(1)
0 )2 = n

∥∥∥∥1

2
ζ ′n{gn(x, θn)− E

P
(1)
0

[gn(X, θn)]}
√
dP

(1)
0

∥∥∥∥2

+ o(1)

=
n

4
E
P

(1)
0

[g(X, θn)]′V −1
1 E

P
(1)
0

[g(X, θn)] + o(1)

=
1

4
ξ′E

P
(1)
0

[
∂g(X, θ̇n)

∂θ′

]′
V −1

1 E
P

(1)
0

[
∂g(X, θ̇n)

∂θ′

]
ξ + o(1)

=
1

4
ξ′G′V −1

1 Gξ + o(1),

where each element of vector θ̇n is between the corresponding element of θn and 0. Therefore, P̃θn

satisfies Definition 3.1 (i) for all n large enough.

Next, we show that P̃θn satisfies Definition 3.1 (ii) for all n large enough. Pick any t and s

satisfying |t − s| ≤ M . For the bivariate marginals P̃ t,sθn and P t,s0 on (Xt, Xs) under P̃θn and P0, the

Hellinger distance is characterized by

H(P̃ t,sθn , P
t,s
0 )2 =

∥∥∥√f(Υ−1(xt),Υ−1(xs))(Υ−1)′(xt)(Υ−1)′(xs)−
√
f(xt, xs)

∥∥∥2
,

where f(xt, xs) is the bivariate density of (Xt, Xs) under P0, and Υ−1(x) = F−1
(
F (x)+ζ′n

∫ x gn(a,θn)f(a)da
1+ζ′nEP0

[gn(X,θn)]

)
.

Thus, expansions around ζn = 0 yield H(P̃ t,sθn , P
t,s
0 )2 = O(ζ2

n). Since ζn = O(n−1/2) (by Lemma B.4

adapted for the case of M = 1) and ann
1/2 →∞, Definition 3.1 (ii) is satisfied for all n large enough.

Third, due to the construction of P̃θn(i.e., {Υ(Xt)} ∼ P̃θn and {Xt} is generated from strictly

stationary P0), P̃θn satisfies the mixing condition in Definition 3.1 (iii).
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Finally, we check Definition 3.1 (iv):

E
P̃θn

[
sup
θ∈Θ
|g(Xt, θ)|η

]
≤ sup

x∈Xn

∣∣∣∣ 1 + ζ ′ngn(x, θn)

{1 + ζ ′nEP0 [gn(X, θn)]}2

∣∣∣∣EP (1)
0

[
sup
θ∈Θ
|g(X, θ)|η

]
<∞,

where the second inequality follows from Assumption 3.1 (v) and the fact that supx∈Xn ζ
′
ngn(x, θn) =

o(1). Therefore, the conclusion is obtained.

Lemma A.3. Suppose that Assumption 3.1 holds. Then for each r > 0,

(A.5) lim sup
n→∞

sup
Q∈Bn(r)

n{τ ◦ T̄ (Q(M))− τ(θ0)}2 ≤ 4r2τ ′θΣ
−1
1 τ2

θ .

Proof. A Taylor expansion of τ ◦ T̄
Q

(M)
n

around T̄
Q

(M)
n

= θ0, Lemmas B.1 (ii) and B.2, and

Assumption 3.1 (viii) imply that for each sequence Qn ∈ Bn(r) and r > 0,

√
n{τ ◦ T̄

Q
(M)
n
− τ(θ0)} = −

√
nτ ′θ(MΣ)−1

∫
ΛndQ

(M)
n + o(1)

= −n1/2M−1ν ′
∫

Λn

(√
dQ

(M)
n −

√
dP

(M)
0

)√
dQ

(M)
n

−n1/2M−1ν ′
∫

Λn

(√
dQ

(M)
n −

√
dP

(M)
0

)√
dP

(M)
0 + o(1),

where we denote ν ′ = τ ′θΣ
−1. From the triangle inequality,

n{τ ◦ T̄
Q

(M)
n
− τ(θ0)}2

≤ nM−2


∣∣∣∣ν ′ ∫ Λn

(√
dQ

(M)
n −

√
dP

(M)
0

)√
dQ

(M)
n

∣∣∣∣2 +

∣∣∣∣ν ′ ∫ Λn

(√
dQ

(M)
n −

√
dP

(M)
0

)√
dP

(M)
0

∣∣∣∣2
+2

∣∣∣∣ν ′ ∫ Λn

(√
dQ

(M)
n −

√
dP

(M)
0

)√
dQ

(M)
n

∣∣∣∣ ∣∣∣∣ν ′ ∫ Λn

(√
dQ

(M)
n −

√
dP

(M)
0

)√
dP

(M)
0

∣∣∣∣
+ o(1)

= nM−2(A1 +A2 + 2A3).

For A1, observe that

A1 ≤
∣∣∣∣∫ ν ′ΛnΛ′nνdQ

(M)
n

∣∣∣∣ ∥∥∥∥√dQ(M)
n −

√
dP

(M)
0

∥∥∥∥2

2

≤ B∗r2M
2

n
+ o

(
M2

n

)
,

where the first inequality follows from Cauchy-Schwarz inequality, and the second inequality follows

from Lemma B.5 (i) and Q ∈ Bn(r). Similarly, we have A2 ≤ B∗r2M
n . From these results, A3 satisfies

A3 ≤

√
B∗r2

M2

n
+ o

(
M

n

)√
B∗r2

M2

n
= B∗r2M

2

n
+ o(M2/n).

Combining these terms, we obtain n{τ ◦ T̄
Q

(M)
n
− τ(θ0)}2 ≤ 4r2B∗+o(1) for each sequence Qn ∈ Bn(r)

and r > 0. Since Q(M) implied from Q ∈ Bn(r)‘ belongs to a compact of measures for each n ∈ N and

r > 0, the conclusion follows.
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A.3. Proof of Theorem 3.2. Proof of (i). Let Σ1 = G′V1G. Pick any ε ∈ (0, r2) and take

ξ̄ = 2
√
r2 − ε(τ ′θΣ−1

1 τθ)
−1/2Σ−1

1 τθ.

Then 1
4 ξ̄
′Σ1ξ̄ = r2 − ε, and hence P̃θ0+ξ̄/

√
n ∈ Bn(r) for all n large enough by Lemma A.2. Also,

E
P̃

(1,t)

θ0+ξ̄/
√
n

[g(Xt, θ0 + ξ̄/
√
n)] = 0. Hence, P̃θn satisfies the conditions imposed on measure Qn in

Assumption 3.2. Then we have

lim
κ→∞

lim inf
n→∞

sup
Q∈Bn(r)

∫
κ ∧ n{τ ◦ Ta(x1, . . . , xn)− τ(θ0)}2dQ

≥ lim
κ→∞

lim inf
n→∞

∫
κ ∧ n{τ ◦ Ta(x1, . . . , xn)− τ(θ0)}2dP̃ (n,1)

θ0+ξ̄/
√
n

= lim
κ→∞

lim inf
n→∞

∫
κ ∧

(
τ ′θ

{
ξ̄ +

1√
n

n∑
t=1

ϕn(xt)

})2

dP̃
(n,1)

θ0+ξ̄/
√
n

= (τ ′θ ξ̄)
2 + τ ′θAϕϕ′τθ

≥ 4(r2 − ε)τ ′θΣ−1
1 τ2

θ +B∗,

where the first inequality follows from P̃θn ∈ Bn(r), the first equality follows from the assumption

on Ta, Taylor expansion of τ ◦ Ta around Ta = θ0, and the continuous mapping theorem, the second

equality follows from Assumption 3.2, and the second inequality follows from the fact that Aϕϕ′−Σ−1

is positive-semidefinite and a direct calculation. Since ε can be arbitrarily small, we obtain the

conclusion.

Proof of (ii). Pick any r > 0. Observe that,

lim sup
n→∞

sup
Q∈Bn(r)

∫
κ ∧ n{τ ◦ T (P (M)

n )− τ(θ0)}2dQ

≤ lim sup
n→∞

sup
Q∈Bn(r)

∫
κ ∧ n{τ ◦ T (P (M)

n )− τ ◦ T̄ (P (M)
n )}2dQ

+2lim sup
n→∞

sup
Q∈Bn(r)

∫
κ ∧ {n|τ ◦ T (P (M)

n )− τ ◦ T̄ (P (M)
n )||τ ◦ T̄ (P (M)

n )− τ(θ0)|}dQ

+lim sup
n→∞

sup
Q∈Bn(r)

∫
κ ∧ n{τ ◦ T̄ (P (M)

n )− τ(θ0)}2dQ

= A1 + 2A2 +A3,

for each κ > 0, where the inequality follows from the triangle inequality and κ∧(c1+c2) ≤ κ∧c1+κ∧c2

for any c1, c2 ≥ 0. Denote X nn = {(x1, . . . , xn) ∈ X n : supθ∈Θ |g(xt, θ)| ≤ mn, t = 1, . . . , n}. For A1,
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Markov’s inequality yields

A1 = lim sup
n→∞

sup
Q∈Bn(r)

{∫
(x1,...,xn)∈Xnn

κ ∧ n{τ ◦ T (P (M)
n )− τ ◦ T̄ (P (M)

n )}2dQ

+

∫
(x1,...,xn)/∈Xnn

κ ∧ n{τ ◦ T (P (M)
n )− τ ◦ T̄ (P (M)

n )}2dQ

}

≤ κ× lim sup
n→∞

sup
Q∈Bn(r)

∫
(x1,...,xn)/∈Xnn

dQ

≤ κ× lim sup
n→∞

sup
Q∈Bn(r)

m−ηn

n∑
t=1

EQ

[
sup
θ∈Θ
|g(Xt, θ)|η

]
≤ κ× lim

n→∞
Cnm−ηn = 0,

where the second inequality follows from Markov inequality, and the third inequality follows from

Definition 3.1(iii). A similar argument proves that A2 = 0.

Thus, it is sufficient to show that A3 ≤ 4(r2 − ε)τ ′θΣ
−1
1 τ2

θ + B∗ as κ → ∞. Pick any κ > 0.

Consider the mapping fκ,n(Q) =
∫
κ ∧ n{τ ◦ T̄ (P

(M)
n ) − τ(θ0)}2dQ. For any ε > 0 and for all n ∈ N

by definition of supremum there exists Q̃n ∈ Bn(r) such that

sup
Qn∈Bn(r)

fκ,n(Qn) ≤ fκ,n(Q̃n) + ε/n,

for each n. Then we have

A3 = lim sup
n→∞

sup
Q∈Bn(r)

∫
κ ∧ n{τ ◦ T̄ (P (M)

n )− τ(θ0)}2dQ

≤ lim sup
n→∞

(∫
κ ∧ n{τ ◦ T̄ (P (M)

n )− τ(θ0)}2dQ̃n + ε/n

)
=

∫
κ ∧ (z + t̃)2dN(0, B∗)

≤ t̃2 +B∗,

where the second equality follows from Lemma B.10 and the continuous mapping theorem, the second

inequality follows from κ ∧ c ≤ c and a direct calculation. Here

t̃ =
√
n

τ ◦
 1

nB

nB∑
j=1

T̄
Q̃

(M,(j−1)L+1)
n

− τ(θ0)

 ,
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which satisfies

t̃2 ≤ lim sup
n→∞

sup
Q∈B(P0,r

√
M/n)

n

τ ◦
 1

nB

nB∑
j=1

T̄Q(M,(j−1)L+1)

− τ(θ0)


2

= lim sup
n→∞

sup
Q∈B(P0,r

√
M/n)

 1

nB

nB∑
j=1

√
nτ ′θ(T̄Q(M,(j−1)L+1) − θ0) + o(1)


2

≤ lim sup
n→∞

sup
Q∈B(P0,r

√
M/n)

max
1≤j≤nB

{
√
nτ ′θ(T̄Q(M,(j−1)L+1) − θ0) + o(1)}2

≤ lim sup
n→∞

sup
Q(M)∈BH(P

(M)
0 ,r
√
M/n)

{
√
nτ ′θ(T̄Q(M) − θ0) + o(1)}2

≤ lim sup
n→∞

sup
Q(M)∈BH(P

(M)
0 ,r
√
M/n)

n{τ ◦ (T̄Q(M))− τ(θ0)}2 ≤ 4r2B∗,

where the equality follows from Lemma B.1 (ii) and Assumption 3.1 (viii), the second inequality follows

from Jensen’s inequality, the third inequality follows from the inclusion relationship Q(M,(j−1)L+1) ∈

BH(P
(M)
0 , r

√
M/n) for all j ∈ 1, . . . , nB by Definition 3.1 (i), the fourth inequality follows from

Lemma B.2, Assumption 3.1 (viii), and the fact that BH(P
(M)
0 , r

√
M/n) is a compact for all n, and

the last inequality follows from Lemma A.3. Hence A3≤ (1 + 4r2)B∗, which concludes the proof.
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Appendix B. Auxiliary Lemmas

Lemma B.1. Suppose that Assumption 3.1 holds. Then

(i): T̄ (Q(M)) and min
P (M)∈P̄(M)

θ ,P (M)�Q(M) H(P (M), Q(M)) exist for each n ∈ N and Q(M) ∈

M(M),

(ii): T̄
Q

(M)
n
→ θ0 as n→∞ for each r > 0 and sequence Qn ∈ Bn(r).

Proof of (i). Pick any n ∈ N andQ(M) ∈M(M). DenoteRn(Q(M), θ) = inf
P∈P̄(M)

θ

H(P (M), Q(M)).

Since φn(b, θ) is bounded for each n ∈ N and θ ∈ Θ, the duality of partially finite programming

(Borwein and Lewis, 1993) yields that Rn(Q(M), θ) = maxγ∈Rm Rn(Q(M), θ, γ) for each (Q(M), θ) ∈

M(M) × Θ. From Rockafeller (1970, Theorem 10.8) and Assumption 3.1 (iv), Rn(Q(M), θ) is conti-

nuous in (Q(M), θ) ∈ M(M) × Θ under the Levy metric. This continuity also implies that for each

Q(M) ∈ M(M), Rn(Q(M), θ) is continuous in θ ∈ Θ. Since Θ is compact (Assumption 3.1 (ii)),

T̄ (Q(M)) = arg minθ∈ΘRn(Q(M), θ) exists.

Proof of (ii). Pick any r > 0 and any sequence Qn ∈ Bn(r). The proof is based on Newey

and Smith (2004, proof of Theorem 3.1). From Lemma B.6 (i), |E
Q

(M)
n

[φn(B, T̄
Q

(M)
n

)]| → 0. From the

triangle inequality,

sup
θ∈Θ
|E

Q
(M)
n

[φn(B, θ)]− E
P

(M)
0

[φ(B, θ)]|

≤ sup
θ∈Θ
|E

Q
(M)
n

[φn(B, θ)]− E
P

(M)
0

[φn(B, θ)]|+ sup
θ∈Θ
|E

P
(M)
0

[φn(B, θ)− φ(B, θ)]| := T1 + T2.

The first term T1 satisfies

T1 ≤ 1√
M

M∑
j=1

sup
θ∈Θ

∣∣∣∣∣
∫
gn(Xj , θ)

(√
dQ

(1)
n −

√
dP

(1)
0

)2
∣∣∣∣∣

+
2√
M

M∑
j=1

sup
θ∈Θ

∣∣∣∣∫ gn(Xj , θ)

√
dP

(1)
0

(√
dQ

(1)
n −

√
dP

(1)
0

)∣∣∣∣
≤ mn

√
M
r2

n
+ 2
√
M

√
E
P

(1)
0

[
sup
θ∈Θ
|g(X, θ)|2

]
r√
n

= o(1),(B.1)

where the first inequality follows from the triangle inequality, the second inequality follows from

Qn ∈ Bn(r) and Cauchy-Schwarz inequality, and the equality follows from Assumption 3.1 (v) and
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(A.2). The second term of T2 satisfies

T2 ≤
√
M

(
E
P

(1)
0

[
sup
θ∈Θ
|g(X, θ)|η

])1/η (
P

(1)
0 {X /∈ Xn}

)(η−1)/η

≤ C
√
M

(
m−ηn E

P
(1)
0

[
sup
θ∈Θ
|g(X, θ)|η

])(η−1)/η

= o(1),(B.2)

where the first inequality follows from Hlder inequality, the second inequality follows from Markov

inequality, and the equality follows from Assumption 3.1 (v) and (A.2). Combining these results, we

obtain the uniform convergence supθ∈Θ |EQ(M)
n

[φn(B, θ)]− E
P

(M)
0

[φ(B, θ)]| → 0. Thus by the triangle

inequality,

|E
P

(M)
0

[φ(B, T̄
Q

(M)
n

)]| ≤ |E
P

(M)
0

[φ(b, T̄
Q

(M)
n

)]− E
Q

(M)
n

[φn(b, T̄
Q

(M)
n

)]|+ |E
Q

(M)
n

[φn(b, T̄
Q

(M)
n

)]| → 0.

The conclusion is obtained from Lemma B.6 (i) and Assumption 3.1 (iii).

Lemma B.2. Suppose that Assumption 3.1 holds. Then, for each r > 0 and each sequence Qn ∈

Bn(r),

(B.3)
√
n(T̄

Q
(M)
n
− θ0) = −

√
n(MΣ)−1

∫
ΛndQ

(M)
n + o(1).

Proof. The proof is based on Rieder (1994, proofs of Theorems 6.3.4 and 6.4.5). Pick any

r > 0 and Qn ∈ Bn(r). In this proof, we omit the upperscript “(M)” and denote Qn = Q
(M)
n ,

P̄θ0,Qn = P̄
(M)

θ0,Q
(M)
n

, so on. Observe that

∥∥∥∥dQ1/2
n − dP̄ 1/2

θ0,Qn
+

1

2
(T̄Qn − θ0)′ΛndQ

1/2
n

∥∥∥∥2

=

∥∥∥∥dQ1/2
n − dP̄ 1/2

θ0,Qn
+

1

2
ψ′n,QnΛndQ

1/2
n

∥∥∥∥2

+

∥∥∥∥1

2
(T̄Qn − θ0 − ψn,Qn)′ΛndQ

1/2
n

∥∥∥∥2

+

{∫ (
dQ1/2

n − dP̄ 1/2
θ0,Qn

+
1

2
ψ′n,QnΛndQ

1/2
n

)
Λ′ndQ

1/2
n

}
(T̄Qn − θ0 − ψn,Qn)

=

∥∥∥∥dQ1/2
n − dP̄ 1/2

θ0,Qn
+

1

2
ψ′n,QnΛndQ

1/2
n

∥∥∥∥2

+

∥∥∥∥1

2
(T̄Qn − θ0 − ψn,Qn)′ΛndQ

1/2
n

∥∥∥∥2

,(B.4)

where the second equality follows from∫ {
dQ1/2

n − dP̄ 1/2
θ0,Qn

+
1

2
ψ′n,QnΛndQ

1/2
n

}
Λ′ndQ

1/2
n

=

∫
Λ′n

(
dQ1/2

n − dP̄ 1/2
θ0,Qn

)
dQ1/2

n +
1

2
ψ′n,Qn

∫
ΛnΛ′ndQ

1/2
n = 0.
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From the triangle inequality, the left hand side of (B.4) satisfies∥∥∥∥dQ1/2
n − dP̄ 1/2

θ0,Qn
+

1

2
(T̄Qn − θ0)′ΛndQ

1/2
n

∥∥∥∥
≤

∥∥∥dQ1/2
n − dP̄ 1/2

T̄Qn ,Qn

∥∥∥+

∥∥∥∥dP̄ 1/2

T̄Qn ,Qn
− dP̄ 1/2

θ0,Qn
+

1

2
(T̄Qn − θ0)′ΛndQ

1/2
n

∥∥∥∥
≤

∥∥∥dQ1/2
n − dP̄ 1/2

T̄Qn ,Qn

∥∥∥+ o(
√
M |T̄Qn − θ0|) + o(

√
M/n)

≤
∥∥∥dQ1/2

n − dP̄ 1/2
θ0+ψn,Qn ,Qn

∥∥∥+ o(
√
M |T̄Qn − θ0|) + o(

√
M/n)

≤
∥∥∥∥dQ1/2

n − dP̄ 1/2
θ0,Qn

+
1

2
ψ′n,QnΛndQ

1/2
n

∥∥∥∥+

∥∥∥∥−dP̄ 1/2
θ0+ψn,Qn ,Qn

+ dP̄
1/2
θ0,Qn

− 1

2
ψ′n,QnΛndQ

1/2
n

∥∥∥∥
+o(
√
M |T̄Qn − θ0|) + o(

√
M/n)

=

∥∥∥∥dQ1/2
n − dP̄ 1/2

θ0,Qn
+

1

2
ψ′n,QnΛndQ

1/2
n

∥∥∥∥+ o(
√
M |T̄Qn − θ0|) + o(

√
M |ψn,Qn |) + o(

√
M/n),

where the second inequality follows from Lemma B.3 (i), the third inequality follows from the definition

of T̄Qn , the fourth inequality follows from the triangle inequality, and the equality follows from Lemma

B.3 (ii). Thus, from (B.4),∣∣∣∣∣
∥∥∥∥dQ1/2

n − dP̄ 1/2
θ0,Qn

+
1

2
ψ′n,QnΛndQ

1/2
n

∥∥∥∥2

+

∥∥∥∥1

2
(T̄Qn − θ0 − ψn,Qn)′ΛndQ

1/2
n

∥∥∥∥2
∣∣∣∣∣
1/2

≤
∥∥∥∥dQ1/2

n − dP̄ 1/2
θ0,Qn

+
1

2
ψ′n,QnΛndQ

1/2
n

∥∥∥∥+ o(
√
M |T̄Qn − θ0|) + o(

√
M |ψn,Qn |) + o(

√
M/n).

This implies

o(
√
M |T̄Qn − θ0|) + o(

√
M |ψn,Qn |) + o(

√
M/n)

≥

√
1

4
(T̄Qn − θ0 − ψn,Qn)′

∫
ΛnΛ′ndQn(T̄Qn − θ0 − ψn,Qn)

≥ C
√
M |T̄Qn − θ0 − ψn,Qn |,(B.5)

for all n large enough, where the second inequality follows from Lemma B.5 (i) and Assumption 3.1

(vi).

We now analyze ψn,Qn . From the definition of ψn,Qn ,

ψn,Qn = −2{EQn [ΛnΛ′n]−1 −M−1Σ−1}
∫

Λn(dQ1/2
n − dP̄ 1/2

θ0,Qn
)dQ1/2

n

−2M−1Σ−1

∫
Λn(dQ1/2

n − dP̄ 1/2
θ0,Qn

)dQ1/2
n .(B.6)
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Note that from the convex duality of partially finite programming (Borwein and Lewis, 1993), the

Radon-Nikodym derivative can be written as

(B.7)
dP̄

(M)

θ,Q(M)

dQ(M)
=

1

{1 + γn(θ,Q)′φn(b, θ)}2
,

for each n ∈ N, θ ∈ Θ, and Q(M) ∈M(M), where γn(θ,Q) solves

0 =

∫
φn(b, θ)

{1 + γn(θ,Q)′φn(b, θ)}2
dQ =

∫
φn(b, θ){1− 2γn(θ,Q)′φn(b, θ) + %n(b, θ,Q)}dQ,

where

%n(b, θ,Q) =
3{γn(θ,Q)′φn(b, θ)}2 + 2{γn(θ,Q)′φn(b, θ)}3

{1 + γn(θ,Q)′φn(b, θ)}2
.

Thus, if EQ[φn(B, θ)φn(B, θ)′] is invertible, γn(θ,Q) is written as

γn(θ,Q) =
1

2
EQ[φn(B, θ)φn(B, θ)′]−1EQ[φn(B, θ)](B.8)

+
1

2
EQ[φn(B, θ)φn(B, θ)′]−1EQ[%n(B, θ,Q)φn(B, θ)].

The second term of (B.6) is

−2M−1Σ−1

∫
Λn(dQ1/2

n − dP̄ 1/2
θ0,Qn

)dQ1/2
n

= −2Σ−1M−1/2G′Ω−1EQn [φn(B, θ0)φn(B, θ0)′]γn(θ0, Qn)

+2Σ−1M−1/2G′Ω−1

(∫
γn(θ0, Qn)′φn(b, θ0)

1 + γn(θ0, Qn)′φn(b, θ0)
φn(b, θ0)φn(b, θ0)′dQn

)
γn(θ0, Qn)

= −Σ−1M−1/2G′Ω−1

{
EQn [φn(B, θ0)] +

1

2
EQn [%n(B, θ0, Qn)φn(B, θ0)]

}
+ o(n−1/2)

= −M−1Σ−1

∫
ΛndQn + o(n−1/2),(B.9)

where the first equality follows from (B.7), the second equality follows from (B.8) and Lemma B.5, and

the third equality follows from Lemma B.5. Similarly, the first term of (B.6) is o(n−1/2). Therefore,

√
nψn,Qn = −

√
n(MΣ)−1

∫
ΛndQn + o(1),

and |ψn,Qn | = O(n−1/2) from Lemma B.5. Then from (B.5),

√
n(T̄Qn − θ0) =

√
nψn,Qn + o(

√
n|T̄Qn − θ0|) + o(1).

By solving for
√
n(T̄Qn − θ0), the conclusion is obtained. The above also shows that T̄Qn − θ0 =

O(1/
√
n).

Lemma B.3. Suppose that Assumption 3.1 holds. Then for each r > 0 and each sequence Qn ∈ Bn(r),
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(i):

∥∥∥∥∥∥
√
dP̄

(M)

T̄
Q

(M)
n

,Q
(M)
n

−
√
dP̄

(M)

θ0,Q
(M)
n

+ 1
2(T̄

Q
(M)
n
− θ0)′Λn

√
dQ

(M)
n

∥∥∥∥∥∥ = o(
√
M |T̄

Q
(M)
n
−θ0|)+o(

√
M/n),

(ii):

∥∥∥∥∥∥
√
dP̄

(M)

θ0+ψ
n,Q

(M)
n

,Q
(M)
n

−
√
dP̄

(M)

θ0,Q
(M)
n

+
√
M
2 ψ′

n,Q
(M)
n

Λn

√
dQ

(M)
n

∥∥∥∥∥∥ = o(
√
M |ψ

n,Q
(M)
n
|)+o(

√
M/n).

Proof of (i). In this proof, we omit the upperscript “(M)” and denote Qn = Q
(M)
n , P̄θ0,Qn =

P̄
(M)

θ0,Q
(M)
n

, so on. Denote tn = T̄Qn − θ0. Pick any r > 0 and Qn ∈ Bn(r). From (B.7),

∥∥∥∥dP̄ 1/2

T̄Qn ,Qn
− dP̄ 1/2

θ0,Qn
+

1

2
t′nΛndQ

1/2
n

∥∥∥∥
≤

∥∥∥∥{γn(θ0, Qn)′φn(b, θ0)− γn(T̄Qn , Qn)′φn(b, T̄Qn)}dQ1/2
n +

1

2
t′nΛndQ

1/2
n

∥∥∥∥
+

∥∥∥∥∥∥ {γn(θ0, Qn)′φn(b, θ0)− γn(T̄Qn , Qn)′φn(b, T̄Qn)}

×
{

1
{1+γn(T̄Qn ,Qn)′φn(b,T̄Qn )}{1+γn(θ0,Qn)′φn(b,θ0)} − 1

}
dQ

1/2
n

∥∥∥∥∥∥ = T1 + T2.

For T2, Lemmas B.5 and B.6 imply

T2 ≤ o(1)
∥∥∥γn(T̄Qn , Qn)′φn(b, T̄Qn)dQ1/2

n − γn(θ0, Qn)′φn(b, θ0)dQ1/2
n

∥∥∥ = o(
√
M/n).

Thus, we focus on T1. From (B.8),

T1 ≤

∥∥∥∥∥∥
 +1

2EQn [φn(B, θ0)]′EQn [φn(B, θ0)φn(B, θ0)′]−1φn(b, θ0) + 1
2 t
′
nΛn

 dQ1/2
n

∥∥∥∥∥∥
+
∥∥∥EQn [%n(B, θ0, Qn)φn(B, θ0)]′EQn [φn(B, θ0)φn(B, θ0)′]−1φn(b, θ0)dQ1/2

n

∥∥∥
+
∥∥∥EQn [%n(B, T̄Qn , Qn)φn(B, T̄Qn)]′EQn [φn(B, T̄Qn)φn(B, T̄Qn)′]−1φn(b, θ0)dQ1/2

n

∥∥∥
= T11 + T12 + T13.
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Lemmas B.5 and B.6 imply that T12 = o(
√
M/n) and T13 = o(

√
M/n). Thus, we focus on T11. Taylor

expansions of φn(b, T̄Qn) around T̄Qn = θ0 yield

T11 ≤

∥∥∥∥∥∥
−1

2
EQn [φn(B, T̄Qn)]′

 EQn [φn(B, T̄Qn)φn(B, T̄Qn)′]−1

−EQn [φn(B, θ0)φn(B, θ0)′]−1

φn(b, T̄Qn)

 dQ1/2
n

∥∥∥∥∥∥
+

∥∥∥∥−1

2
EQn [φn(B, T̄Qn)]′EQn [φn(B, θ0)φn(B, θ0)′]−1{φn(b, T̄Qn)− φn(b, θ0)}dQ1/2

n

∥∥∥∥
+

∥∥∥∥∥−1

2
t′n

(
EQn

[
∂φn(B, θ̇)

∂θ′

]
−
√
MG

)′
EQn [φn(B, θ0)φn(B, θ0)′]−1φn(b, θ0)dQ1/2

n

∥∥∥∥∥
+

∥∥∥∥∥
√
M

2
t′nG

′{Ω−1 − EQn [φn(B, θ0)φn(B, θ0)′]−1}φn(b, θ0)dQ1/2
n

∥∥∥∥∥
= o(

√
M/n) + o(

√
Mtn),

where θ̇ is a point on the line joining θ0 and T̄Qn , and the inequality follows from the triangle inequality

and Lemmas B.5 (i) and B.6 (i).

Proof of (ii). The proof is similar to that of Part (i).

Lemma B.4. Suppose that Assumption 3.1 holds. Then, for each ξ ∈ Rp, |E
P

(M)
0

[φn(B, θ0)]| =

o(
√
M/n), |E

P
(M)
0

[φn(B, θn)]| = O(
√
M/n), |E

P
(M)
0

[φn(B, θn)φn(B, θn)′]− V | = o(1), and

|E
P

(M)
0

[∂φn(B, θn)/∂θ′]−
√
MG| = o(

√
M).

Proof of the first statement. The same argument as in (B.2) yields |E
P

(M)
0

[φn(B, θ0)]| =

O(
√
Mm1−η

n ). The conclusion follows by (A.2).

Proof of the second statement. Pick any ξ ∈ Rp. By the triangle inequality and (B.2), we

obtain

|E
P

(M)
0

[φn(B, θn)]| ≤
√
M |E

P
(1)
0

[g(X, θn)]|+ o(
√
M/n)

≤ C

√
M

n
E
P

(1)
0

[
sup
θ∈U

∣∣∣∣∂g(X, θ)

∂θ′

∣∣∣∣]+ o(
√
M/n) = O(

√
M/n),

for all n large enough, where the second the inequality follows from a Taylor expansion around ξ = 0

and Assumption 3.1 (iii), and the equality follows from Assumption 3.1 (v).
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Proof of the third statement. Pick any ξ ∈ Rp. By the triangle inequality,

|E
P

(M)
0

[φn(B, θn)φn(B, θn)′]− V |

≤ |E
P

(M)
0

[φn(B, θn)φn(B, θn)′]− E
P

(M)
0

[φ(B, θn)φ(B, θn)′]|

+|E
P

(M)
0

[φ(B, θn)φ(B, θn)′]− E
P

(M)
0

[φ(B, θ0)φ(B, θ0)′]|

+|E
P

(M)
0

[φ(B, θ0)φ(B, θ0)′]− V |

≤ 1

M

M∑
j,l=1

|E
P

(M)
0

[g(Xj , θn)g(Xl, θn)′I{Xj /∈ Xnor Xl /∈ Xn}]|+ o(1)

≤ CMm−η/2n

√
E
P

(1)
0

[|g(X, θn)|4] + o(1),(B.10)

where the second inequality follows from the continuity of g(x, θ) at θ0 and the definition of V , and

the third inequality follows from Cauchy-Schwarz and Markov inequalities. The conclusion follows by

Assumption 3.1 and (A.2).

Proof of the fourth statement. Pick any ξ ∈ Rp. By the triangle inequality

|E
P

(M)
0

[∂φn(B, θn)/∂θ′]− E
P

(M)
0

[∂φ(B, θ0)/∂θ′]|

≤ |E
P

(M)
0

[∂φn(B, θn)/∂θ′ − ∂φ(B, θn)/∂θ′]|+
√
M |E

P
(1)
0

[∂g(X, θn)/∂θ′ − ∂g(X, θ0)/∂θ′]|

≤
√
M

(
E
P

(1)
0

[∣∣∣∣∂g(X, θn)

∂θ′

∣∣∣∣η])1/η (
m−ηn E

P
(1)
0

[
sup
θ∈Θ
|g(X, θ)|η

])(η−1)/η

+ o(
√
M) = o(

√
M),

where the second inequality follows from the triangle, Cauchy-Schwarz, and Markov inequalities and

the continuity of ∂g(x, θ)/∂θ′ at θ0, and the equality follows from Assumption 3.1 (v) and (A.2).

Lemma B.5. Suppose that Assumption 3.1 holds. Then for each r > 0 and each sequence Qn ∈ Bn(r),

(i): |E
Q

(M)
n

[φn(B, θ0)]| = O(
√
M/n) and |E

Q
(M)
n

[φn(B, θ0)φn(B, θ0)′]− V | = o(1),

(ii): γn(θ0, Q
(M)
n ) = arg maxγ∈Rm −

∫
1

1+γ′φn(b,θ0)dQ
(M)
n exists for all n large enough, |γn(θ0, Q

(M)
n )| =

O(
√
M/n), and supb∈XM |γn(θ0, Q

(M)
n )′φn(b, θ0)| → 0.
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Proof of (i). Proof of the first statement. Pick any r > 0 and any sequence Qn ∈ Bn(r).

By the triangle inequality and Lemma B.4,

|E
Q

(M)
n

[φn(B, θ0)]| ≤ 1√
M

M∑
l=1

∣∣∣∣∣
∫
gn(x, θ0)

(√
dQ

(1,l)
n −

√
dP

(1)
0

)2
∣∣∣∣∣

+
2√
M

M∑
l=1

∣∣∣∣∫ gn(x, θ0)

√
dP

(1)
0

(√
dQ

(1,l)
n −

√
dP

(1)
0

)∣∣∣∣+ o(
√
M/n)

≤
√
Mmn

r2

n
+ 2
√
M
√
E
P

(1)
0

[|g(X, θ0)|2]
r√
n

+ o(
√
M/n),(B.11)

where the second inequality follows from Cauchy-Schwarz inequality and Qn ∈ Bn(r). Thus, the

conclusion is obtained by Assumption 3.1 (v) and (A.2).

Proof of the second statement. Pick any r > 0 and any sequence Qn ∈ Bn(r). From the

triangle inequality,

|E
Q

(M)
n

[φn(B, θ0)φn(B, θ0)′]− V |

≤ |E
Q

(M)
n

[φn(B, θ0)φn(B, θ0)′]− E
P

(M)
0

[φn(B, θ0)φn(B, θ0)′]|

+|E
P

(M)
0

[φn(B, θ0)φn(B, θ0)′]− V |

≤ 1

M

M∑
j,l=1

∣∣∣∣∣
∫
gn(xj , θ0)gn(xl, θ0)′

(√
dQj,ln −

√
dP j,l0

)2
∣∣∣∣∣

+
2

M

M∑
j,l=1

∣∣∣∣∫ gn(xj , θ0)gn(xl, θ0)′
√
dP j,l0

(√
dQj,ln −

√
dP j,l0

)∣∣∣∣+ o(1)

≤ m2
nMa2

n + 2Man
√
E
P

(1)
0

[|gn(X, θ0)|4] + o(1) = o(1),(B.12)

where the second inequality follows from the triangle inequality and Lemma B.4, the third inequality

follows from Cauchy-Schwarz inequality and Qn ∈ Bn(r), and the equality follows from Assumption

3.1 (v) and (A.2).

Proof of (ii). The proof is based on Newey and Smith (2004, proofs of Lemmas A.1-3). Pick

any ξ ∈ Rp. Define

(B.13) Γn = {γ ∈ Rm : |γ| ≤ An},

with An
√
Mmn → 0 and An

√
n/M →∞ ((A.2) guarantees existence of An). Observe that

(B.14) sup
γ∈Γn,b∈XMn ,θ∈Θ

|γ′φn(b, θ)| ≤ An
√
Mmn → 0.
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Since Rn(Q
(M)
n , θn, γ) is twice continuously differentiable with respect to γ and Γn is compact, γ̃ =

arg maxγ∈Γn Rn(Q
(M)
n , θn, γ) exists for each n ∈ N. A Taylor expansion around γ̃ = 0 yields

−1 = Rn(Q(M)
n , θn, 0) ≤ Rn(Q(M)

n , θn, γ̃)

= −1 + γ̃′E
Q

(M)
n

[φn(B, θn)]− γ̃′E
Q

(M)
n

[
φn(B, θn)φn(B, θn)′

{1 + γ̇′φn(B, θn)}3

]
γ̃

≤ −1 + |γ̃||E
Q

(M)
n

[φn(B, θn)]| − C|γ̃|2,(B.15)

for all n large enough, where γ̇ is a point on the line joining 0 and γ̃, and the second inequality follows

from (B.14), Lemma B.5 (i), and Assumption 3.1 (vi). Thus, Lemma B.5 (i) implies

(B.16) C|γ̃| ≤ |E
Q

(M)
n

[φn(B, θn)]| = O(
√
M/n).

FromAn
√
Mn1/2 →∞, γ̃ is an interior point of Γn and satisfies the first-order condition ∂Rn(Q

(M)
n , θ0, γ̃)/∂γ =

0 for all n large enough. SinceRn(Q
(M)
n , θ0, γ) is concave in γ for all n large enough, γ̃ = arg maxγ∈Rm Rn(Q

(M)
n , θn, γ)

for all n large enough. Thus, the first statement is obtained. Also, from (B.16), the second statement

is obtained. Using condition (A.2), the third statement follows from

(B.17) sup
b∈XMn

|γn(θn, Q
(M)
n )′φn(b, θn)| = O(Mn−1/2mn) = o(1).

Lemma B.6. Suppose that Assumption 3.1 holds. Then for each r > 0 and each sequence Qn ∈ Bn(r),

(i): |E
Q

(M)
n

[φn(B, T̄
Q

(M)
n

)]| = O(
√
M/n), |E

Q
(M)
n

[φn(B, T̄
Q

(M)
n

)φn(B, T̄
Q

(M)
n

)′]− V | = o(1) and

|E
Q

(M)
n

[∂φn(B, T̄
Q

(M)
n

)/∂θ′]−
√
MG| = o(

√
M),

(ii): γn(T̄
Q

(M)
n

, Qn) = arg maxγ∈Rm −
∫

1
1+γ′φn(b,T̄

Q
(M)
n

)
dQn exists for all n large enough, |γn(T̄

Q
(M)
n

, Qn)| =

O(
√
M/n), and supb∈XM |γn(T̄

Q
(M)
n

, Qn)′φn(b, T̄
Q

(M)
n

)| → 0.

Proof of (i). Proof of the first statement. Pick any r > 0 and any sequence Qn ∈ Bn(r).

Define γ̃ =
√
M/nE

Q
(M)
n

[φn(B, T̄
Q

(M)
n

)]/|E
Q

(M)
n

[φn(B, T̄
Q

(M)
n

)]|. Since |γ̃| =
√
M/n,

(B.18) sup
b∈XMn ,θ∈Θ

|γ̃′φn(b, θ)| ≤Mmn/
√
n→ 0.

By a similar argument to (B.12),

|E
Q

(M)
n

[φn(B, T̄
Q

(M)
n

)φn(B, T̄
Q

(M)
n

)′]|

≤
M∑
j=1

E
P 1,j

0

[
sup
θ∈Θ
|gn(X1, θ)gn(Xj , θ)

′|
]

+O(m2
nMa2

n) +O(Man)

≤ 12

(
EP0

[
sup
θ∈Θ
|g(X, θ)|η

])2/η M∑
j=1

α(j − 1)1−2/η +O(1),(B.19)
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where the second inequality follows from Davydov (1968, Corollary) under Assumption 3.1 (i) and

the condition on an. Thus, |E
Q

(M)
n

[φn(B, T̄
Q

(M)
n

)φn(B, T̄
Q

(M)
n

)′]| is finite for all n large enough.

Thus, a Taylor expansion around γ̃ = 0 yields Rn(Qn, T̄Q(M)
n

, γ̃)

= −1 + γ̃′E
Q

(M)
n

[φn(B, T̄
Q

(M)
n

)]− γ̃′E
Q

(M)
n

[
φn(B, T̄

Q
(M)
n

)φn(B, T̄
Q

(M)
n

)′

{1 + γ̇′φn(B, T̄
Q

(M)
n

)}3

]
γ̃

≥ −1 +
√
M/n|E

Q
(M)
n

[φn(B, T̄
Q

(M)
n

)]| − CM/n,(B.20)

for all n large enough, where γ̇ is a point one the line joining 0 and γ̃, the inequality follows from

(B.18) and γ̃′γ̃ = M/n. From the definitions of γn(T̄
Q

(M)
n

, Qn) and T̄
Q

(M)
n

,

−1 +
√
M/n|E

Q
(M)
n

[φn(B, T̄
Q

(M)
n

)]| − CM/n

≤ Rn(Qn, T̄Q(M)
n

, γ̃) ≤ Rn(Qn, T̄Q(M)
n

, γn(T̄
Q

(M)
n

, Qn)) ≤ Rn(Qn, θ0, γn(θ0, Q
(M)
n )),(B.21)

where the first inequality follows from (B.20). From |γn(θ0, Q
(M)
n )| = O(

√
M/n) and |E

Q
(M)
n

[φn(B, θ0)]| =

O(
√
M/n) (by Lemma B.5), similar to (B.15) we have

(B.22)

Rn(Qn, θ0, γn(θ0, Q
(M)
n )) ≤ −1 + |γn(θ0, Q

(M)
n )||E

Q
(M)
n

[φn(B, θ0)]| −C|γn(θ0, Q
(M)
n )|2 = −1 +O(M/n).

The conclusion follows by (B.21) and (B.22).

Proof of the second statement. Pick any r > 0 and any sequence Qn ∈ Bn(r). From the

triangle inequality,

|E
Q

(M)
n

[φn(B, T̄
Q

(M)
n

)φn(B, T̄
Q

(M)
n

)′]− E
P

(M)
0

[φ(B, θ0)φ(B, θ0)′]|

≤ |E
Q

(M)
n

[φn(B, T̄
Q

(M)
n

)φn(B, T̄
Q

(M)
n

)′]− E
P

(M)
0

[φn(B, T̄
Q

(M)
n

)φn(B, T̄
Q

(M)
n

)′]|

+|E
P

(M)
0

[φn(B, T̄
Q

(M)
n

)φn(B, T̄
Q

(M)
n

)′ − φ(B, T̄
Q

(M)
n

)φ(B, T̄
Q

(M)
n

)′]|

+|E
P

(M)
0

[φ(B, T̄
Q

(M)
n

)φ(B, T̄
Q

(M)
n

)′]− E
P

(M)
0

[φ(B, θ0)φ(B, θ0)′]| := T1 + T2 + T3.

By a similar argument to (B.12) combined with T̄
Q

(M)
n
→ θ0 (Lemma B.1 (ii)), the term T1 satisfies

T1 ≤ m2
nMa2

n + 2Man

√
E
P

(1)
0

[
sup
θ∈U
|gn(X, θ)|4

]
= o(1).

By a similar argument to (B.10) combined with T̄
Q

(M)
n
→ θ0, the term T2 satisfies

T2 ≤ CMm−η/2n

√
E
P

(1)
0

[
sup
θ∈U
|g(X, θ)|4

]
= o(1).



ROBUST ESTIMATION OF MOMENT CONDITION MODELS WITH WEAKLY DEPENDENT DATA 39

The term T3 satisfies

T3 ≤
M∑
j=1

|E
P j.10

[g(Xj , T̄Q(M)
n

)g(X, T̄
Q

(M)
n

)′ − g(Xj , θ0)g(X1, θ0)′]|

≤
M∑
j=1

E
P j.10

[
sup
θ∈U

∣∣∣∣∂g(Xj , θ)

∂θ′

∣∣∣∣ ∣∣∣∣∂g(X1, θ)

∂θ′

∣∣∣∣] |T̄Q(M)
n
− θ0|2

+2
M∑
j=1

E
P j.10

[
sup
θ∈U

∣∣∣∣∂g(Xj , θ)

∂θ′

∣∣∣∣ |g(X1, θ)|
]
|T̄
Q

(M)
n
− θ0|,

where the first inequality follows from the triangle inequality and strict stationarity of P0, and the

second inequality follows from a Taylor expansion around T̄
Q

(M)
n

= θ0. By a similar argument in

(B.19) using Davydov (1968, Corollary) and T̄
Q

(M)
n
→ θ0 (Lemma B.1 (ii)), we have T3 = o(1) and the

conclusion follows.

Proof of the third statement. Pick any r > 0 and any sequence Qn ∈ Bn(r). From the

triangle inequality,

|E
Q

(M)
n

[∂φn(B, T̄
Q

(M)
n

)/∂θ′]− E
P

(M)
0

[∂φ(B, θ0)/∂θ′]|

≤ |E
Q

(M)
n

[∂φn(B, T̄
Q

(M)
n

)/∂θ′]− E
P

(M)
0

[∂φn(B, T̄
Q

(M)
n

)/∂θ′]|

+|E
P

(M)
0

[∂φn(B, T̄
Q

(M)
n

)/∂θ′ − ∂φ(B, T̄
Q

(M)
n

)/∂θ′]|

+|E
P

(M)
0

[∂φ(B, T̄
Q

(M)
n

)/∂θ′]− E
P

(M)
0

[∂φ(B, θ0)/∂θ′]| := T1 + T2 + T3.

By the triangle inequality, the term T1 satisfies

T1 ≤
√
M

∫
|∂gn(x, T̄

Q
(M)
n

)/∂θ′|
(√

dQ
(1)
n −

√
dP

(1)
0

)2

+2
√
M

∫
|∂gn(x, T̄

Q
(M)
n

)/∂θ′|
√
dP

(1)
0

(√
dQ

(1)
n −

√
dP

(1)
0

)

≤ o(
√
M/n) + 2r

√
M

n

√
E
P

(1)
0

[
sup
θ∈U
|∂gn(x, θ)/∂θ′|2

]
,

where the second inequality follows from Cauchy-Schwartz inequality, Qn ∈ Bn(r), and Assumption

3.1 (v). Thus, by (A.2), T1 = o(1). By Cauchy-Schwarz inequality, the term T2 satisfies

|E
P

(M)
0

[∂φn(B, T̄
Q

(M)
n

)/∂θ′ − ∂φ(B, T̄
Q

(M)
n

)/∂θ′]|

≤
√
M

√
E
P

(1)
0

[
sup
θ∈U
|∂g(X, θ)/∂θ′|2

]√
P

(1)
0 {X /∈ Xn} = O(

√
Mm−η/2n ),
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where the equality follows from Markov inequality. By mn → ∞, we have T2 = o(
√
M). Also the

term T3 is o(
√
M) by the continuity of ∂g(x, θ)/∂θ′ at θ0, consistency of T̄

Q
(M)
n

, Assumption 3.1 (v),

and the dominated convergence theorem. Therefore, the conclusion is obtained.

Proof of (ii). The proof is exactly same as for Lemma B.5 (ii) except using Lemma B.6 (i)

instead of Lemma B.5 (i).

Lemma B.7. Suppose that Assumption 3.1 holds. Then, for each r > 0 and each sequence Qn ∈

Bn(r), T̄
P

(M)
n
→p θ0 under Qn.

Proof. The proof is based on Newey and Smith (2004, proof of Theorem 3.1). From the

triangle inequality,

sup
θ∈Θ
|E

P
(M)
n

[φn(B, θ)]− E
P

(M)
0

[φ(B, θ)]|

≤ sup
θ∈Θ

∣∣∣∣∣∣EP (M)
n

[φn(B, θ)]− 1

nB

nB∑
j=1

E
Q

(M,(j−1)L+1)
n

[φn(B, θ)]

∣∣∣∣∣∣
+ max

1≤j≤nB
sup
θ∈Θ
|E

Q
(M,(j−1)L+1)
n

[φn(B, θ)]− E
P

(M)
0

[φn(B, θ)]|

+ sup
θ∈Θ
|E

P
(M)
0

[φn(B, θ)− φ(B, θ)]|.

The first term is op(1) from a UWLLN. The second and third terms are o(1) by similar arguments in

(B.1) and (B.2), respectively. Therefore, supθ∈Θ |EP (M)
n

[φn(B, θ)]−E
P

(M)
0

[φ(B, θ)]| = op(1). Since the

first statement of Lemma B.9 (i) implies |E
P

(M)
n

[φn(B, T̄
P

(M)
n

)]| p→ 0, we obtain

|E
P

(M)
0

[φ(B, T̄
P

(M)
n

)]| ≤ |E
P

(M)
0

[φ(B, T̄
P

(M)
n

)]− E
P

(M)
n

[φn(B, T̄
P

(M)
n

)]|+ |E
P

(M)
n

[φn(B, T̄
P

(M)
n

)]| p→ 0.

The conclusion follows from Assumption 3.1 (iii).

Lemma B.8. Suppose that Assumption 3.1 holds. Then for each r > 0 and each sequence Qn ∈ Bn(r),

the followings hold under Qn:

(i): |E
P

(M)
n

[φn(B, θ0)]| = Op(
√
M/n), |E

P
(M)
n

[φn(B, θ0)φn(B, θ0)′]− Ω| = op(1),

(ii): γn(θ0, P
(M)
n ) = arg maxγ∈Rm −

∫
1

1+γ′φn(b,θ0)dP
(M)
n exists w.p.a.1, |γn(θ0, P

(M)
n )| = Op(

√
M/n),

and supb∈XM |γn(θ0, P
(M)
n )′φn(b, θ0)| p→ 0.

Proof of (i). Proof of the first statement. By the triangle inequality,
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|E
P

(M)
n

[φn(B, θ0)]| ≤

∣∣∣∣∣∣EP (M)
n

[φn(B, θ0)]− 1

nB

nB∑
j=1

E
Q

(M,(j−1)L+1)
n

[φn(B, θ0)]

∣∣∣∣∣∣(B.23)

+ max
1≤j≤nB

|E
Q

(M,(j−1)L+1)
n

[φn(B, θ0)]|.

The first term is Op(
√
M/n) by the CLT. The second term is O(

√
M/n) by a similar argument in

(B.11). Therefore, the conclusion follows.

Proof of the second statement. By the triangle inequality,

|E
P

(M)
n

[φn(B, θ0)φn(B, θ0)′]− Ω|

≤ max
1≤j≤nB

|E
Q

(M,(j−1)L+1)
n

[φ(B, θ0)φ(B, θ0)′]− Ω|

+

∣∣∣∣∣∣ 1

nB

nB∑
j=1

φ(Bj , θ0)φ(Bj , θ0)′ − 1

nB

nB∑
j=1

E
Q

(M,(j−1)L+1)
n

[φ(B, θ0)φ(B, θ0)′]

∣∣∣∣∣∣ = op(1),

where the first term is o(1) by a similar argument in (B.12), and the second term is op(1) by UWLLN.

Proof of (ii). The proof is exactly as for Lemma B.5 (ii) except using Lemma B.8 (i) instead

of Lemma B.5 (i).

Lemma B.9. For each r > 0 and each sequence Qn ∈ Bn(r), the followings hold under Qn:

(i): |E
P

(M)
n

[φn(B, T̄
P

(M)
n

)]| = Op(
√
M/n), |E

P
(M)
n

[φn(B, T̄
P

(M)
n

)φn(B, T̄
P

(M)
n

)′] − Ω| = op(1), and

|E
P

(M)
n

[∂φn(B, T̄
P

(M)
n

)/∂θ′]−G| = op(
√
M),

(ii): γn(T̄
P

(M)
n

, P
(M)
n ) = arg maxγ∈Rm −

∫
1

1+γ′φn(b,T̄
P

(M)
n

)
dP

(M)
n exists w.p.a.1,

|γn(T̄
P

(M)
n

, P
(M)
n )| = Op(

√
M/n), and supb∈XM |γn(T̄

P
(M)
n

, P
(M)
n )′φn(b, T̄

P
(M)
n

)| p→ 0.

Proof of (i). By UWLLN,

(B.24) sup
θ∈Θ

∣∣∣∣∣∣EP (M)
n

[φn(B, θ)φn(B, θ)′]− 1

nB

nB∑
j=1

E
Q

(M,(j−1)L+1)
n

[φn(B, θ)φn(B, θ)′]

∣∣∣∣∣∣ p→ 0,

By applying the same argument in (B.19), we have supθ∈Θ |EP (M)
n

[φn(B, T̄
P

(M)
n

)φn(B, T̄
P

(M)
n

)′]| = O(1).

From here the proof of the first statement is the same as for the first statement of Lemma B.6 (i)

except using Lemma B.8 instead of Lemma B.5.

The second statement follows from (B.24) and Lemma B.6 (i). The third statement of the

lemma follows from continuity ∂φn(b, θ)/∂θ′ at θ0, Lemmas B.6 (i) and B.7.
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Proof of (ii). The proof is similar to the proof of Lemma B.5 (ii) except using Lemma B.9

(i) instead of Lemma B.5 (i).

Lemma B.10. Suppose that Assumption 3.1 holds. Then for each r > 0 and each sequence Qn ∈

Bn(r),

(B.25)
√
n(T̄

P
(M)
n
− θ0) = −

√
n(MΣ)−1

∫
ΛndP

(M)
n + op(1) under Qn,

(B.26)
√
n

T̄
P

(M)
n
− 1

nB

nB∑
j=1

T̄
Q

(M,(j−1)L+1)
n

 d→ N(0,Σ−1) under Qn,

where Q
(M,(j−1)L+1)
n is the M -dimensional measure on the j-th block, j = 1, . . . , nB.

Proof. The proof of (B.25) is similar to that of Lemma B.2. Replace Q
(M)
n with P

(M)
n and use

Lemmas B.8 and B.9 instead of Lemmas B.5 and B.6.

Now we prove (B.26). Lemma B.2 shows that for any Qn ∈ Bn(r) and for any block j,

√
n(T̄

Q
(M,(j−1)L+1)
n

− θ0) = −
√
n(MΣ)−1

∫
ΛndQ

(M,(j−1)L+1)
n + o(1).

Hence,

√
n

 1

nB

nB∑
j=1

T̄
Q

(M,(j−1)L+1)
n

− θ0

 = −
√
n(MΣ)−1 1

nB

nB∑
j=1

∫
ΛndQ

(M,(j−1)L+1)
n + o(1),

Subtracting the above from (B.25) one obtains

√
n

T̄
P

(M)
n
− 1

nB

nB∑
j=1

T̄
Q

(M,(j−1)L+1)
n


= −

√
n(MΣ)−1

∫ ΛndP
(M)
n − 1

nB

nB∑
j=1

∫
ΛndQ

(M,(j−1)L+1)
n


= −

√
n(MΣ)−1 1

nB

nB∑
j=1

(
Λn(Bj)−

∫
Λn(b)dQ(M,(j−1)L+1)

n

)

= −Σ−1G′Ω−1 1 +MnB/n

M
√
n

nB∑
j=1

(√
Mφn(Bj)−

∫ √
Mφn(b)dQ(M,(j−1)L+1)

n

)
d→ N(0,Σ−1),
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where the second equality follows from the definition of P
(M)
n , third equality follows from the definition

of the block empirical measure, and the convergence follows from the CLT and the fact that

EQn

[
1

n

n∑
t=1

n∑
k=1

g(Xt, θ0)g(Xk, θ0)′

]
− Ω +O(M/n)

= EQn

[
2

n

n−M∑
t=1

M∑
m=1

g(Xt, θ0)g(Xt+m, θ0)′ +
1

n

n∑
t=1

g(Xt, θ0)g(Xt, θ0)′

]
− Ω +O(M/n)

+
1

n
EQn

[
n∑

t=n−M+1

n∑
k=1

g(Xt, θ0)g(Xt+m, θ0)′

]
+ EQn

[
2

n

n−M∑
t=1

n∑
m=M+1

g(Xt, θ0)g(Xt+m, θ0)′

]

≤ o(1) +
2

n

n−M∑
t=1

n∑
m=M+1

12α(m)1−2/ηEQn

[
sup
θ∈Θ
|g(Xt, θ)|η

]2/η

= o(1),

where the O(M/n) term accounts for the weighting of the first M − 1 and last M − 1 observations

due to blocking, the first equality is a rearrangement of the sum, the seqond equality follows from

the definition of Ω, an argument similar to the proof of the second statement of Lemma B.5 (i), and

Davydov (1968, Corollary), and the third equality follows from Definition 3.1 (ii) and (iii).



44 ROBUST ESTIMATION OF MOMENT CONDITION MODELS WITH WEAKLY DEPENDENT DATA

References

[1] Andrews, D. W. K. (1982) Robust and asymptotically efficient estimation of location in a stationary strong mixing

Gaussian parametric model, Cowles Foundation Discussion Papers 659, Cowles Foundation, Yale University.

[2] Andrews, D. W. K. (1987) Consistency in nonlinear econometric models: a generic uniform law of large numbers,

Econometrica, 55, 1465-1471.

[3] Andrews, D. W. K. (1988) Robust estimation of location in a Gaussian parametric model, Advances in Econometrics,

7, 3-44.

[4] Andrews, D. W. K. (1991) Heteroskedasticity and autocorrelation consistent covariance matrix estimation, Econo-

metrica, 59, 817-858.

[5] Ashley, R. and D. Vaughan (1986) Measuring measurement error in economic time series, Journal of Business and

Economic Statistics, 4, 95-103.

[6] Beran, R. (1977) Minimum Hellinger distance estimates for parametric models, Annals of Statistics, 5, 445-463.

[7] Beran, R. (1978) An efficient and robust adaptive estimator of location, Annals of Statistics, 6, 292-313.

[8] Beran, R. (1980) Asymptotic lower bounds for risk in robust estimation, Annals of Statistics, 8, 1252-1264.

[9] Beran, R. (1981) Efficient robust tests in parametric models, Zeitschrift fur Wahrscheinlichkeitstheorie und ver-

wandte Gebiete, 57, 73-86.

[10] Beran, R. (1982) Robust estimation in models for independent non-identically distributed data, Annals of Statistics,

10, 415-428.

[11] Beran, R. (1984) Minimum distance procedures, in Handbook of Statistics, ed. by Krishnaiah, P. and P. Sen, pp.

741-754. Elsevier Science.

[12] Bickel, P. J. (1981) Quelques aspects de la statistique robuste, in Ecole d’Et de Probabilits de Saint Flour IX 1979,

ed. by P. Hennequin, pp. 1-72. Springer.

[13] Borwein, J. M. and A. S. Lewis (1993) Partially-finite programming in L1 and the existence of maximum entropy

estimates, SIAM Journal of Optimization, 3, 248-267.

[14] Davydov, Y. (1968) Convergence of distributions generated by stationary stochastic processes, Theory of Probability

and its Applications, 8, 675-683.

[15] Donoho, D. and R. Liu (1988) The “automatic” robustness of minimum distance functionals, Annals of Statistics,

16, 552-586.

[16] Hall, P. and J. L. Horowitz (1996) Bootstrap critical values for tests based on generalized-method-of-moments

estimators, Econometrica, 64, 891-916.

[17] Hansen, L. P. (1982) Large sample properties of generalized methods of moments estimators, Econometrica, 50,

1029-1054.

[18] Hansen, L. P., Heaton, J. and A. Yaron (1996) Finite-sample properties of some alternative GMM estimators,

Journal of Business and Economic Statistics, 14, 262-280.

[19] Herrndorf, N. (1984) A functional central limit theorem for weakly dependent sequences of random variables, Annals

of Probability, 12, 141-153.



ROBUST ESTIMATION OF MOMENT CONDITION MODELS WITH WEAKLY DEPENDENT DATA 45

[20] Imbens, G. W., Spady, R. H. and P. Johnson (1998) Information theoretic approaches to inference in moment

condition models, Econometrica, 66, 333-357.

[21] Kitamura, Y. (1997) Empirical likelihood methods with weakly dependent processes, Annals of Statistics, 25, 2084-

2102.

[22] Kitamura, Y. (1998) Comparing misspecified dynamic econometric models using nonparametric likelihood, Working

Paper, Department of Economics, University of Wisconsin.

[23] Kitamura, Y. (2002) A likelihood-based approach to the analysis of a class of nested and non-nested models, Working

Paper, Department of Economics, University of Pennsylvania.

[24] Kitamura, Y. (2007) Empirical likelihood methods in econometrics: theory and practice, in Advances in Economics

and Econometrics: Theory and Applications, Ninth World Congress, vol. 3, ed. by Blundell, R., Newey, W. K. and

T. Persson, Cambridge University Press, Cambridge.

[25] Kitamura, Y. and T. Otsu (2005) Minimax estimation and testing for moment condition models via large deviations,

Manuscript, Department of Economics, Yale University.

[26] Kitamura, Y., Otsu, T. and K. Evdokimov (2013) Robustness, infinitesimal neighborhoods, and moment restrictions,

Econometrica, 81, 1185-1201.

[27] Kitamura, Y. and M. Stutzer (1997) An information theoretic alternative to generalized method of moments esti-

mation, Econometrica, 65, 861-874.

[28] Martin, R. and V. Yohai (1986) Influence functionals for time series, Annals of Statistics, 14, 781-818.

[29] Newey, W. K. and R. J. Smith (2004) Higher order properties of GMM and generalized empirical likelihood esti-

mators, Econometrica, 72, 219-255.

[30] Newey, W. K. and K. D. West (1987) A simple, positive semi-definite, heteroskedasticity and autocorrelation

consistent covariance matrix, Econometrica, 55, 703-708.

[31] Newey, W. K. and K. D. West (1994) Automatic lag selection in covariance matrix estimation, Review of Economic

Studies, 61, 631–654.

[32] Owen, A. (2001) Empirical Likelihood, Chapman and Hall/CRC.

[33] Pollard, D. (2002) A User’s Guide to Measure Theoretic Probability, Cambridge University Press.

[34] Pötscher, B. M. and I. R. Prucha (1989) A uniform law of large numbers for dependent and heterogeneous data

processes, Econometrica, 57(3), 675-683.

[35] Qin, J. and J. Lawless (1994) Empirical likelihood and general estimating equations, Annals of Statistics, 22,

300-325.

[36] Rieder, H. (1978) A robust asymptotic testing model, Annals of Statistics, 6, 1080-1094.

[37] Rieder, H. (1994) Robust Asymptotic Statistics, Springer-Verlag.

[38] Schennach, S. M. (2007) Point estimation with exponentially tilted empirical likelihood, Annals of Statistics, 35,

634-672.

[39] White, H. (1982) Maximum likelihood estimation of misspecified models, Econometrica, 50, 1-25.


