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- Educational system - learning relies in a curriculum.
- Starting small concept: systematic and gradual learning [2].
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[2] Elman, J.L. (1993). Learning and development in neural networks: the importance of starting small. Cognition, 48, 71-99.
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- Educational system - learning relies in a curriculum.
- Starting small concept: systematic and gradual learning [2].
- Curriculum learning [3]:

- 2-step schedule.
- Improved accuracy and faster convergence.
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Decision Trees
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Introduction

Medical Knowledge

Frequency of diseases

Intra-/Inter- rater variability

Can determine a meaningful ?



- Treatment options for femur fracture [4]:
- Gold standard: surgery
- Depends on fracture type

- Required years of experience for reliable classification:
(5-10 years) 

- Variability: Inter-expert agreement on subclasses: 
68% kappa correlation (71% experts, 66% residents) [4]

- Arbeitsgemeinschaft Osteosynthese (AO) Standard [3]
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- Classification according to the 
Arbeitsgemeinschaft Osteosynthese (AO) Standard [5]

- Required years of experience for reliable classification:
(5-10 years) 

- Variability: Inter-expert agreement on subclasses: 
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Method

Problem Statement: 7-classes

3 classes

Abnormal Normal

Type A Type B Normal



input: X (X-ray images), Y (classification labels),
B (mini-batch size), E (expected training epochs)
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input: X (X-ray images), Y (classification labels),
B (mini-batch size), E (expected training epochs)

for each epoch e do:
Random permutation of training set f(e):  {X, Y} → {X, Y}r ;

end
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input: X (X-ray images), Y (classification labels),
B (mini-batch size), E (expected training epochs)

for each epoch e do:
Random permutation of training set f(e):  {X, Y} → {X, Y}r ;
for each training round do:

Get the next mini-batch from {X, Y}r: {xb , yb }b
B

=1 ;

end
end
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input: X (X-ray images), Y (classification labels),
B (mini-batch size), E (expected training epochs)

for each epoch e do:
Random permutation of training set f(e):  {X, Y} → {X, Y}r ;
for each training round do:

Get the next mini-batch from {X, Y}r: {xb , yb }b
B

=1 ;
Calculate cross-entropy loss L(yb, ŷb ) ;

end
end
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Compute gradients and update model weights ;

end
end

19

Method

Conventional Training



input: X (X-ray images), Y (classification labels),
B (mini-batch size), E (expected training epochs)

for each epoch e do:
Random permutation of training set f(e):  {X, Y} → {X, Y}r

for each training round do:
Get the next mini-batch from {X, Y}r: {xb , yb }b

B
=1 ;

Calculate cross-entropy loss L(yb, ŷb ) ;
Compute gradients and update model weights ;

end
end

20

Method

Conventional Training

What changes with a ?



input: X (X-ray images), Y (classification labels), c ∊ C (curriculum)
B (mini-batch size), E (expected training epochs)

for each epoch e do:
Random permutation of training set f(e):  {X, Y} → {X, Y}r

for each training round do:
Get the next mini-batch from {X, Y}r: {xb , yb }b

B
=1 ;

Calculate cross-entropy loss L(yb, ŷb ) ;
Compute gradients and update model weights ;

end
end
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input: X (X-ray images), Y (classification labels), c ∊ C (curriculum)
B (mini-batch size), E (expected training epochs)

for each epoch e do:
Random permutation of training set f(e):  {X, Y} → {X, Y}r

for each training round do:
Get the next mini-batch from {X, Y}r: {xb , yb }b

B
=1 ;

Calculate cross-entropy loss L(yb, ŷb ) ;
Compute gradients and update model weights ;

end
end
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for each epoch e do
Random permutation of training set f(e):  {X, Y} → {X, Y}r

if first epoch then
Define initial probabilities: pi

(0) = wm
c

else
Update probabilities with Eqs. (1-2)

for each training round do
Get the next mini-batch from {X, Y}r: {xb , yb }b

B
=1 ;

Calculate cross-entropy loss L(yb, ŷb ) ; 
Compute gradients and update model weights ;

end
end
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for each epoch e do
Random permutation of training set f(e):  {X, Y} → {X, Y}r

if first epoch then
Define initial probabilities: pi

(0) = wm
c

else
Update probabilities with Eqs. (1-2)

Get reordering function f(e) by sampling {X, Y} according to p(e) ;
Permute training set f(e): {X, Y} → {X, Y}c ;
for each training round do

Get the next mini-batch from {X, Y}r: {xb , yb }b
B

=1 ;
Calculate cross-entropy loss L(yb, ŷb ) ;
Compute gradients and update model weights ;

end
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for each epoch e do
Random permutation of training set f(e):  {X, Y} → {X, Y}r

if first epoch then
Define initial probabilities: pi

(0) = wm
c

else
Update probabilities with Eqs. (1-2)

end
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Training with Curriculum Learning (CL) 
curriculum

uniform



where m ∈ [1, 2, … , M] serves as index of the classes.
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Defining the curriculum

How to assign the ?
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Method

Defining the curriculum

How to assign the ?

We propose four strategies:

(i) uniform (ii) frequency (iii) AO (iv) kappa 
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(i) c : : balanced over classes.

Method

Defining the curriculum

(i) uniform (ii) frequency (iii) AO (iv) kappa 
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(ii) c : : probabilities are proportional to their original frequency in the dataset.

Method

Defining the curriculum

(i) uniform (ii) frequency (iii) AO (iv) kappa 
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(iii) c : : an experienced radiologist ranked the difficulty of the AO classes.

Method

Defining the curriculum

(i) uniform (ii) frequency (iii) AO (iv) kappa 

RANK
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(iv) c : : according to intra-rater Cohen’s kappa agreement.

Method

Defining the curriculum

(i) uniform (ii) frequency (iii) AO (iv) kappa 

kappa statistics
Ratio between observed and chance agreement.
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(iv) c : : according to intra-rater Cohen’s kappa agreement.

Method

Defining the curriculum

(iv) kappa 

[6] Jiménez-Sánchez, A., Kazi, A., Albarqouni, S., Kirchhoff, C., Biberthaler, P., Navab, N., Mateus, D. and Kirchhoff, S., (2019) Towards an Interactive and Interpretable CAD System to 
Support Proximal Femur Fracture Classification. arXiv preprint arXiv:1902.01338v1
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- Clinical dataset

~1300 X-ray images, 
from 780 patients.

Offline data augmentation: 
translation, scale and rotation.

Split into three parts with the ratio 
70% - training
10% - validation
20% - test
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~1300 X-ray images, 
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Offline data augmentation: 
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10% - validation
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- Evaluation

curriculum: difficulty is gradually 
increased (C: easy → hard).

anti-curriculum: difficulty is gradually 
decreased (C: hard → easy).

Experimental Validation



- Clinical dataset

~1300 X-ray images, 
from 780 patients.

Offline data augmentation: 
translation, scale and rotation.

Split into three parts with the ratio 
70% - training
10% - validation
20% - test
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- Evaluation

f1-score

10 runs each model

Experimental Validation
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Results

Classification Performance

f1
-s

co
re

1. Random ~ uniform-curriculum.
2. Significance difference between curriculum & anti-curriculum.
3. Frequency-curriculum suggests that the imbalance scenario is easier.
4. AO- and kappa-curriculum improves median f1-score by 15%.
5. Reach a performance comparable to experienced trauma surgeons (66-71% agreement).
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Results

6. State-of-the art results for 3 classes (Normal, type A and type B), aggregating output probabilities

Classification Performance
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Results

6. State-of-the art results for 3 classes (Normal, type A and type B), aggregating outputs
7. AO- and kappa-curriculum training on only 60% training data, performs better than random and 

uniform-curriculum using 100% training data

Classification Performance
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Conclusions & Future Work

- Medical knowledge:
- can be integrated as a curriculum strategy,
- improved up to 15% the classification score,
- helps against small datasets.

- Extend to other applications:
- Where medical decision trees are available, e.g. malignancy grading.
- Whenever intra-, inter-expert agreement is available.

- Future work: combination with uncertainty of the model.

Medical-based Deep Curriculum Learning
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