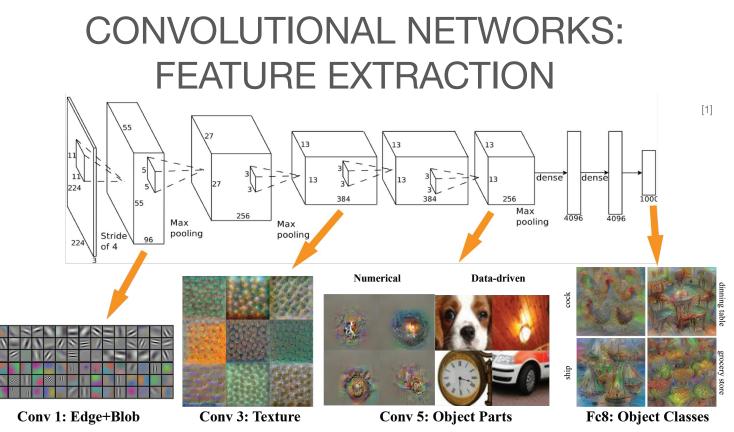
Oral Presentation in LABELS Workshop at MICCAI 2018, Granada, Spain

Amelia Jiménez-Sánchez

Universitat Pompeu Fabra

Shadi Albarqouni Technische Universität München Diana Mateus École Centrale de Nantes Introduction

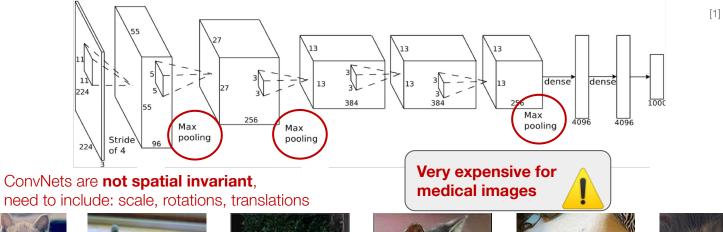


[1] http://vision03.csail.mit.edu/cnn art/index.html

Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

Introduction

CONVOLUTIONAL NETWORKS: SHORTCOMINGS



-

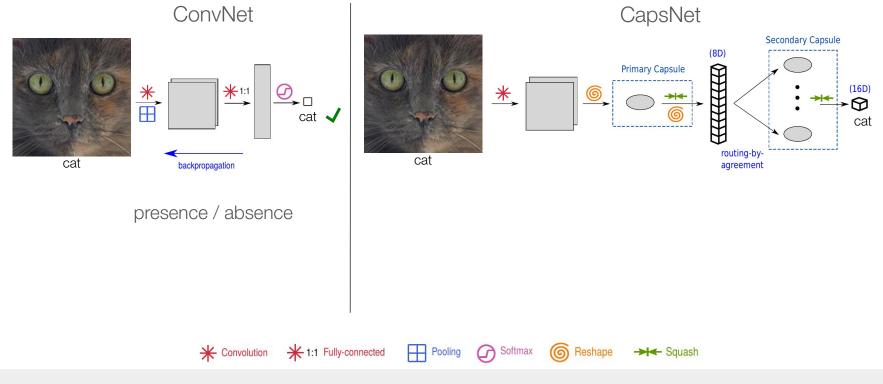
[1] http://vision03.csail.mit.edu/cnn_art/index.html

[2] <u>https://www.flickr.com/</u> #cat ©

[2]

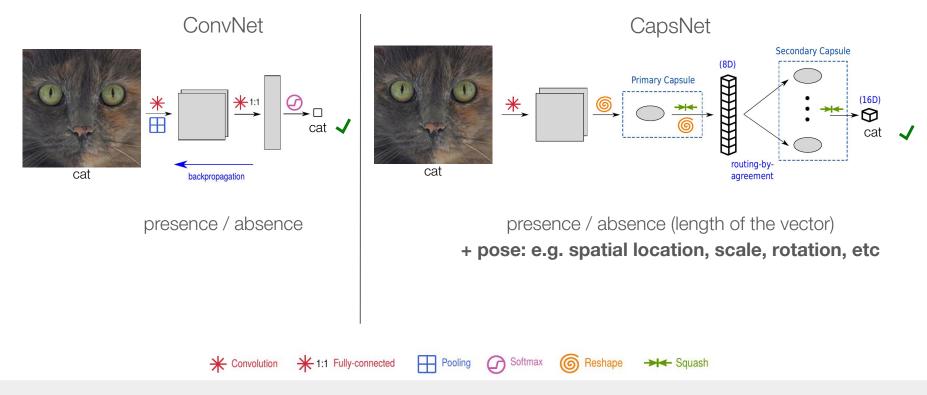
Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

CONVOLUTIONAL vs. CAPSULE NETWORK



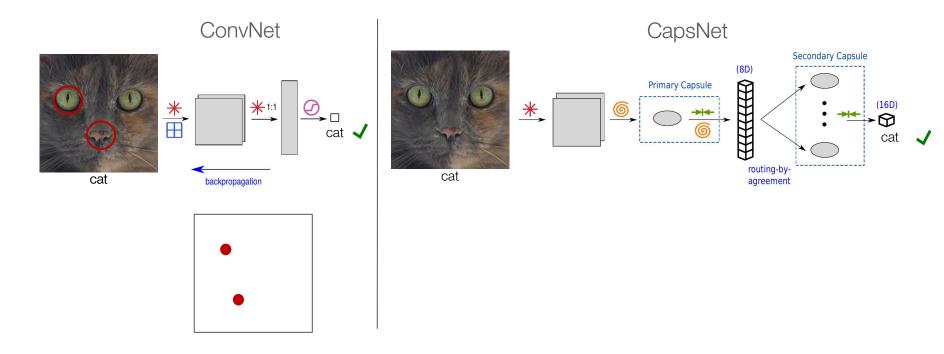
Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

CONVOLUTIONAL vs. CAPSULE NETWORK



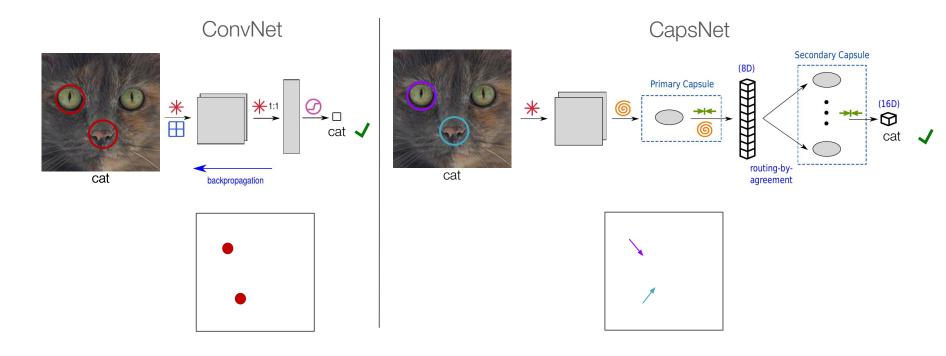
Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

CONVOLUTIONAL vs. CAPSULE NETWORK

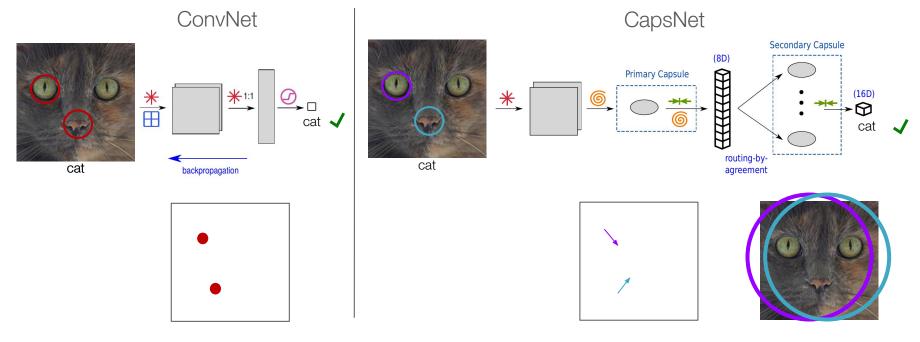


Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

CONVOLUTIONAL vs. CAPSULE NETWORK

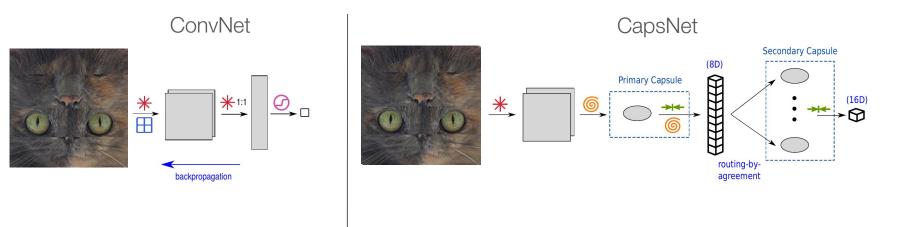


CONVOLUTIONAL vs. CAPSULE NETWORK

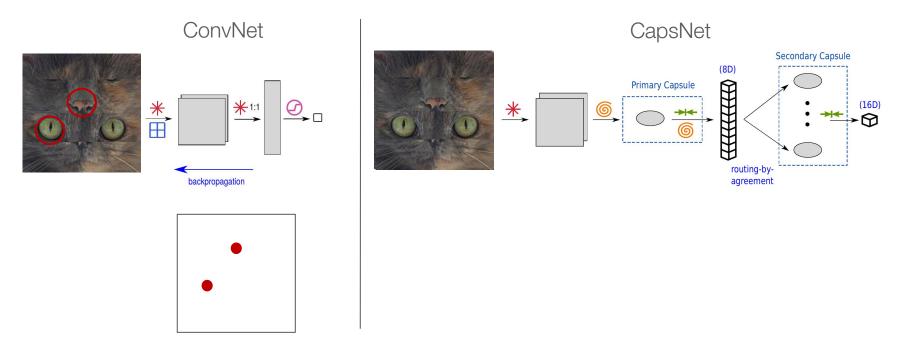


strong agreement

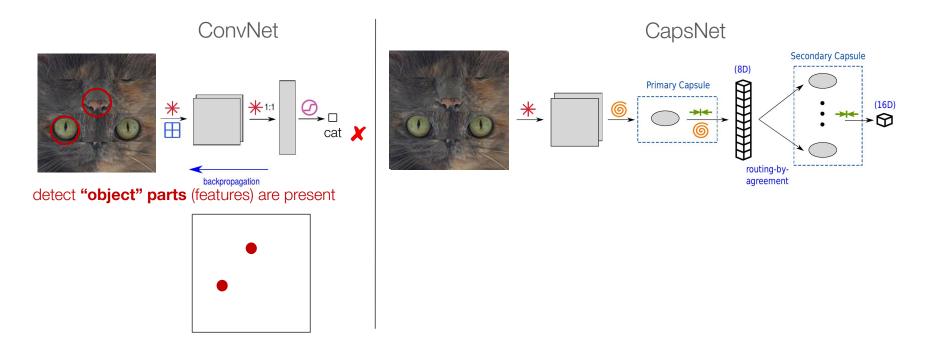
CONVOLUTIONAL vs. CAPSULE NETWORK



CONVOLUTIONAL vs. CAPSULE NETWORK

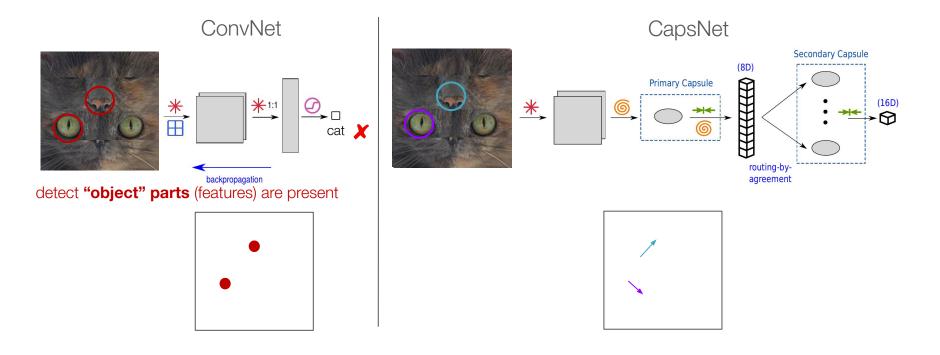


CONVOLUTIONAL vs. CAPSULE NETWORK

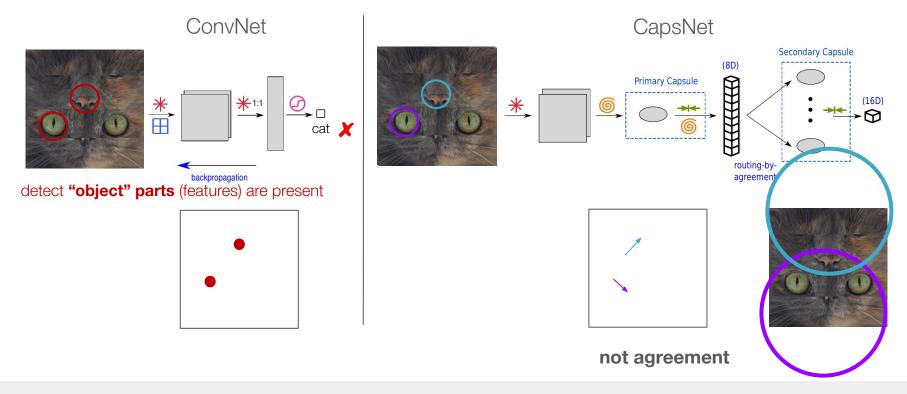


Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

CONVOLUTIONAL vs. CAPSULE NETWORK

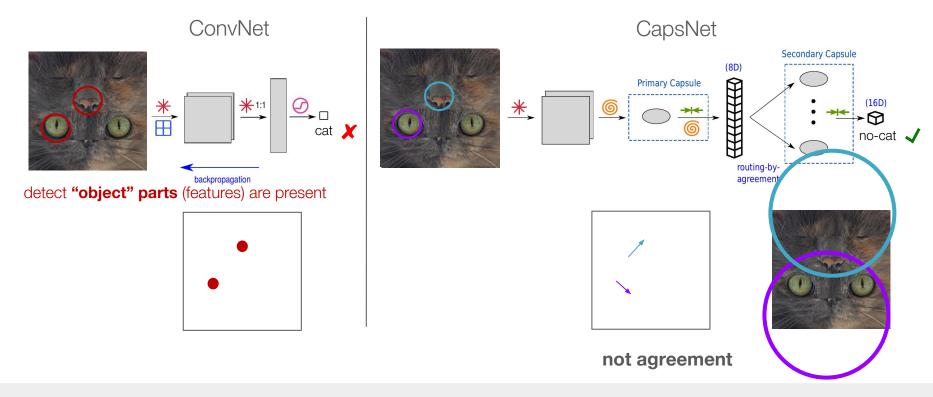


CONVOLUTIONAL vs. CAPSULE NETWORK



Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

CONVOLUTIONAL vs. CAPSULE NETWORK



Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

CONVOLUTIONAL vs. CAPSULE NETWORK

Summary of differences:

	ConvNets	CapsNets
Layer	pooling	
Process	scalar 🗆	vector 🕞
Optimization	backpropagation	routing-by-agreement
Loss	cross-entropy	margin + reconstruction

CONVOLUTIONAL vs. CAPSULE NETWORK

Summary of differences:

	ConvNets	CapsNets
Layer	pooling	
Process	scalar 🗆	vector 🕞
Optimization	backpropagation	routing-by-agreement
Loss	cross-entropy	margin + reconstruction

 $\begin{array}{ll} \mbox{Margin loss:} & ||v_k|| > 0.9 \ \mbox{-> instance is present} \\ ||v_k|| < 0.1 \ \mbox{-> instance is absent} \end{array}$

HYPOTHESIS

CapsNets are designed to learn the pose of the instance along its presence. Consequently,

less variations of the instance (fewer <u>annotated images</u>) are needed.

Medical datasets are often small and highly imbalanced.

HYPOTHESIS

We argue that CapsNet will perform better than ConvNets under medical data challenges.

HYPOTHESIS

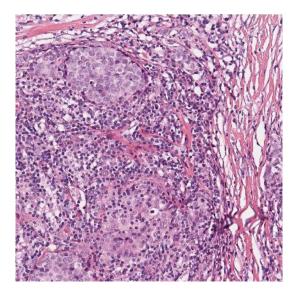
We argue that CapsNet will perform better than ConvNets under medical data challenges.

- (1) How do networks behave under decreasing **amounts of training data**?
- (2) Is there a change in their response to **class-imbalance**?
- (3) Is there any benefit from **data augmentation** as a complementary strategy?

Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

DATASETS

i) Mitosis detection (TUPAC16)^[1]



[1] Tumor Proliferation Assessment Challenge 2016 (TUPAC16 <u>http://tupac.tue-image.nl/</u>)

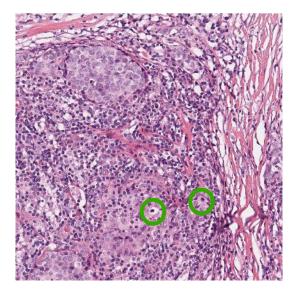
Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

ii) Diabetic retinopathy detection (DIARETDB1)^[2]

 [2] Standard Diabetic Retinopathy Database - Calibration level 1 (DIARETDB1 <u>http://www.it.lut.fi/project/imageret/diaretdb1/</u>)

DATASETS

i) Mitosis detection (TUPAC16)^[1]



[1] Tumor Proliferation Assessment Challenge 2016 (TUPAC16 <u>http://tupac.tue-image.nl/</u>)

Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

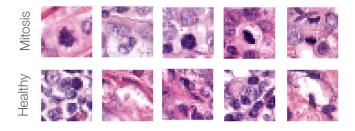
ii) Diabetic retinopathy detection (DIARETDB1)^[2]



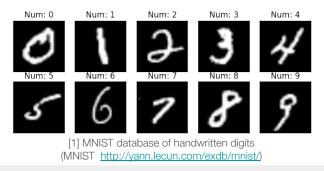
 [2] Standard Diabetic Retinopathy Database - Calibration level 1 (DIARETDB1 <u>http://www.it.lut.fi/project/imageret/diaretdb1/</u>)

DATASETS

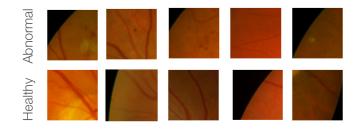
i) Mitosis detection (TUPAC16)



iii) Handwritten Digit Recognition (MNIST)^[1]



ii) Diabetic retinopathy detection (DIARETDB1)

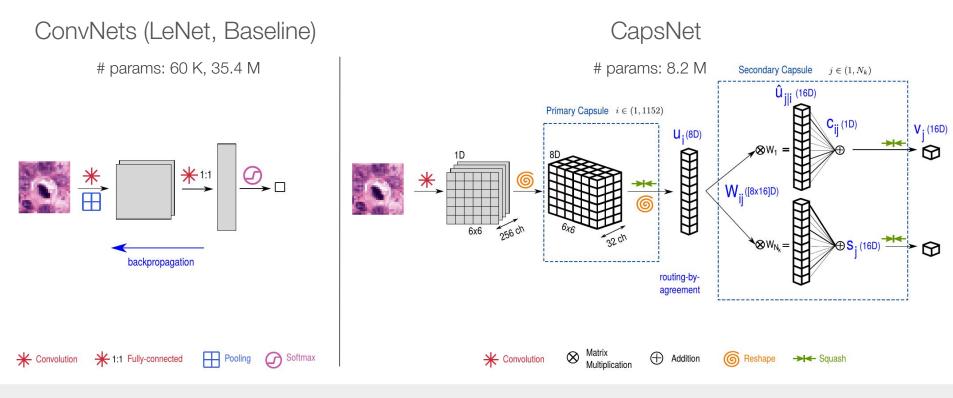


iv) Clothes Classification (Fashion-MNIST)^[2]

 [2] Zalando's article images dataset (Fashion-MNIST <u>https://github.com/zalandoresearch/fashion-mnist</u>)

Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

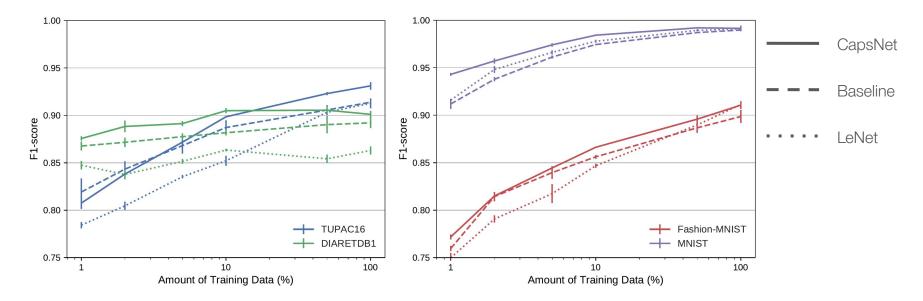
ARCHITECTURES



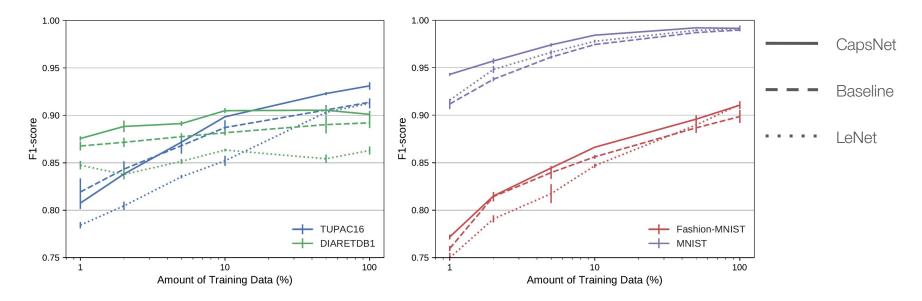
Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

(1) How do networks behave under decreasing **amounts of training data**?

(1) How do networks behave under decreasing **amounts of training data**?

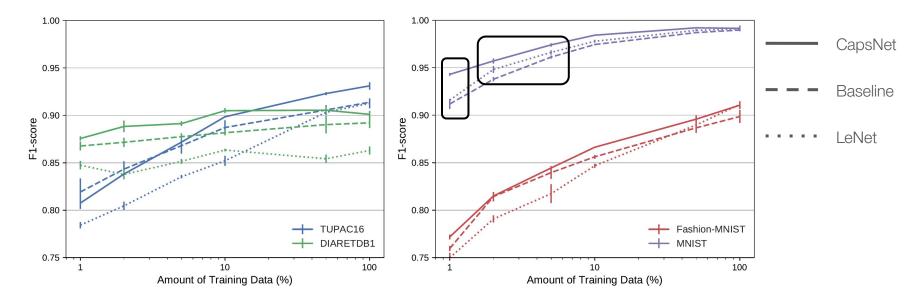


(1) How do networks behave under decreasing amounts of training data?



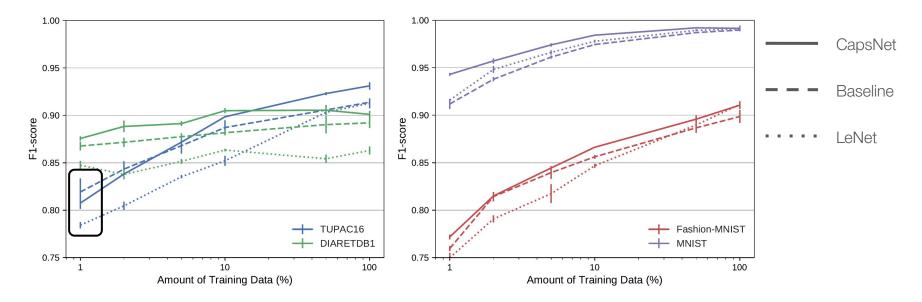
• CapsNet performs overall better than ConvNets (LeNet & Baseline).

(1) How do networks behave under decreasing amounts of training data?



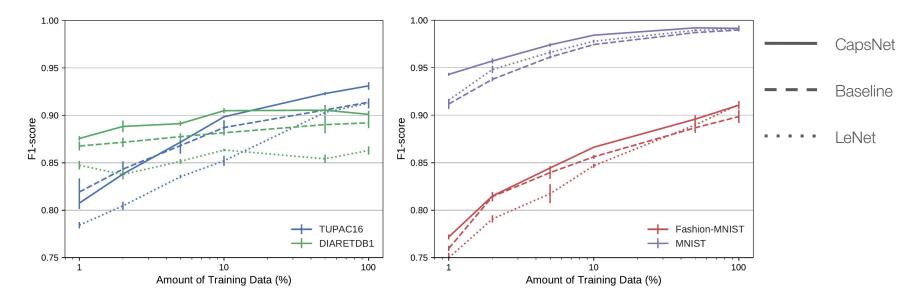
- CapsNet performs overall better than ConvNets (LeNet & Baseline).
- The gap is higher for small amount of data (MNIST).

(1) How do networks behave under decreasing amounts of training data?



- CapsNet performs overall better than ConvNets (LeNet & Baseline).
- The gap is higher for small amount of data (MNIST).
- Improvement is <u>limited</u> in more complex dataset (TUPAC16).

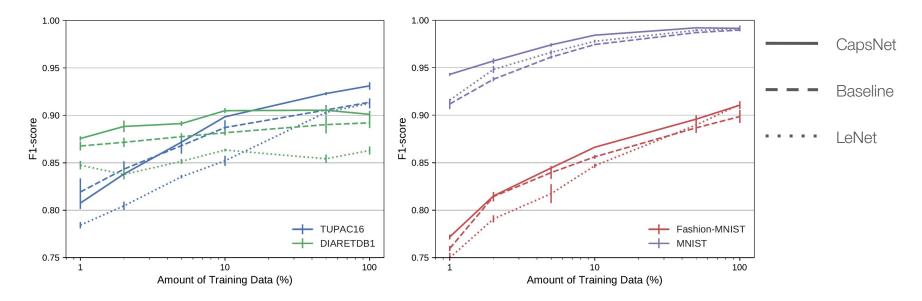
(1) How do networks behave under decreasing amounts of training data?



- CapsNet performs overall better than ConvNets (LeNet & Baseline).
- The gap is higher for small amount of data (MNIST).
- Improvement is <u>limited</u> in more complex dataset (TUPAC16).
- All our experiments validated the significance test with a p-value < 0.05 (except for TUPAC16).

Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

(1) How do networks behave under decreasing amounts of training data?



Take home messages:

- CapsNet requires **less images** for a better performance.
- Behaviour can change for different datasets.

Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

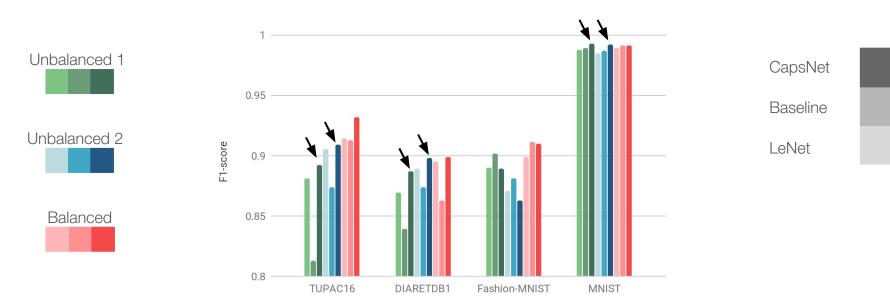
(2) Is there a change in their response to **class-imbalance**?

(2) Is there a change in their response to **class-imbalance**?

Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

(2) Is there a change in their response to **class-imbalance**?

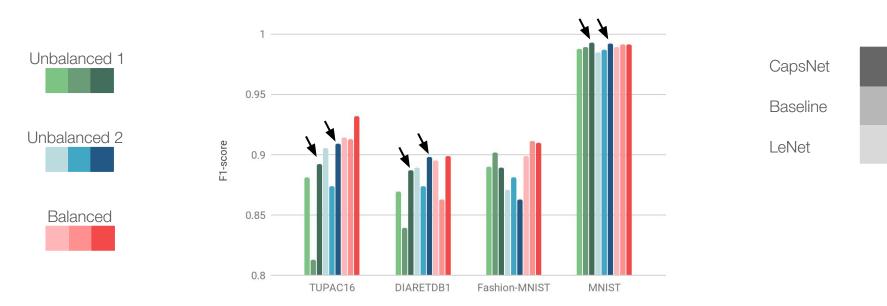
(2) Is there a change in their response to **class-imbalance**?



• CapsNet surpasses performance of ConvNets for all cases, except for Fashion-MNIST.

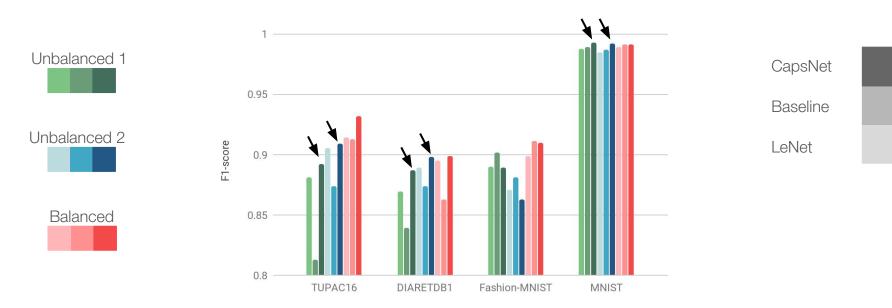
Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

(2) Is there a change in their response to **class-imbalance**?



- CapsNet surpasses performance of ConvNets for all cases, except for Fashion-MNIST.
- At least one of the unbalanced cases verified the significance test for all datasets.

(2) Is there a change in their response to **class-imbalance**?



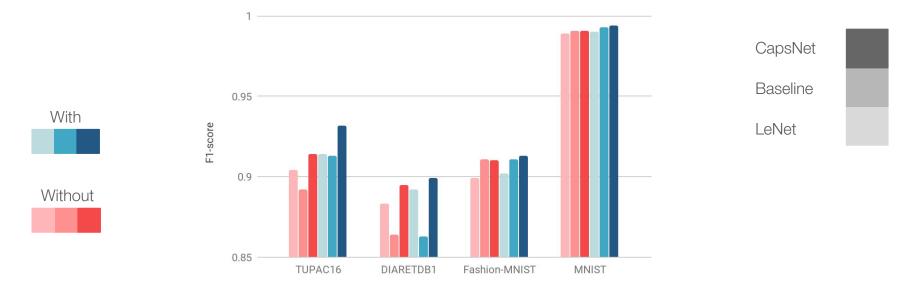
Take home message:

- CapsNet is **more robust** to imbalance in the class distribution.

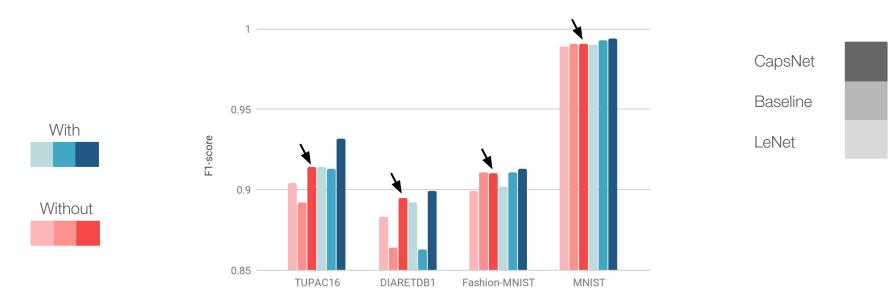
Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

(3) Is there any benefit from **data augmentation** as a complementary strategy?

(3) Is there any benefit from **data augmentation** as a complementary strategy?



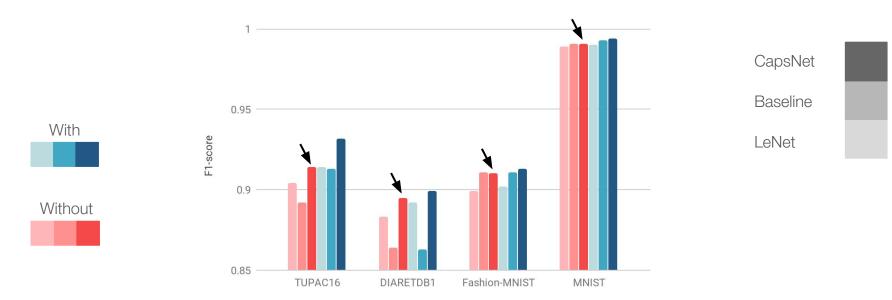
(3) Is there any benefit from **data augmentation** as a complementary strategy?



- CapsNet without data augmentation performs ... than ConvNets using data augmentation.
 - similarly (TUPAC16, MNIST, Fashion)
 - better (DIARETDB1)

Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

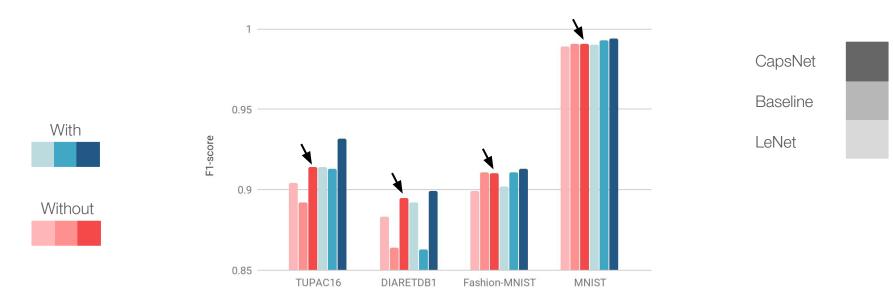
(3) Is there any benefit from **data augmentation** as a complementary strategy?



- CapsNet without data augmentation performs ... than ConvNets using data augmentation.
 - similarly (TUPAC16, MNIST, Fashion)
 - better (DIARETDB1)
- All results were found significant.

Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

(3) Is there any benefit from **data augmentation** as a complementary strategy?



Take home message:

- CapsNet learns **a stronger representation** with less variability of the data.

Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

Conclusion

- + **Equivariance** modeling, requires to see fewer viewpoints of the instance of interest.
- Allows to reduce the number of parameters
 for a comparable performance.
- CapsNet improves CADx classification
 performance under medical data challenges.

- Routing-by-agreement is **slower** than backpropagation (≈ convergence time).
- Improvement is **limited** in more complex datasets (TUPAC16).
- **Reconstructions** are blurry for medical datasets with complex backgrounds.

Outlook

- Fully convolutional **decoder** to handle complex backgrounds.
- Explore CapsNets in a **semi-supervised** or **unsupervised** framework.
- Investigate the latent space to improve explainability and interpretability.
- Look into more suitable **medical datasets**, in which neighborhood structure plays a role for diagnosis.

ACKNOWLEDGEMENT

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 713673.

Amelia Jiménez-Sánchez has received financial support through the "la Caixa" INPhINIT Fellowship Grant for Doctoral studies at Spanish Research Centres of Excellence, "la Caixa" Banking Foundation, Barcelona, Spain.

Amelia Jiménez-Sánchez, Shadi Albarqouni, Diana Mateus

Thank you for your attention!

Amelia Jiménez-Sánchez

amelia.jimenez@upf.edu

