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Abstract—We provide a deterministic channel model for a
scenario where wireless connectivity is established through a
reflection from a planar smooth surface of an infinite extent. The
developed model is rigorously built upon the physics of wave
propagation, and is as precise as tight are the unboundedness
and smoothness assumptions on the surface. This model allows
establishing that line-of-sight spatial multiplexing can take place
via reflection off an electrically large surface, a situation of high
interest for mmWave and terahertz frequencies.

I. INTRODUCTION

The wealth of unexplored spectrum in the mmWave and
terahertz ranges brings an onrush of wireless research seeking
its fortune at these frequencies [1]–[3]. The short transmission
range for which these frequencies are most suitable, in
conjunction with the short wavelength, enable reasonably
sized arrays to access multiple spatial degrees of freedom
(DOF) even under direct line-of-sight (LOS) propagation [4].
This potential has unleashed much research activity on LOS
multiple-input multiple-output (MIMO) communication [5].

A downside of these high frequencies is blockage and lack
of diffraction around obstacles, which may render LOS MIMO
vulnerable to interruptions. This naturally raises the interest
in studying whether LOS MIMO links could also operate
through a reflection, capitalizing on the availability in many
environments of interest of surfaces that are electrically (i.e.,
relative to the wavelength) large.

This paper examines MIMO communication via reflection
off a flat smooth surface of infinite extent. One possibility
would be to apply ray tracing tools [6], but the accuracy
to which the environment should be characterized to prevent
artifacts is not known a priori. Instead, we derive a
physics-based scalar channel model that is valid for arbitrary
materials, with a perfectly conductive material as a special
case. Generalization to vector electromagnetic channels would
allow incorporating the role of polarization [7].

II. PLANE-WAVE REFLECTION

We study wave propagation in a 3D isotropic and
unbounded medium containing a planar surface at rz =
d1, orthogonal to an arbitrary z-axis. Thus, the propagation
medium is divided into a left half-space rz < d1 and a right
half-space rz > d1, as illustrated in Fig. 1. All quantities
associated with the left and right half-spaces are subscripted
by 1 and 2, respectively. We assume free-space in the left
half-space, whereas the right half-space consists of a lossless
material having permeability µ2 and permittivity ε2.
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Figure 1. 3D medium with a planar surface at rz = d1. View
from the xz-plane of incidence.

Consider the xz-plane containing the direction of
propagation and the surface normal, namely the plane of
incidence. An upgoing incident plane wave traveling in the
half-space rz < d1 from an angle θi ∈ [0, π/2] with respect
to the surface normal is expressed as1

ei(r) = E+
i (κx) e

j(κxrx+κ1zrz) (1)

with amplitude E+
i (κx) and real-valued κ1z = (κ21 − κ2x)1/2

for |κx| ≤ κ1, given κ1 = ω/c as the wavenumber in
the left half-space with ω the frequency. Evanescent waves
are disregarded unless otherwise stated, and (κx, κ1z) =
(κ1 sin θi, κ1 cos θi) specifies the direction of the incident wave
on the plane of incidence. After impinging on the surface, a
downgoing reflected plane wave is generated in the half-space
rz < d1 as

er(r) = E−r (κx,r) e
j(κx,rrx−κz,r(rz−2d1)) (2)

with amplitude E+
r (κx,r) and κz,r = (κ21 − κ2x,r)1/2 in the

domain |κx,r| ≤ κ1. Here, (κx,r, κz,r) = (κ1 sin θr, κ1 cos θr)
where θr is the reflection angle relative to the surface normal.
With respect to (1), the extra phase in (2) accounts for the
round-trip delay accumulated by the incident plane wave
during its travel to the surface and back, along the z-axis.
This can be regarded as a migration of the reflected plane wave
and is directly connected to the image theorem, as discussed

1We use + and − to distinguish between quantities associated with upgoing
and downgoing waves, respectively. Upgoing waves ejκ1zrz propagate along
the z-axis whereas downgoing waves e−jκ1zrz propagate along the −z-axis.



in Sec. V. In addition to (2), the upgoing plane wave in (1)
generates in the half-space rz > d1 a transmitted wave

et(r) = E+
t (κx,t) e

j(κx,trx+κz,t(rz−d1))ejκ1zd1 (3)

with amplitude E+
t (κx,t) and κz,t = (κ22 − κ2x,t)1/2, given

κ2 = ω/c2 with c2 = c/n2 the wave speed in the right
half-space and n2 > 1 the corresponding refractive index.
Here, (κx,t, κz,t) = (κ2 sin θt, κ2 cos θt) with θt the transmitted
angle with respect to the surface normal in the right half-space.
Similarly to (2), we added the migration effect due to the
one-way delay accumulated by the incident wave in its travel
from the origin to the surface, along the z-axis. A complete
description of what unfolds on the incident plane is obtained
by combining (1) and (2) into

e(r) =

{
ei(r) + er(r) rz < d1

et(r) rz > d1.
(4)

The boundary conditions require continuity of the field and its
first-order derivative across the surface [8, Eq. 2.1.9a], namely

e(r)|rz=d−1 = e(r)|rz=d+1 (5)

µ−11

∂

∂rz
e(r)|rz=d−1 = µ−12

∂

∂rz
e(r)|rz=d+1 (6)

for all (rx, ry). Here, (5) leads to the so-called phase matching
condition

κx,r = κx,t = κx (7)

from which κz,r = κ1z and κz,t = (κ22 − κ2x)1/2 = κ2z . Notice
that, since n2 > n1 (i.e., κ2 > κ1), we have that κ2z is
real-valued for |κx| ≤ κ1. Hence, no evanescent waves are
created in the right half-space; the transmitted wave is still
propagating. In spherical coordinates, we would obtain the
general Snell’s law of refraction [9, Eq. 1.5.6], θr = θi and
sin(θt)
sin(θi)

= n1

n2
, for all incident angles. Also, plugging (7) into

(5) and accounting for (6) we obtain, for all κx,{
E+

i (κx) + E−r (κx) = E+
t (κx)

E+
i (κx)− E−r (κx) = α(κx)E

+
t (κx)

(8)

where we defined α(κx) = µ1κ2z/(µ2κ1z). Hence, the
boundary conditions form a system of two equations in
two unknowns. The unknowns E−r (κx) and E+

t (κx) are
parametrized by E+

i (κx) for all κx. After normalization,
these can be written in terms of the Fresnel reflection and
transmission coefficients

R−(κx) =
E−r (κx)

E+
i (κx)

T+(κx) =
E+

t (κx)

E+
i (κx)

, (9)

which specify the fraction of incident field that is reflected
from or transmitted across the surface, for all possible incident
angles. Since the material cannot amplify the signal, the
magnitudes of the Fresnel coefficients are always less than

one. General expressions for these coefficients may be found
by solving (8), e.g., using Cramer’s rule, as [8, Eq. 2.1.13]

R−(κx) =
1− α
1 + α

=
µ2κ1z − µ1κ2z
µ2κ1z + µ1κ2z

(10)

T+(κx) =
2

1 + α
=

2µ2κ1z
µ2κ1z + µ1κ2z

. (11)

Both relate through the linear relationship

1 +R−(κx) = T+(κx). (12)

In a homogeneous medium, µ1 = µ2 and ε1 = ε2 (i.e.,
κ1z = κ2z) so that R−(κx) = 0 and T+(κx) = 1. With a
perfectly conductive material, µ2 = 0 so that R−(κx) = −1
and T+(κx) = 0, corresponding to total reflection.

III. FOURIER PLANE-WAVE REPRESENTATION

Studying the interaction between a plane wave and a
smooth surface is of key importance as the field generated
by an arbitrary source can be represented exactly in terms
of plane waves—even in the near field [8], [10]. Particularly,
let j(r) be a narrowband source defined within a volume
VS ⊂ {rz < d1}. This creates an incident field, ei(r),
that can be expanded exactly as an integral superposition of
plane waves, propagating and evanescent [8], [10]. If VS is
embedded in a sphere of radius R0 < d1, then, outside of this
sphere, on the plane of incidence [11]

ei(r) =


∫ ∞
−∞

E−i (κx) e
j(κxrx−κ1zrz)

dκx
2π

rz < −R0∫ ∞
−∞

E+
i (κx) e

j(κxrx+κ1zrz)
dκx
2π

rz > R0

(13)

where each plane wave has complex-valued amplitude

E±i (κx) =
κ1η1
2

J±(κx)

κ1z
(14)

with J±(κx) the wavenumber spectrum of j(r) obtained via a
two-dimensional Fourier transform on the xz-plane evaluated
at κz = ±κ1z , i.e.,

J±(κx) =

∫∫
VS

j(s) e−j(κxsx±κ1zsz) dsxdsz (15)

given η1 =
√
µ1/ε1.

IV. CHANNEL IMPULSE RESPONSE

Fundamental principles describing the reflection and
transmission phenomena at the surface can be applied to each
incident plane wave separately and then combined to obtain
the general field expression e(r). Provided the source and the
surface are separated by several wavelengths, only propagating
plane waves contribute. The wavenumber domain is limited to
a compact support (κx, κy) ∈ D with D a disk of radius κ1.
The Fourier plane-wave representation of e(r) is given in (16)
with real-valued

κiz =
√
κ2i − κ2x − κ2y (17)



e(r) =



∫∫
D

(
E−i (κx, κy)e

−jκ1zrz + E+
i (κx, κy)R−(κx, κy) e

−jκ1z(rz−2d1)
)
ej(κxrx+κyry)

dκx
2π

dκy
2π

rz < −R0∫∫
D
E+

i (κx, κy)
(
ejκ1zrz +R−(κx, κy)e

−jκ1z(rz−2d1)
)
ej(κxrx+κyry)

dκx
2π

dκy
2π

R0 < rz ≤ d1∫∫
D
E+

i (κx, κy)e
jκ1zd1T+(κx, κy)e

jκ2z(rz−d1)ej(κxrx+κyry)
dκx
2π

dκy
2π

rz > d1

(16)

H(κx, κy) =



κ1η1
2

1D(κx,κy)

κ1z

(
e−jκ1z(rz−sz) +R−(κx, κy)e

−jκ1z(rz+sz−2d1)
)

rz < −R0

κ1η1
2

1D(κx,κy)

κ1z

(
ejκ1z(rz−sz) +R−(κx, κy)e

−jκ1z(rz+sz−2d1)
)

R0 < rz ≤ d1
κ1η1
2

1D(κx,κy)

κ1z
ejκ1z(d1−sz)T+(κx, κy)e

jκ2z(rz−d1) rz > d1

(20)

for i = 1, 2 while R−(κx, κy) and T+(κx, κy) are the Fresnel
coefficients in (10) and (11). Field continuity at rz = d1 can
be verified in (16) by invoking (12). The relationship between
e(r) and j(s) is the spatial convolution

e(r) =

∫
VS

j(s)h(r, s) ds (18)

where h(r, s) is the channel impulse response. Plugging (14)
into (16) and replacing the source spectrum with its Fourier
transform in (15), the channel response can be written as the
inverse Fourier transform

h(x, y; rz, sz) =

∫∫ ∞
−∞
H(κx, κy)e

j(κxx+κyy)
dκx
2π

dκy
2π

(19)

of the spectrum in (20), where we have embedded the
integration domain into a functional dependence through an
indicator function. This response is a function of the space-lag
variables rx − sx = x and ry − sy = y.

V. IMAGE THEOREM

Recalling (14), we can rewrite the reflected component in
(16) as

er(r) =
κ1η1
2

∫∫ ∞
−∞

J−r (κx, κy)

κ1z
ejκ1z2d1

· ej(κxrx+κyry−κ1zrz)
dκx
2π

dκy
2π

rz ≤ d1 (21)

where J−r (κx, κy) relates to the spectrum J+(κx, κy) of the
original source in (15) via

J−r (κx, κy) = J+(κx, κy)R−(κx, κy). (22)

Notice that (21) and the 3D counterpart of (13) have the
same form, up to a phase shift. Here, J−r (κx, κy) is the
spectrum in (15) of a fictitious source j−r (r). The phase shift
in (21) is equivalently a shift in the centroid of the source
around rz = 2d1. For a perfectly conductive surface, i.e.,
such that R−(κx, κy) = −1, the reflected field in (21) may
be reproduced exactly by replicating the original source at
rz = 2d1. This is the image theorem whereby the ideal
reflection elicited by a perfect conductor is equivalent to a
mirror image of the original source [12, Sec. 4.7.1]. As an

example, for a point source j(r) = δ(r), applying Weyl’s
identity [8, Eq. 2.2.27]

ejκ1

√
r2x+r

2
y+r

2
z√

r2x + r2y + r2z

=
j

2π

∫∫ ∞
−∞

ej(κxx+κyy+κ1z|z|)

κ1z
dκxdκy

(23)
we obtain

e(r) ∝ ejκ1

√
r2x+r

2
y+r

2
z√

r2x + r2y + r2z

+
ejκ1

√
r2x+r

2
y+(rz−2d1)2√

r2x + r2y + (rz − 2d1)2
, (24)

which describes two spherical waves generated by the original
point source and its image. For an arbitrary material, the
equivalent source is the inverse Fourier transform of (22).
This simplifies when the surface is far enough from the source
that R−(κx, κy) in (22) is roughly constant across the receive
array and for all possible incident angles; then, the equivalent
source becomes a weakened (and phase-shifted) version of the
original one, which is the premise of ray tracing algorithms.
However, this need not be the case in LOS MIMO, which rests
on the range being short.

VI. APPLICATION TO MIMO COMMUNICATION

We now apply the developed channel model to numerically
evaluate the channel eigenvalues, DOF, and spectral efficiency.
With N transmit and N receive antennas, the channel matrix
H ∈ CN×N is obtained by sampling the response at the
antenna locations, [H]m,n = h(rm, sn) for m,n = 1, . . . , N .
We consider uniform linear arrays (ULAs) at 57.5 GHz under
the proviso of these ULAs being substantially shorter than
their separating range, the so-called paraxial approximation, so
we can leverage results available for LOS channels [13], [14].
We will show how these generalize to reflected transmissions.
We hasten to emphasize that the reliance on the paraxial
approximation is confined to the production of benchmark
results for LOS MIMO; our channel model is valid regardless
of the geometry. The frequency, in turn, is motivated by
mmWave applications [1] and by the availability of refractive
indexes for most common materials (see Table I) [15].

The ULAs are aligned with the x-axis and equipped with
N = 8 antennas with spacing d. The range between the arrays
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Figure 2. Normalized channel eigenvalues for materials
chosen from Table I. Parallel ULAs separated by D = 10 m
and equipped with N = 8 antennas, with antenna spacing
d(D) in (25). The surface is at d1 = 15 m from the transmitter.
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Figure 3. Spectral efficiency as a function of SNR for different
materials. The antenna spacing is d(D,SNR) in (28).

is D = 10 m whereas the surface is at d1 = 15 m. We begin
by validating the developed model for the direct LOS channel,
as there is an explicit solution in this case, namely the Green’s
function. We set

d(D) =
√
λD/N, (25)

which renders the direct H a Fourier matrix and is optimum
at high SNR [4], [13]. The normalized channel eigenvalues

Table I. Refractive indices of common building materials at
57.5 GHz [15].

Material n2 κ2 [Krad/m]
Perfect conductor ∞ ∞

Concrete 2.55 3.07
Floor board 1.98 2.38

Plaster board 1.50 1.81
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Figure 4. Normalized channel eigenvalues. The antenna
spacing is d(D) for the LOS channel and d(De) for the
reflected channel.

of HH∗, λn(H), are plotted in Fig. 2. The perfect match
validates the developed model for this LOS setting.

For the second term in (20), which corresponds to the
reflection, the eigenvalues are also shown in Fig. 2. These
undergo two effects relative to their LOS brethren:
• Power loss caused by the longer range (higher pathloss)

and by the reflection of only a share of the incident power,
with denser materials reflecting better.

• Spatial selectivity due the antenna spacing in (25) being
suboptimal for the longer range of the reflected channel.

We now gauge the capacity with channel-state information
at transmitter and receiver, which equals [16], [17]

C(H,SNR) =
N∑
n=1

log2

(
1 +

(
ν − 1

λn(H)

)+
λn(H)

)
(26)

where ν is such that
∑N
n=1 (ν − 1/λn(H))

+
= SNR with the

eigenvalues normalized such that
∑N
n=1 λn(H) = N2. At a

given SNR, maxH C(H,SNR) ≤ C(SNR) with [13], [14]

C(SNR) = max
ρ∈{1,2,...,N}

ρ log2

(
1 +

SNR

ρ

N2

ρ

)
. (27)

This capacity upper bound corresponds to ρ nonzero identical
eigenvalues and to the SNR-dependent antenna spacing

d(D,SNR) =
√
ηλD/N, (28)

for a fraction η = ρ(SNR)/N ∈ [0, 1] of the N potential DOF.
The capacity C(H,SNR) is reported in Fig. 3 for the

antenna spacing, d(D,SNR), that is optimum for the upper
bound of the LOS channel at every SNR. With respect to the
LOS case, the capacity of the reflected channel experiences
an offset (the power loss, due to the higher pathloss) and a
reduced slope (the DOF loss, due to the spatial selectivity).

While the power loss is inevitable, because of the longer
range, the spatial selectivity can be compensated by adjusting
the antenna spacing. To this end, recall from the image
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Figure 5. Spectral efficiency corresponding to the eigenvalues
in Fig. 4. The antenna spacing is d(D,SNR) for the LOS
channel and d(De,SNR) for the reflected channel.

theorem that the reflected channel can be regarded as an
equivalent LOS channel with augmented distance De > D
between the (equivalent) source and receiver; in our setting,
De = 2d1 − D. For the perfect conductor case, this alone
justifies the choice of an antenna spacing equal to d(De). The
argument is somewhat more involved for arbitrary materials,
but it ultimately leads to the same result, as illustrated in
Fig. 4. Numerically, this is supported by the invariance of
the curves for different materials in Fig. 2. Physically, it
is explained by the paraxial approximation, based on which
the field reaches the surface in a small neighborhood of a
certain direction and has thus an almost constant wavenumber
response. Analytically, we can pull out R−(κx, κy) in (20) so
that all the LOS eigenvalues are identically scaled by a factor
|R−(κx, κy)|2, the reflectivity [9, Sec. 1.5.3].

For completeness, we plot in Fig. 5 the spectral efficiency
corresponding to the eigenvalues in Fig. 4. With respect to
Fig. 3, the antenna spacing is set to d(De,SNR) to provide
full DOF via the reflection at high SNR, which means the
same slope as the LOS channel in this regime.

VII. SUMMARY

Through a physics-based formulation, without relying on
ray tracing, we have confirmed that reflections off large and
smooth flat surfaces, say walls or the ceiling, can behave as
LOS links from the standpoint of MIMO communication. Such
reflections may therefore provide welcome alternative paths
for LOS MIMO transmissions. With respect to a direct LOS
link, a reflected counterpart exhibits:

• A power loss determined by the additional range and by
the share of incident power reflected by the surface.

• A reduction in the number of DOF because of the antenna
spacing tailored to the LOS link being smaller than the
one that the reflected link would require at the same SNR.

If the arrays are outright configured for the reflected
transmission, then the second effect is corrected with a mere
adjustment of the antenna spacings for the extended range.

The above observations bode well for flexible LOS
MIMO communication aided by reflections, with further work
required to determine the impact of surface finiteness and
roughness, and of multiple reflections.
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