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Abstract Synaptic plasticity causing SOC

e Neural activity self-regulates to prevent In this work we analytically derive a local

Simulations

neural circuits from becoming hyper- or synaptic rule that can drive and maintain a The Dissipated Spontaneous Activity Model with 'Plastic’ Synapses
hypoactive by means of homeostatic pro- neural network near the critical state. Accord- e Setup: N =500 L = 500 p— 0.9. Synapses initialized homogeneously
cesses [9]. ing to the proposed rule, synapses are either We define average magnitudes during the period T of a neuron: o | )

e Optimal information processing in com-  Strengthened or weakened whenever a post- . 18 K=o Lo | | 18 K=ol
plex systems is attained at a critical point, Synaptic neuron receives either more or less e Average total spontaneous evolution: E;.:, = ({1) — 1)p. | | ‘ ‘ |

near a transition between an ordered and an  NPUt from the population than the required e Average effective spontaneous evolution: e~ il S H
unordered regime of dynamics [5, 3, 8, 6].  tO fire at its natural frequency. This simple a4l > I | 0.98 i i 14
principle is enough for the network to self- Eerr =max{0,L —1—(N—1)(¢)} =

e Self-Organized Criticality (SOC) [1, 2]
has been proposed as a mechanism for neu-
ral systems which evolve naturally to a crit-
Ical state without external tuning.

: . : 1.2¢
organize at a critical region where the

dynamic range is maximized. We Illus- 3 :
trate this using a model of non-leaky spiking Eicc = Etopa) — Eors. 0 200 400 600
neurons with delayed coupling. | | |

[1 Their subtraction gives the dissipated spontaneous evolution:

e Regulation mechanism may be provided by
synaptic plasticity, as proposed in [7]. (a) - (b)

| | I I 0.98
e evobtn
The model : Nonleaky integrate-and-fire model L T | I o o e
ol : 0 500 , sgggds 1500 2000 0 1?;) periodébo 300 0 0.5 #peiriods 15 X 1042
e Activation state a; of a neuron i evolves toward a threshold L . ol g | Temporal evolution for differ.e.nt initigl interagtion strengths above (top row) and below
When L is reached, a spike is propagated to other neurons. e, ! = [ (bottom row) the critical point for different values of k (left and right).

e When 1 receives a spike, a; Is increased according to the synaptic efficacy €.
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e Subthreshold (discrete) dynamics of neuron 7, / = {1..N}: 5 - ! — e e After an initial transient, the network converges to a critical regime, where

1 o diss | - SRR Sy ] ] o
ai(t +1) — ai(t) = Alpoise(t) + lrec(t — taeray) Yo+ i the dynamics balances between a predictable pattern of activity and un-

| | | E 5 1 correlated random behavior.
Inoise Stochastic process — Bernoulli process V\//\'/th noise rate p i I “Hv < ' e K determines the speed of convergence and the quality and stability of the
I,..(t) population induced activity — Z e, Hy (a(1)) 8 10 12 14 16 dynamics at the critical state.
_ J=LJ# (a): Example of temporal evolution of a;(t) during a period of length 7 = 15. e Analytical approximations for time of convergence given in the paper.
tielsy Propagation delay — ! (b): Empirical versus analytical Ejjcc (Egjss is maximized at n = 1).
Hy (x) is the Heaviside step function: H; (x) =1 if x > L, and O otherwise. (c): Analytical curves of E;yta, Eefs and E ;< around the critical point. Conclusions

Model with 'Static’ Synapses e We have derived a local synaptic mechanism that induces global home-

Local Plasticity Rule

ostasis towards an optimal dynamic state.

o Degree of interaction between the units ((€) = mean synaptic efficacy) : Individual synapses €;; are updated in the direction of the gradient of E ;s each e The proposed synaptic rule generalizes SOC rule proposed in [3] for binary

) . . cL
|1 Sub-critical forn >1 time a post-synaptic neuron / fires: neurons to the case of spiking neurons.
M = (N — 1)(e) § Critical form=1 GEQ- i sqn(L1) e Results indicate that effects of fluctuations due to noise are minimized at
Super-critical formn <1 Dejj =k > =K , > =T the critical state (n = 1).
N | | N | | z 2\/(L’ +2¢)"+2c(L - L")
e [ransition from irregular, noise-driven, dynamics to regular, self-sustained
behavior at a critical coupling strength n = 1.
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e Dynamic range AT = Ty — Tmin Is Maximized at n =1 [4]. [1 The resulting plasticity rule involves only local terms.




