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Abstract

• Neural activity self-regulates to prevent
neural circuits from becoming hyper- or
hypoactive by means of homeostatic pro-
cesses [9].

• Optimal information processing in com-
plex systems is attained at a critical point,
near a transition between an ordered and an
unordered regime of dynamics [5, 3, 8, 6].

• Self-Organized Criticality (SOC) [1, 2]
has been proposed as a mechanism for neu-
ral systems which evolve naturally to a crit-
ical state without external tuning.

• Regulation mechanism may be provided by
synaptic plasticity, as proposed in [7].

In this work we analytically derive a local
synaptic rule that can drive and maintain a
neural network near the critical state. Accord-
ing to the proposed rule, synapses are either
strengthened or weakened whenever a post-
synaptic neuron receives either more or less
input from the population than the required
to fire at its natural frequency. This simple
principle is enough for the network to self-
organize at a critical region where the
dynamic range is maximized. We illus-
trate this using a model of non-leaky spiking
neurons with delayed coupling.

The model : Nonleaky integrate-and-fire model

• Activation state ai of a neuron i evolves toward a threshold L.

When L is reached, a spike is propagated to other neurons.

• When i receives a spike, ai is increased according to the synaptic efficacy ǫi j .

• Subthreshold (discrete) dynamics of neuron i , i = {1..N}:

ai(t + 1)− ai(t) = ∆Inoise(t) + Irec(t − tdelay)

Inoise stochastic process → Bernoulli process with noise rate p

Irec(t) population induced activity →
N

∑

j=1,j 6=i

ǫi jHL(aj(t))

tdelay propagation delay → 1

HL(x) is the Heaviside step function: HL(x) = 1 if x ≥ L, and 0 otherwise.

Model with ’Static’ Synapses

• Degree of interaction between the units (〈ǫ〉 ≡ mean synaptic efficacy) :

η =
L− 1

(N − 1)〈ǫ〉
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Sub-critical for η > 1

Critical for η = 1

Super-critical for η < 1

• Transition from irregular, noise-driven, dynamics to regular, self-sustained

behavior at a critical coupling strength η = 1.
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• Dynamic range ∆τ = τmax − τmin is maximized at η = 1 [4].

Synaptic plasticity causing SOC

The Dissipated Spontaneous Activity

We define average magnitudes during the period τ of a neuron:

• Average total spontaneous evolution: Etotal = (〈τ〉 − 1)p.

• Average effective spontaneous evolution:

Eef f = max{0, L− 1− (N − 1)〈ǫ〉}

➜ Their subtraction gives the dissipated spontaneous evolution:

Ediss = Etotal − Eef f .
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(a): Example of temporal evolution of ai(t) during a period of length τ = 15.

(b): Empirical versus analytical Ediss (Ediss is maximized at η = 1).

(c): Analytical curves of Etotal , Eef f and Ediss around the critical point.

Local Plasticity Rule

Individual synapses ǫi j are updated in the direction of the gradient of Ediss each
time a post-synaptic neuron i fires:

∆ǫi j = κ
∂E id iss
∂ǫi j

= κ







−Li − c

2
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(
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)2
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+
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2
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• Li : Effective threshold of post-

synaptic neuron i

Difference between the threshold L

and the activity received by neuron i

from the population in the last

period.

• κ, c are arbitrary constants

(can be different for every synapse).

∆ǫi j =
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Strenghtening (> 0) for Li > 0

Not defined for Li = 0

Weakening (< 0) for Li < 0
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c = 0.05
c = 0.5
c = 5

➜ The resulting plasticity rule involves only local terms.

Simulations

Model with ’Plastic’ Synapses

• Setup: N = 500, L = 500, p = 0.9. Synapses initialized homogeneously.
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Temporal evolution for different initial interaction strengths above (top row) and below
(bottom row) the critical point for different values of κ (left and right).

• After an initial transient, the network converges to a critical regime, where

the dynamics balances between a predictable pattern of activity and un-

correlated random behavior.

• κ determines the speed of convergence and the quality and stability of the

dynamics at the critical state.

• Analytical approximations for time of convergence given in the paper.

Conclusions

• We have derived a local synaptic mechanism that induces global home-

ostasis towards an optimal dynamic state.

• The proposed synaptic rule generalizes SOC rule proposed in [3] for binary

neurons to the case of spiking neurons.

• Results indicate that effects of fluctuations due to noise are minimized at

the critical state (η = 1).
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