

Figure 1: Basic Network

Seminar 5: Exercises

Exercise 1

An application generates a data flow with the following characteristics:

- $\lambda_{1}=1000$ packets/second, following a Poisson process.
- Average packet size of $E\left[L_{1}\right]=8500$ bits.
- The packet size distribution is characterized by a $\mathrm{CV}\left[L_{1}\right]=3.2$.

This data flows is send through a network interface that is connected to a wireless link of capacity $R=10 \mathrm{Mbps}$. We can consider the buffer space is large enough to consider it infinite.

1. Calculate the time a packet of such an application remains in the system $E\left[D_{1}\right]$.
2. If the network interface is shared with another application that injects $\lambda_{2}=100$ packets/second to the network interface, where the packets are of constant size and equal to $L_{2}=8000$ bits, calculate the new value of $E\left[D_{1}\right]$, and the value of $E\left[D_{2}\right]$.

Exercise 2

Let us consider a network interface that receives $\lambda=20000$ packets/second following a Poisson process. The probability distribution (histogram) of the packet sizes is as follows:

- Packets of $L_{1}=64$ Bytes with probability 0.3
- Packets of $L_{2}=500$ Bytes with probability 0.5
- Packets of $L_{3}=1500$ Bytes with probability 0.2

The network interface has a large buffer space which can be considered infinite and is able to transmit packets at $R=100 \mathrm{Mbps}$.

1. Calculate the average delay a packet remains in the buffer $\left(E\left[D_{q}\right]\right)$ and in the system $(E[D])$ if we make the assumption that packets are exponentially distributed with average $E[L]=$ $0.3 L_{1}+0.5 L_{2}+0.2 L_{3}$ bits.
2. Calculate the traffic load (a) in Erlangs, and which fraction corresponds to packets of size L_{1}, L_{2} and L_{3} respectively (i.e., a_{1}, a_{2}, and a_{3}).
3. Considering the actual packet size distribution, calculate the average residual time ($E\left[D_{r}\right]$). Compare this value with the residual time in case the packet sizes follow an exponential distribution.
4. Considering the actual packet size distribution, calculate the $E\left[D_{q}\right]$ and $E[D], E\left[D_{1}\right], E\left[D_{2}\right]$ and $E\left[D_{3}\right]$ delays, where $E\left[D_{i}\right]$ is the time a packet of size i remains inside the network interface. Compare the results with the values obtained assuming the packet sizes where exponentially distributed.

Hint: $E\left[D_{s}^{2}\right]=2 E^{2}\left[D_{s}\right]$ in the case of $\mathrm{M} / \mathrm{M} / 1$.

Exercise 3

Let us consider an AP transmitting a data flow of $B=4 \mathrm{Mbps}$ to a station placed at a distance of $d=25$ meters. All the packets of the flow have the same fixed size of $L=1100$ bits (deterministic), and packets arrive to the buffer following a Poisson process. The network interface at the AP has an infinite buffer size. The propagation delay is negligible, as well as any packet processing delay. The transmission delay is $E\left[D_{s}\right]=0.195 \mathrm{~ms}$.

Figure 2: An AP transmitting a data flow to an STA

1. Calculate the delay $E[D]$ of the packets in the AP if the packet error probability is $p=0$.
2. Calculate the delay $E[D]$ of the packets in the AP if the packet error probability is $p=0.2$ and $R_{\max }=1$.
3. Calculate the delay $E[D]$ of the packets in the AP if the packet error probability is $p=0.2$ and $R_{\max }=3$.
4. Calculate the throughput in bits / second for all 3 previous cases $\left(\lambda L\left(1-p^{R_{\max }+1}\right)\right)$.
5. Explain the effects of p and $R_{\max }$ in the delay and throughput.

Solution Exercise 1

```
lambda1 = 1000;
EL1 = 8500;
CVL1 = 3.2;
R=10E6;
```

\% a)
EDs1 = EL1 / R;
ED2s1 = EDs1~2*(1+CVL1~2);
a1 = lambda1*EDs1;
disp('Only flow1')
$\mathrm{EDr}=\operatorname{lambda} 1 * E D 2 \mathrm{~s} 1 / 2$;
ED1 = EDr/((1-a1)) + EDs1
\% b)
lambda2 = 100;
CVL2 $=0$;
EL2 = 8000;
lambda = lambda1+lambda2;
p1 = lambda1/lambda;
p2 = lambda2/lambda;
EDs2 = EL2/R;
a2 = lambda2 * EDs2;
ED2s2 $=E D s 2 \wedge 2 *(1+0) ;$
EDr1 = lambda1*ED2s1/2;
EDr2 = lambda2*ED2s2/2;
$\% \mathrm{EDr}=\operatorname{lambda} / 2 *(\mathrm{p} 1 * \mathrm{D} 2 \mathrm{~s} 1+\mathrm{p} 2 * \mathrm{D} 2 \mathrm{~s} 2)$
disp('With traffic 2')
$E D r=l a m b d a *(p 1 * E D 2 s 1+p 2 * E D 2 s 2) / 2$
$E D q=E D r /(1-a)$
ED1 = EDs1 + EDq
ED2 = EDs2 + EDq
ED2

Solution Exercise 2

\% \% EX2
\% 1)
$\mathrm{L} 1=64 * 8$;
$\mathrm{L} 2=500 * 8$;
$\mathrm{L} 3=1500 * 8$;
lambda=20E3;
$R=100 \mathrm{E}$;
$\mathrm{EL}=0.3 * \mathrm{~L} 1+0.5 * \mathrm{~L} 2+0.2 * \mathrm{~L} 3 ;$
$m u=R / E L ;$
disp('ED M/M/1');
$E D=1 /(m u-l a m b d a)$
$E D q=E D-1 / m u$
\%2
$E D s=E L / R ;$
$\mathrm{a}=\mathrm{lambda} * E D s ;$
a1 $=0.3 * l a m b d a * L 1 / R$;
$\mathrm{a} 2=0.5 * \operatorname{lambda} * \mathrm{~L} 2 / \mathrm{R}$;
a3 $=0.2 *$ lambda $*$ L3/R;
\%3
disp('Residual Times');

```
EDs1 = L1/R;
EDs2 = L2/R;
EDs3 = L3/R;
ED2s = 0.2*EDs1^2 + 0.5*EDs2^2 + 0.2*EDs3^2;
EDr = lambda * ED2s/2
%ED2s_expo = 2*EDs^2;
%EDr_expo = lambda*ED2s_expo/2
% 4 ---------
disp('ED M/G/1');
EDq = EDr / (1-a)
ED = EDq + EDs
ED1 = EDq + EDs1
ED2 = EDq + EDs2
ED3 = EDq + EDs3
```


Solution Exercise 3

```
function Exercise3()
    L = 1100;
    R = 26E6;
    T = 40E-6 + (240+L)/R + 16E-6 + 40E-6+112/R + 34E-6+9E-6
B=4E6;
lambda = B/L;
% ----------- p = 0
EDs = T
ED2s = EDs^2*(1+0^2)
a = lambda * EDs
EDq = lambda * ED2s / (2*(1-a))
ED = EDs + EDq
S = lambda*L
```

```
%EDs = 1.9485e-04
%ED2s = 3.7965e-08
%a=0.70853
%EDq = 2.3683e-04
%ED = 4.3167e-04
% --------------- p = 0.2, Rmax = 1
p=0.2
p1 = (1-p);
p2 = p;
EDs = p1*T + p2*2*T
ED2s = p1*T^2 + p2*(2*T) ^2
a = lambda * EDs
EDq = lambda * ED2s / (2*(1-a))
ED = EDs + EDq
S = lambda*L*(1-p^2)
%p=0.20000
%EDs = 2.3382e-04
%ED2s = 6.0744e-08
%a=0.85024
%EDq = 7.3746e-04
%ED = 9.7128e-04
% --------------- p = 0.2, Rmax = 3
p1 = (1-p);
p2 = p*(1-p);
p3 = p*p*(1-p);
p4 = p*p*p;
EDs = p1*T + p2*2*T + p3*3*T + p4*4*T
ED2s = p1*T^2 + p2*(2*T)^2 + p3*(3*T)^2 + p4*(4*T)^2
a = lambda * EDs
EDq = lambda * ED2s / (2*(1-a))
```

```
ED = EDs + EDq
S = lambda*L*(1-p^4)
%EDs = 2.4317e-04
%ED2s = 7.0463e-08
%a=0.8842
%EDq = 0.0011
%ED = 0.0013
% Throughput
%p= 0; S = 4000000
%p=0.2; Rmax = 1; S = 3840000
%p=0.2; Rmax = 3; S = 3993600
end
```

