

Seminar 3

Marc Carrascosa Zamacois: marc.carrascosa@upf.edu

Classification

- Used when we have a finite output
- Instead of predicting a real value (like throughput in Mbps), we predict a class (is the user active? yes/no)
- Several methods available
 - K-Nearest Neighbours
 - Logistic Regression
 - Naive Bayes
 - Support Vector Machines
 - Decision Trees

K-Nearest Neighbour

- The model are the training labels
- For each new data point we calculate the distance between it and every training point
- We then take the K data points that have the shortest distance
- We use the mode to choose the class

Probabilistic classifiers

• Naive Bayes classifiers are based on Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

 Logistic Regression calculates the log odds of an event using a sigmoid function

$$P(Y=1) = \frac{1}{1 + e^{-(b_0 + b_1 x_1 + b_2 x_2)}}$$

Support Vector Machines

- There are multiple vectors that can separate the data
- SVM finds the one that maximizes the separation, minimizing the possibility of errors
- SVM are highly customizable

SVM kernels

6

Decision Trees

We saw them last seminar!

Classifiers

MATLAB classification learner

- MATLAB has a classification tool that simplifies the model selection/ training process
- It can be intensive on you RAM and CPU usage

Importing the dataset

01400		NIFA	RNER	VIEV	v	
New Session -	Featu	re	PCA	من All Quick-T	All	
FILE	F A	TURES				
Data Browser						
 History 						

Import the dataset from your workspace

	rkspace variable				○ Cross-Validation		
Nds	sT 10	Protects against overfitting by					
• I 0 I	Use columns as variab Use rows as variables	partitioning the data set into folds an estimating accuracy on each fold. Cross-validation folds: 5 folds					
Res	sponse						
col	umn 12 da	uble () 9	•			
	-						
Pre	dictors			Holdout Validation			
	Name	Туре	Range		Recommended for large data sets.		
	column_1	double	241	-			
	column_2	double	500000 8.2e+07		Percent held out: 30%		
	column_3	double	140				
	column_4	double	1 40 1 1600				
	column_5	double					
	column_6	double	3 1023		 No Validation No protection against overfitting. 		
-	column_7	double	20 160				
	column_8	double	4000 12000				
	column_9	double	-81.405240.8636				
•		double	-81 /052 -/0 866				
V V V	Add All Remove All						

Current Model

Classification learner

Disable parallel computing to improve performance!

Classification learner

- Plots show where predictions failed once the model is trained
- You can also check the confusion matrix
- Models can be compared and once one is chosen exported to the workspace

Classification learner

					Mod	lel 3				
0	746	120								
1	321	1108	270	1						2
2	13	560	782	364	32		1		15	26
3	1	228	491	530	256	26	13	19	218	90
4		70	282	359	394	108	62	35	385	103
5		9	172	207	271	244	178	58	442	137
6			71	134	191	201	315	225	527	135
7			25	126	137	200	246	1078	2667	322
8			1	101	132	260	112	309	9417	1469
9				9	17	34	5		741	1044
	0	1	\$	3	∮ Predict	ి ed class	6	>	ð	و

					Мос	lel 6				
0	786	80								
1	33	1517	148	3	1					
2		109	1453	217	3	6	1	4		
3			214	1239	374	11	25	8	1	
class 4			1	157	1350	234	40	13	3	
True				1	312	1152	182	56	15	
6					12	487	1028	177	95	
7					1	103	307	3452	934	4
8						11	74	501	10853	362
9						2	7	26	994	821
	0	2	2	3	∮ Predict	് ed class	6	>	8	Q

10-Nearest Neighbour

Decision tree

Classification learner

Gaussian Naive Bayes

Model 4: Trained

Results

Accuracy Prediction speed ~580000 obs/sec Training time 1.4087 sec

Kernel Naive Bayes

Model 5: Trained

Results

Accuracy Prediction speed ~ Training time 3

ed ~200 obs/sec 303.59 sec

6 2 SVM	Training	
Last change:	'Standardize data' = 'f	11/11 features

Training time: hours

Current Model

Model 6: Training

Model Type Preset: Linear SVM Kernel function: Linear Kernel scale: Automatic Box constraint level: 1 Multiclass method: One-vs-One Standardize data: false

To reduce execution time, reduce the features used (based on what we saw in past seminars)

Commands

- c = confusionmat(y_test,y_predicted);
 - Get confusion matrix
- confusionchart(c)
 - Plot confusion matrix
- fitcknn(x,y,'NumNeighbors',k)
 - Fit k-nearest neighbours classifier
- fitcnb(x,y)
 - Fit naive bayes classifier
- fitcecoc(x,y,'Learners','Linear')
 - Fit SVM
- loss(Model, x_test, y_test)
 - Calculate error for classification model
 - Alternative sum(ytest==ypred)/length(ytest)
- Fitctree (xtrain, ytrain, 'MaxNumSplits', 1000)
 - Decision tree

Tasks

- Load the seminar 1 dataset.
- We will use the airtime (column 16) as the output. Separate the airtime into 10 classes (class 0: [0, 0.1), class 1: [0.1, 0.2), etc.)
- Open the MATLAB classifier app.
- Train a couple of models for this new dataset and check their accuracy (Modify the number of neighbors of KNN, disable the use of standardized data, try both types of Bayesian classifiers, change the depth of the decision trees, etc). How high can the accuracy go?
- Choose a new classification for the data, you can use the information from the previous testing, check the distribution of the data, or any method you prefer (hint: use less classes)
- Re-train the models with the new classification. Are the results better or worse than before?