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Reinforcement Learning
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The agent learns by interacting
with the environment.
The ML algorithm tells the agent
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maximize the reward.
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Channel selection problem
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Reward empty: +1
Reward busy: -1

Goal: Maximize Accumulated reward.



ON/OFF channel model
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States & Actions
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a1=Remain in the same channel
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Representation
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Markov Decision Process (MDP)
● Our example is a MDP

– Markov: next state of the process depends only on current state
● MDP

– Set of states: the state space
– Set of actions (they could depend on the current state)
– Transition probabilities (which depend on the actions we take)
– Rewards (which depend if our actions were good or bad)

● Solving the MDP → “learning”
– Finding the best action to take when we are in a given state

● Q-learning is an algorithm to solve a MDP



Q-learning

● Table to store the pair (state,action), i.e. the Q-table

● A mechanism to explore the state space
– Epsilon-greedy (for example)

● A way to update the Q-table (from wikipedia)
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Q-learning

● Learning rate: how we replace old with new information (reward)
– 0: we don’t learn at all, 1: we use only instantaneous information

● Discount factor: determines the importance of future rewards
– “If I do this, I will get that in the future”
– 0: only rewards from the current state are considered
– 1: only considers “expectations”, may create instability (better to set to 

lower values) 



Q-learning, the code



Q-learning, the code



Q-learning, the code



Activity
● Test case I and case II, and follow the Q-learning evolution
● Remove the ‘pause’ command from the two files, and increase the TimeHorizon to 500.
● For Case 2

– Test different values of α given γ=0.9, and compare which gives you the best accumulated. 
reward.

– For the best value of α, test different γ values. Which is the one that gives the best accumulated. 
Reward?

● Using Case 1 or Case 2, create Case 3, and play with different channels. Try:
– the case where the two channels have the same parameters
– the case where the two channels have the same prob o stay in the busy and idle state, but 

different transition probabilities (one that changes fast, and one that changes slowly)
→ Are the results, and Q-table values consistent?
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