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Reinforcement Learning
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The agent learns by interacting
with the environment.
The ML algorithm tells the agent
how to do that interaction to
maximize the reward.
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Channel selection problem
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Channel selection problem
● An example with 4 channels
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Which channel 
would you pick?

channel occupancy pdf



Channel selection problem
● An example with 4 channels
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Brute force: I check all channels

The agent keeps using the ‘best’ option found before.

How many ‘samples’ I take per channel.
M=1



Brute force: I check all channels
M=4



MABs → Decide what action to take under uncertainty



Epsilon-greedy

The exploration-exploitation tradeoff

To reduce the exploration as the time goes on
(assuming we have already learn, and so it’s time to exploit)



Epsilon Greedy



Thompson Sampling
● We try to improve how we explore.
● We assume the reward of each action follows a Gaussian distribution
● For each action, we estimate its mean, and adjust the variance proportionally 

to the number of times we played that action in the past
– Actions more played have less variance, and the opposite
– Idea: the variance ‘captures’ how much confident I’m on the reward I 

will obtain when playing a certain arm. 
– If I have played many times a certain arm, I will have a better knowledge.

● True if the system is stationary!



Thompson sampling

mean Std. dev

Gaussian RV

m1

m2

Arm 1:
- played 2 times

Arm 2:
- played 6 times

TS includes the ‘consolidated’ knowledge of a certain action when 
deciding to take it or not: playing arm 1 may give me higher reward, but
I have more uncertainty



Thompson sampling

m1=0.4

m2=0.3

→ 0.6; 0.1; 0.05; 0.4; 0.8; ...

→ 0.2; 0.4; 0.3; 0.3; 0.4; ...

I may get more, 
but I risk to get less



Thompson Sampling

The pdfs used by TS to select the channel



Upper Confidence Bound
● The upper confidence bound (UCB) action-selection strategy is based on the 

principle of optimism in face of uncertainty.
● In each round, UCB selects the arm that is expected to give us the highest 

reward.
● Intuitively, UCB trades off exploration and exploitation as follows: 

– upon every time a suboptimal arm is chosen, the corresponding 
confidence bound will shrink significantly, 

– thus quickly decreasing the probability of drawing this arm in the 
future.

● However, after some time, it may try again arms that were before discarded.



UCB

Optimistic Function
Decreases with  the number of 
times I play an arm, and increases 
with time.
→ after a while, I may re-play 
actions that I discarded in the past 
as they were not good (just in 
case)
→ Good option for non-stationary 
environments.

A weight added by me, not part of the original UCB



UCB
4 channels
(number of times
each channel has been selected)

Optimistic function



UCB



And the winner is?

Accumulated reward



Activity
● Download Example6.zip code
● Execute: example6(Nchannels, seed)
● Play with the number of channels, and seeds, and think about what you get.
● Go back to the case of 4 channels:

– Test different ‘occupancy’ distributions of the channels, and see how the different algorithms respond.
● Homework: 

– Implement TS and UCB in the code of session 5 to select the CWmin.



Reading
● Wilhelmi, Francesc, Cristina Cano, Gergely Neu, Boris Bellalta, Anders Jonsson, and Sergio Barrachina-Muñoz. 

"Collaborative spatial reuse in wireless networks via selfish multi-armed bandits." Ad Hoc Networks 88 (2019): 129-
141. https://arxiv.org/pdf/1710.11403.pdf

https://arxiv.org/pdf/1710.11403.pdf
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