

Machine Learning for Networking

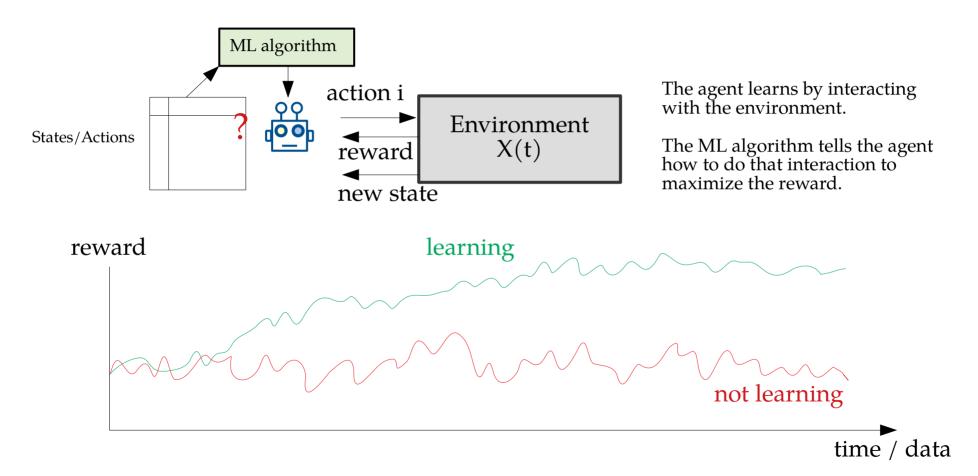
Reinforcement Learning I Session 6 – Multi-armed Bandits

Boris Bellalta: boris.bellalta@upf.edu

Contents

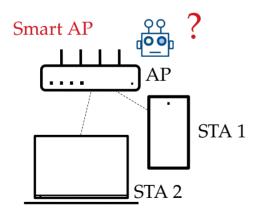
- Reinforcement Learning
- The channel selection problem
- Brute force: Check all channels for M episodes each
- Multi-armed bandits
 - ε-greedy
 - Thompson sampling
 - UCB

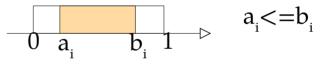
Reinforcement Learning



Channel selection problem

channels 1 2 3 ····· N

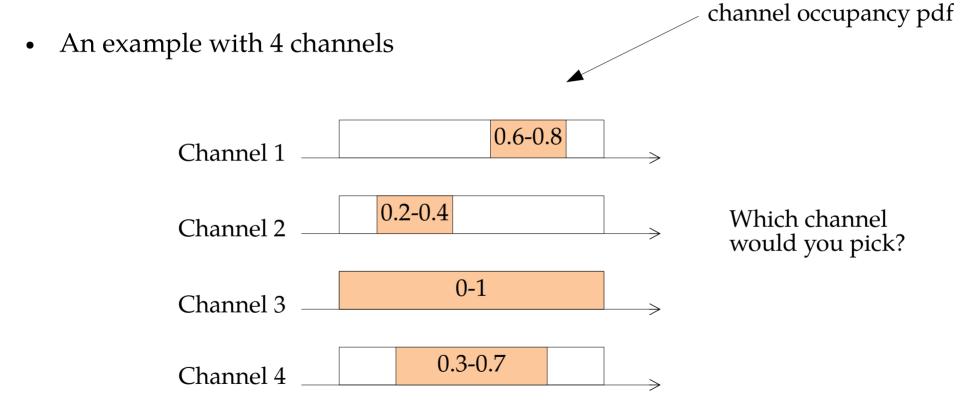




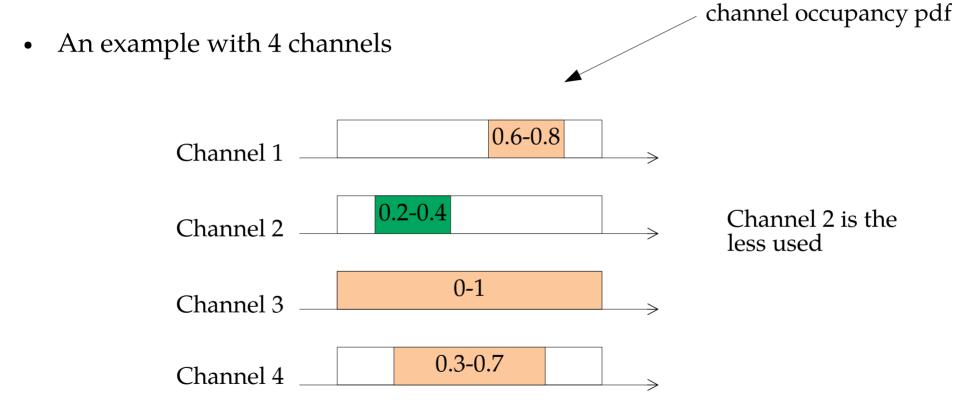
 $\rho(i) = occupancy channel i [0,1]$

Reward using channel i: $V(i) = 1-\rho(i)$

Channel selection problem



Channel selection problem



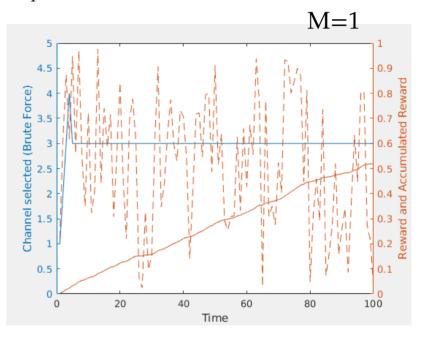
Brute force: I check all channels

M=1:

end

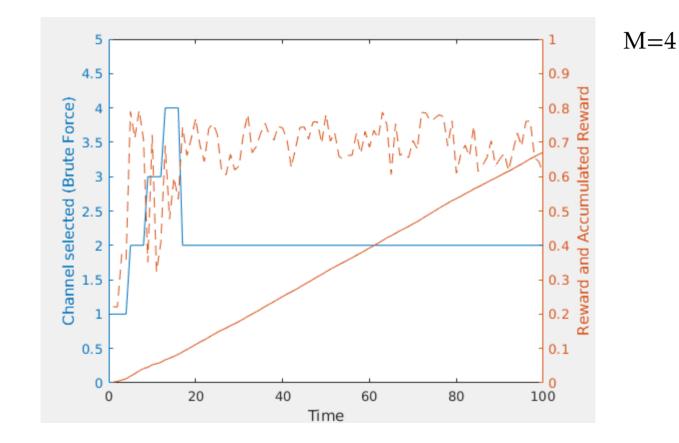
▶ How many 'samples' I take per channel.

```
Q BF = zeros(1,N);
R=zeros(1.TimeHorizon):
ch selected = zeros(1,TimeHorizon);
% I check all the channels
time to check all = 1;
for n=1:N
   for m=1:M
        ch selected(time to check all) = n;
        rho = ChannelOccupancy(a(n),b(n));
        R(time to check all) = 1-rho;
        Q BF(n) = Q BF(n) + (1 - rho);
        time to check all = time to check all + 1;
    end
    Q BF(n)=Q BF(n)/M;
end
% I pick the one with highest reward
disp(Q BF);
[~,n best]=max(Q BF);
for t=time_to_check_all:TimeHorizon
    ch selected(t) = n best;
    rho = ChannelOccupancy(a(n best),b(n best));
    R(t) = 1 - rho;
```



The agent keeps using the 'best' option found before.

Brute force: I check all channels



3.1. The Multi-Armed Bandits Framework

In the online learning literature, several MAB settings have been considered such as stochastic bandits [25, 26, 27], adversarial bandits [28, 29], restless bandits [30], contextual bandits [31] and linear bandits [32, 33], and numerous exploration-exploitation strategies have been proposed such as ε -greedy [34, 27], upper confidence bound (UCB) [26, 35, 36, 27], exponential weight algorithm for exploration and exploitation (EXP3) [28, 27] and Thompson sampling [25]. The classical multi-armed bandit problem models a sequential interaction scheme between a learner and an environment. The learner sequentially selects one out of K actions (often called arms in this context) and earns some rewards determined by the chosen action and also influenced by the environment. Formally, the problem is defined as a repeated game where the following steps are repeated in each round $t = 1, 2, \ldots, T$:

- 1. The environment fixes an assignment of rewards $r_{a,t}$ for each action $a \in [K] \stackrel{\text{def}}{=} \{1, 2, \dots, K\},\$
- 2. the learner chooses action $a_t \in [K]$,
- 3. the learner obtains and observes reward $r_{a_t,t}$.

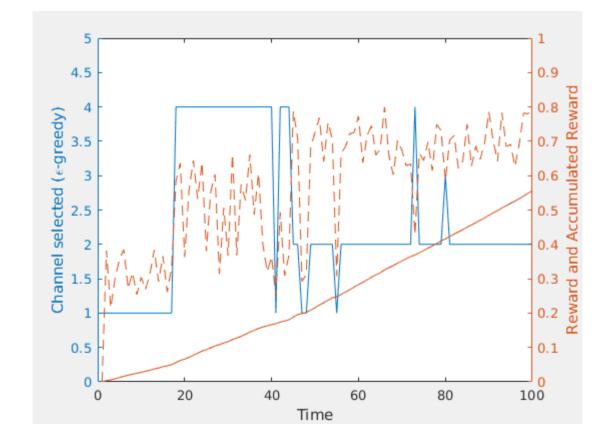
MABs \rightarrow Decide what action to take under uncertainty

Epsilon-greedy

```
ifor t=2:TimeHorizon
    if(rand < epsilon) % explore
                                        The exploration-exploitation tradeoff
        n sel=randi(N,1);
     else % exploit
         [~,n sel]=max(Q EG);
    end
    ch selected EG(t) = n sel;
    n times ch selected EG(n sel)=n times ch selected EG(n sel)+1;
     rho = ChannelOccupancy(a(n sel),b(n sel));
    R EG(t) = 1 - rho;
    Q EG(n sel)=(Q EG(n sel)*(n times ch selected EG(n sel)-1) + (1-rho))/n times ch selected EG(n sel);
    epsilon = epsilon - Delta;
- end
                                            To reduce the exploration as the time goes on
```

(assuming we have already learn, and so it's time to exploit)

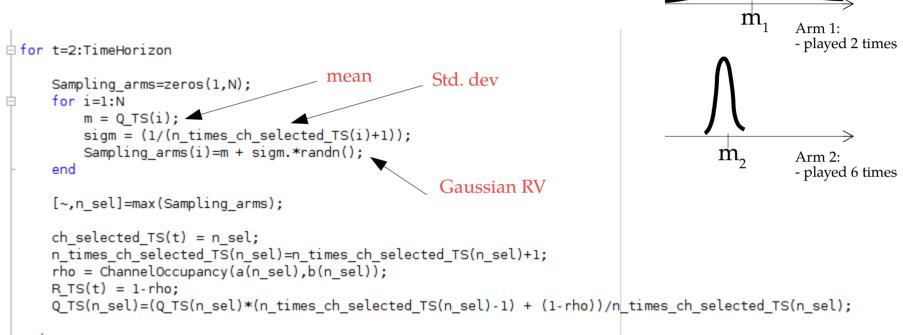
Epsilon Greedy



Thompson Sampling

- We try to improve how we explore.
- We assume the reward of each action follows a Gaussian distribution
- For each action, we estimate its mean, and adjust the variance proportionally to the number of times we played that action in the past
 - Actions more played have less variance, and the opposite
 - **Idea**: the variance 'captures' how much confident I'm on the reward I will obtain when playing a certain arm.
 - If I have played many times a certain arm, I will have a better knowledge.
 - *True if the system is stationary!*

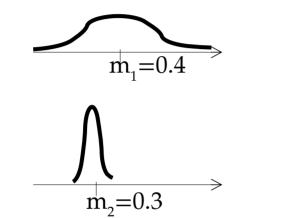
Thompson sampling



end

TS includes the 'consolidated' knowledge of a certain action when deciding to take it or not: playing arm 1 may give me higher reward, but I have more uncertainty

Thompson sampling

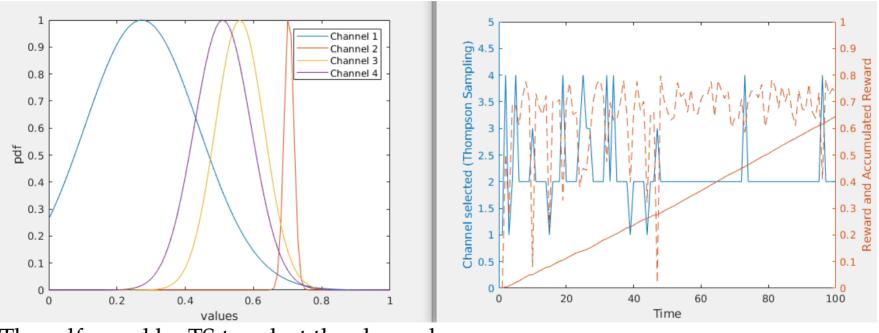


 $\rightarrow 0.6; 0.1; 0.05; 0.4; 0.8; \dots$

I may get more, but I risk to get less

 $\rightarrow 0.2; 0.4; 0.3; 0.3; 0.4; \dots$

Thompson Sampling



The pdfs used by TS to select the channel

Upper Confidence Bound

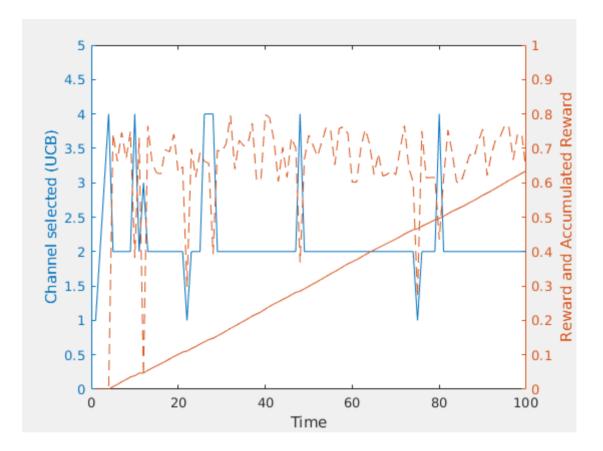
- The upper confidence bound (UCB) action-selection strategy is based on the principle of optimism in face of uncertainty.
- In each round, UCB selects the arm that is expected to give us the highest reward.
- Intuitively, UCB trades off exploration and exploitation as follows:
 - upon every time a suboptimal arm is chosen, the corresponding confidence bound will shrink significantly,
 - thus quickly decreasing the probability of drawing this arm in the future.
- However, after some time, it may try again arms that were before discarded.

UCB

% First Iteration for i=1:N n sel = i; ch selected UCB(n sel) = n sel; rho = ChannelOccupancy(a(n sel),b(n sel)); R(i) = 1 - rho;Q UCB(n sel)=Q UCB(n sel) + (1-rho); A weight added by me, not part of the original UCB n times ch selected UCB(n sel) = 1; end for t=N+1:TimeHorizon Decreases with the number of times I play an arm, and increases Sampling arms=zeros(1,N); with time. **Optimistic Function** for i=1:N \rightarrow after a while, I may re-play m = Q UCB(i);actions that I discarded in the past Sampling arms(i) = UCBx*m + sqrt(2*log(t)/n times ch selected UCB(i)); as they were not good (just in end case) \rightarrow Good option for non-stationary [~,n sel]=max(Sampling arms); environments. ch selected UCB(t) = n sel; n times ch selected UCB(n sel)=n times ch selected UCB(n sel)+1; rho = ChannelOccupancy(a(n sel),b(n sel)); R UCB(t) = 1 - rho;Q UCB(n sel)=(Q UCB(n sel)*(n times ch selected UCB(n sel)-1) + (1-rho))/n times ch selected UCB(n sel);

TIOD		2	63	2	6		
UCB		2.074	2.0746e+00		54e-01	2.0746e+00	1.1978e+00
		2	64	2	6		
	4 channels (number of times each channel has been selected)	2.0779e+00		3.6732e-01		2.0779e+00	1.1997e+00
		→ 3	64	2	6		
		1.699	1.6992e+00		38e-01	2.0810e+00	1.2015e+00
		З	65	2	6		
	Optimistic function	1.701	1.7017e+00		59e-01	2.0842e+00	1.2033e+00
		З	66	2	6		
		1.7043e+00		3.633	35e-01	2.0873e+00	1.2051e+00
		З	67	2	6		
			1.7067e+00		l5e-01	2.0903e+00	1.2068e+00
		З	68	2	6		
			1.7092e+00		00e-01	2.0933e+00	1.2086e+00
		З	68	2	7		
			l6e+00	3.595	5le-01	2.0963e+00	1.1205e+00

♀♀ **●●** UCB



And the winner is?

Which is the best one? Brute Force (M=1) | EG | TS | UCB 51.9072e+000 55.6482e+000 64.5326e+000 63.4469e+000 >> Accumulated reward

Activity

- Download Example6.zip code
- Execute: example6(Nchannels, seed)
- Play with the number of channels, and seeds, and think about what you get.
- Go back to the case of 4 channels:
 - Test different 'occupancy' distributions of the channels, and see how the different algorithms respond.
- Homework:
 - Implement TS and UCB in the code of session 5 to select the CWmin.

Reading

Wilhelmi, Francesc, Cristina Cano, Gergely Neu, Boris Bellalta, Anders Jonsson, and Sergio Barrachina-Muñoz.
 "Collaborative spatial reuse in wireless networks via selfish multi-armed bandits." Ad Hoc Networks 88 (2019): 129-141. https://arxiv.org/pdf/1710.11403.pdf