Machine Learning for Networking

A dynamic Wi-Fi scenario

Session 5 — Searching (exploring) for a good solution

Boris Bellalta: boris.bellalta@upf.edu
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The case study

« We have a Wi-Fi network where the number of devices and their position
change from time to time.
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« What happens if we keep the same CWmin all the time?

— Let’s assume CWmin = CWmax
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The case study

« What happens if we keep the same CWmin all the time?

« Pros: easy to implement | Cons: not adaptive to changing situations
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CWmin (slots)
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How to improve?

« We can use a ML agent placed to the AP to learn what is the best CWmin
value. However, to start, let us allow the agent just tries random CWmin...

we may be lucky’ ﬁ
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Pros: sometimes works | Cons: sometimes not — A kind of average



How to improve?

« We will assume the agent starts with ‘0" knowledge about the relationship

between the number of stations and the CWmin.

After the previous lectures, we know that adding more stations,
increases the collision probability, and so reduces the network
performance.

The agent does not know that. It has to find by itself a way to map:
« CWmin values
o Number of stations
e Performance obtained
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Picking Random values

« Important: we are not learning

« However, picking random CWmin, allows us to gather useful information
we can use:

— Relationship between number of stations and CWmin value in terms of
throughput

— This is: we can learn the function f:
e [S] =£{(N,CWmin)
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Exploration / Exploitation

 Picking random values: required to explore (=learn)
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« We need to consolidate what we have learned — exploitation

e Example: An AP has to select a channel to operate. It knows channel 1 will offer it a
performance P, which is good but not excellent. AP ignores if another channel may offer
it a higher performance. Should it explore other channels or use channel 17

e The exploration-exploitation tradeoff: Why is it a tradeoff?

Well, we have to choose

between what we know, and the risk that we the new things we discover do not satisfy us.

Also, there could be an extra cost to explore.
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Strategy: sequence of actions towards achieving a certain goal (i.e., maximize the network
performance).

Environment: well, everything...

Something obvious: If we completely know the environment, to select the best strategy
is easy, and we will achieve the goal. How to completely know an environment? If it is
small, we can simply use brute force. Otherwise, no way, and those are the interesting
cases.

Warning: We can only completely learn stationary environments (which does not mean
deterministic), or that remain stationary for a large enough period. If they change, all
previously collected information may be useless.

Dynamism: An environment may seem small, and so one may consider to first learn
everything, and then just pick the best ’strategy’. However, what happens if the environ-
ment changes after you have learn it, or during the learning phase?” We need to be able to
adapt.



Exploration & Exploitation tradeoft

o Al =V(t) At = V()
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e Environment: (2
e Set of actions: A = {a1,a2,...,ax}
e Action selected at time t: A(t) =a, a € A

e Reward at time time ¢: V(1) = Q(A(t))

Goal: max accumulated reward

W = Zf:o V(t), — maxA(t)(W)

Find the sequence A(t), t=1..T, that maximizes W.



How to find the best A(t), t=1...T? A solver: e-greedy

e At t =0, we set-up a Q-table of size K (one position per action), all set to 0. We also set
n=0,and W = 0.
— The agent selects an action from 4 uniformly at random: P(A(t) =a) = %
— We obtain the corresponding reward V' (0) = Q(A(0))
— We increase the number of attempts we take action a: n, =n,+1=1
— We update the Q-table: Q(A(0)) = (Q(A(0)(na — 1)+ V(0))/na. = V(0)
— We increase the accumulated reward: W =W + V(0) = V(0)

e At t > 0, repeat, until £t =T

— At time t the agent decides:
* To explore with prob.: €. Next action is selected uniformly at random from A
* To explot with prob.: 1 —e. Next action A(t) = argmax,. 4Q(a)

— We obtain the corresponding reward V() = Q(A(t))

— We increase the number of attempts we take action a: n, =n, + 1
We can simply use the last reward, or a

— We update the Q-table: Q(A(t)) = (Q(A(t)(na — 1)+ V(t))/na ———» different approach
— We increase the accumulated reward: W =W + V(¢)




Exercise

« Implement e-greedy in the Exampleb code
« Does it work?
« To execute the code: example5(policy,seed)
- Policy =1 (fixed); 2 (random); 3 (e-greedy)

- seed: use the same in all cases, to compare
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function ExamplelLecture5(Policy,seed)

rng(seed);

SimHorizon= :
ProbChangeNumContenders =
N values = [ 1

M=zeros(l,SimHorizon);
N{1) = N values{randi(length{N values),1));

:SimHorizon
&k < ProbChangeNumContenders)
) = N values({randi{length(N values),

y=M{1};

CWmin wvalues = [
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epsilon= :

0 EG=zeros({!,length{CWmin values));
na= zeros{!,length({CWmin values));
a=1;

=1:5imHorizon

switch Policy
case
CWmin(i) =

case
CWmin(i) = CWmin values(randi({length{CWmin values),1));

case
if{i==1}
a = randi{length(CWmin values),1):
CWmin(!) = CWmin values(a)};
eglse
if{rand(} < epsilon)

end
end
end

S{i)=WLANPerformance(N(1),CWmin{.));

if (Policy == 3}
n ala)=n ala)+!;
0 EG(a)=(S(1)+0 EG(a)*(n_a(a)-1))/n a(a);

end
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e-greedy

« We can observe how from time to time, the agent explores

- Sometimes it finds a better ‘action’, and sometimes not
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Practical Ways to improve e-greedy

« Explore only when there are changes on the number of stations

« Reduce the exploration prob. (¢) as the time goes on.
- Set € at a high value (i.e., 1) when a change is detected.
- Reduce it a every attempt: ¢, ,=¢-A; with A=1/Ne

- Ne = number of iterations where we can explore

It’s up to you to try!!
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