
Machine Learning for Networking

A dynamic Wi-Fi scenario
Session 5 – Searching (exploring) for a good solution

Boris Bellalta: boris.bellalta@upf.edu

.….
.

.

AP

STA 2

STA 1

Contents
● A case study: A Wi-Fi network where the number and position of the

stations change with time.
● Exploration & Exploitation trade-off
● A solver: ε-greedy agent

Smart AP

The case study
● We have a Wi-Fi network where the number of devices and their position

change from time to time.

● What happens if we keep the same CWmin all the time?
– Let’s assume CWmin = CWmax

t=1 t=2

The case study
● What happens if we keep the same CWmin all the time?
● Pros: easy to implement | Cons: not adaptive to changing situations

How to improve?
● We can use a ML agent placed to the AP to learn what is the best CWmin

value. However, to start, let us allow the agent just tries random CWmin…
we may be lucky!

Pros: sometimes works | Cons: sometimes not → A kind of average

How to improve?
● We will assume the agent starts with ‘0’ knowledge about the relationship

between the number of stations and the CWmin.
– After the previous lectures, we know that adding more stations,

increases the collision probability, and so reduces the network
performance.

– The agent does not know that. It has to find by itself a way to map:
● CWmin values
● Number of stations
● Performance obtained

Picking Random values
● Important: we are not learning
● However, picking random CWmin, allows us to gather useful information

we can use:
– Relationship between number of stations and CWmin value in terms of

throughput
– This is: we can learn the function f:

● [S] = f(N,CWmin)

Exploration / Exploitation
● Picking random values: required to explore (=learn)
● We need to consolidate what we have learned → exploitation

Exploration & Exploitation tradeoff

t1

A(t1)Ω V(t1)

t2

A(t2) V(t2)

t0

Goal: max accumulated reward

T
T attempts

Find the sequence A(t), t=1..T, that maximizes W.

How to find the best A(t), t=1...T? A solver: ε-greedy

We can simply use the last reward, or a
different approach

Exercise
● Implement ε-greedy in the Example5 code
● Does it work?
● To execute the code: example5(policy,seed)

– Policy = 1 (fixed); 2 (random); 3 (e-greedy)
– seed: use the same in all cases, to compare

ε-greedy
● We can observe how from time to time, the agent explores

– Sometimes it finds a better ‘action’, and sometimes not

Practical Ways to improve ε-greedy
● Explore only when there are changes on the number of stations
● Reduce the exploration prob. (ε) as the time goes on.

– Set ε at a high value (i.e., 1) when a change is detected.
– Reduce it a every attempt: εt+1=εt-Δ; with Δ=1/Ne
– Ne = number of iterations where we can explore

It’s up to you to try!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

