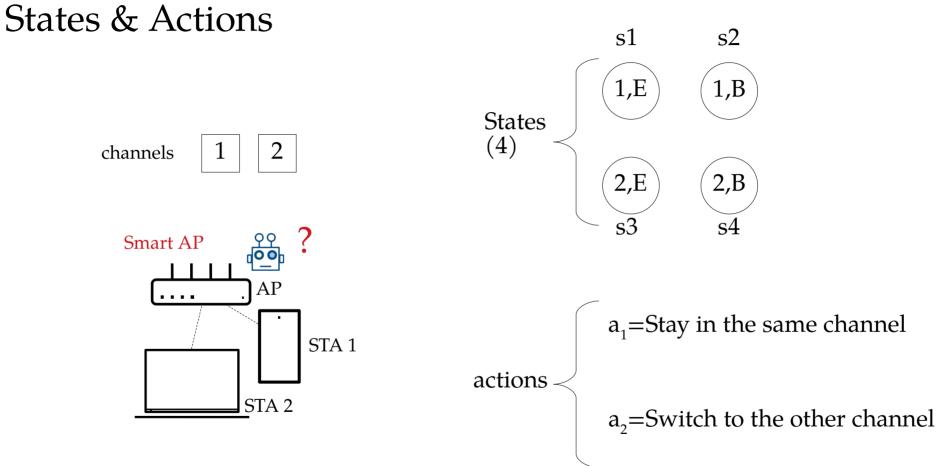


Machine Learning for Networking **Reinforcement Learning** Session 10 – Q-learning II

Boris Bellalta: boris.bellalta@upf.edu

Contents

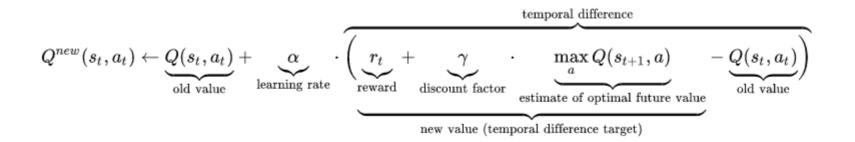
- Q-learning: step by step, 2nd part
- Q-learning exercises
- Exercise: video congestion control \rightarrow What is the effect of rewards?



Q-learning

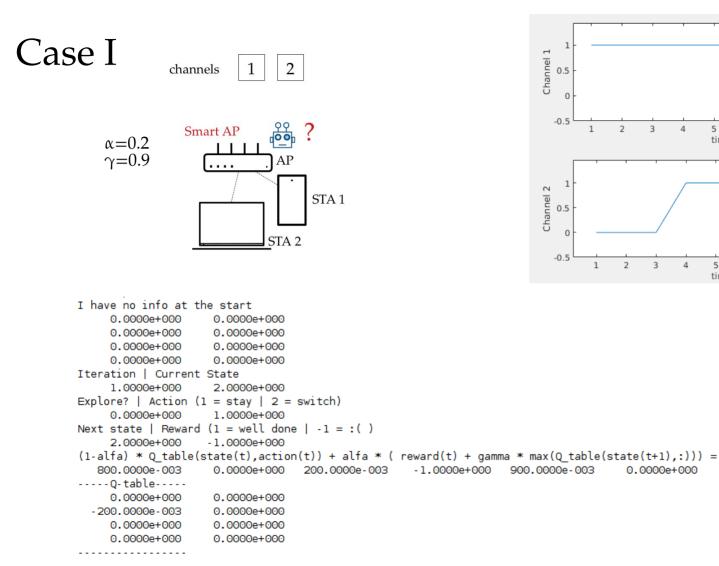
- Table to store the pair (state,action), i.e. the Q-table

- A mechanism to explore the state space
 - Epsilon-greedy (for example)
- A way to update the Q-table (from wikipedia) Bellman's equation

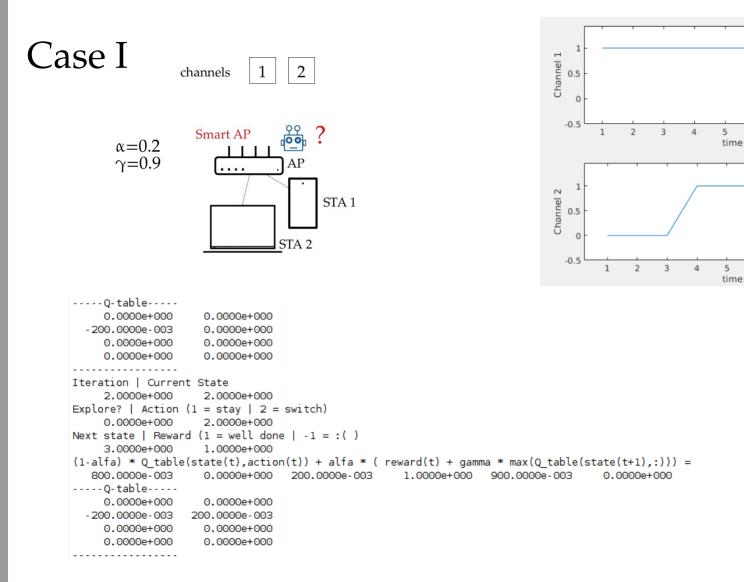


time

time



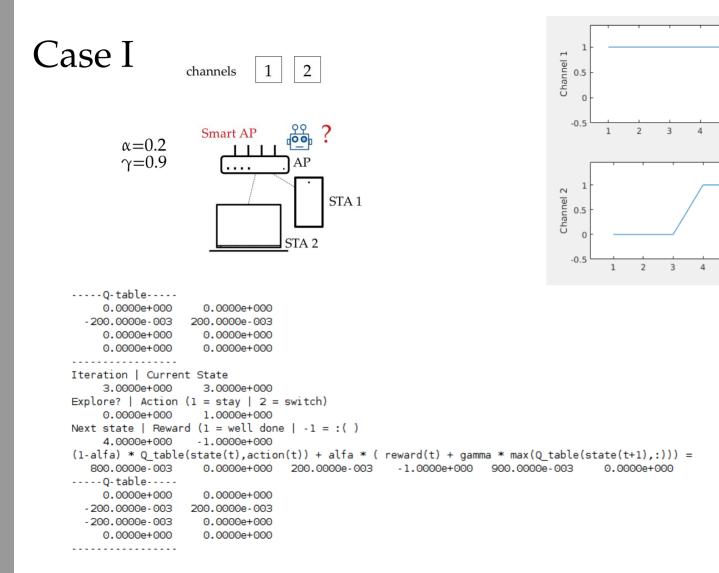
9 10



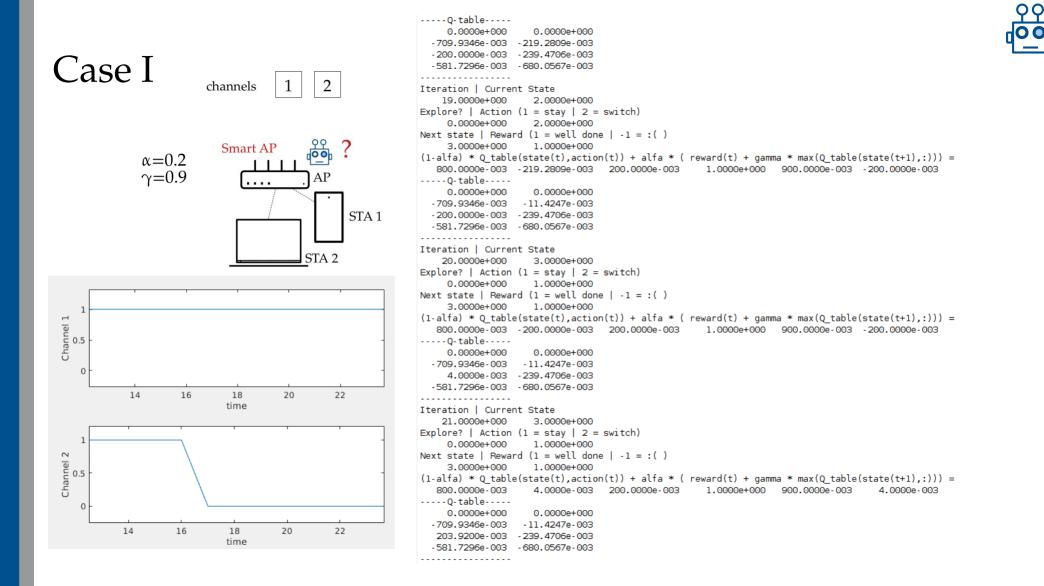
time

time

9 10

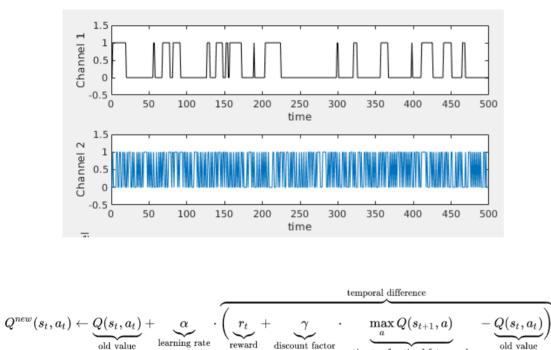






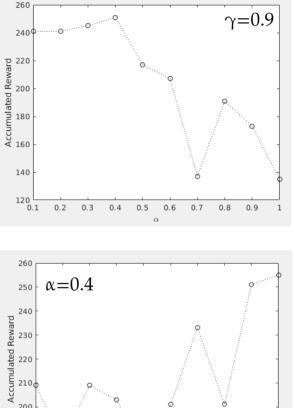
QQ

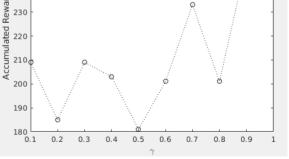
Case II - Test of α and γ



estimate of optimal future value

new value (temporal difference target)





Exercise: Congestion Control Video Server

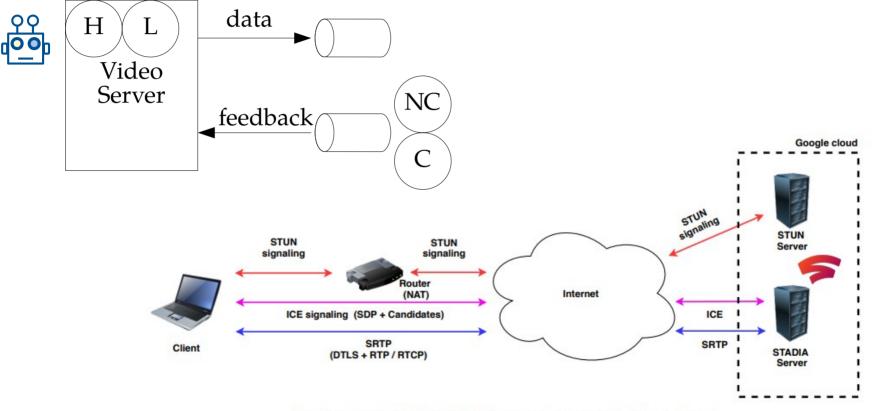


Fig. 1: Google's Stadia: Main components and data streams.

Google Stadia: WebRTC

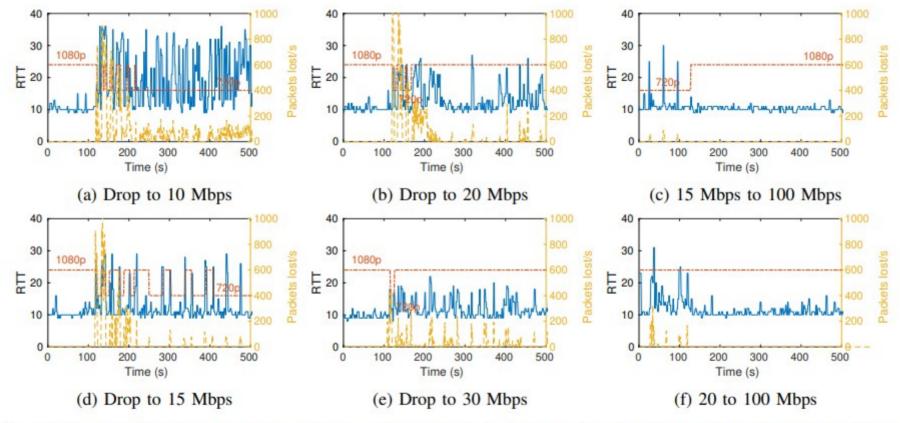
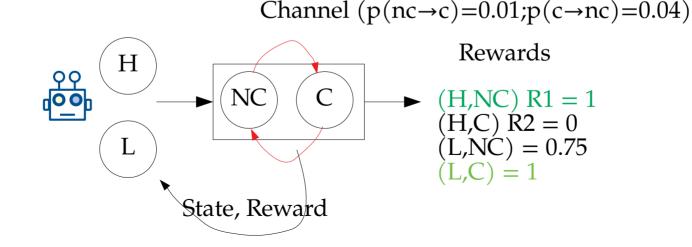


Fig. 11: Round Trip Time (continuous line), video packets lost (dashed line) and resolution (dash-dotted line).

Exercise: Congestion Control Video Server

- Implement the described scenario, try different channel transitions probabilities
 - Video sender: H (high quality), L (low quality), Channel: NC (Non congested), C (congested)
- Test assuming the agent makes random decisions at each iteration.
- Implement Q-learning, and evaluate if there is any gain. Fine tune Q-learning.



Activity

- Investigate what is the effect of the rewards (change it, trying to make them consistent ...)
- Will the agent learn a different strategy if

(H,NC) R1 = 1(H,C) R2 = 0(L,NC) = 0.25(L,C) = 0.75