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Q-learning

● Table to store the pair (state,action), i.e. the Q-table

● A mechanism to explore the state space
– Epsilon-greedy (for example)

● A way to update the Q-table (from wikipedia) – Bellman’s equation
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Case II - Test of α and γ  γ=0.9

α=0.4



Exercise: Congestion Control Video Server
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Google Stadia: WebRTC
● WebRTC



Exercise: Congestion Control Video Server
● Implement the described scenario, try different channel transitions probabilities

– Video sender: H (high quality), L (low quality), Channel: NC (Non congested), C (congested)
● Test assuming the agent makes random decisions at each iteration.
● Implement Q-learning, and evaluate if there is any gain. Fine tune Q-learning.

H

L

NC C (H,NC) R1 = 1
(H,C) R2 = 0
(L,NC) = 0.75
(L,C) = 1 

Rewards
Channel (p(nc→c)=0.01;p(c→nc)=0.04) 

State, Reward



Activity
● Investigate what is the effect of the rewards (change it, trying to make them 

consistent ...)
● Will the agent learn a different strategy  if (H,NC) R1 = 1

(H,C) R2 = 0
(L,NC) = 0.25
(L,C) = 0.75
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