Traffic Engineering. Mid-Term Exam 2016

February 14, 2022

Problem 1-5 points

A Web server can be modelled by a $M / M / 2 / 3$ queueing system, where service requests arrive at rate λ request/second following a Poisson process. The two CPUs of the Web server can operate in two modes: a) low-energy consumption, and b) high-energy consumption. In mode (a), each CPU is able to process requests at rate μ_{a} requests/second, and in mode (b), each CPU is able to process requests at rate μ_{b}, with $\mu_{b}=k \mu_{a}$, and k a positive integer constant. Both $1 / \mu_{a}$ and $1 / \mu_{b}$ are exponentially distributed. The system operates in low-energy consumption if the two servers are not busy. Otherwise, it operates in high-energy consumption.

Questions:

1. (2 points) Draw the Markov chain that models the system, write all the balance equations and write the expressions to compute the stationary probabilities π_{i} for all states.
2. (1.5 point) If $\mu_{a}=\lambda$, and $\mu_{b}=k \mu_{a}$, compute the probability that the system is empty for large values of k.
3. (1.5 point) If $\mu_{a}=\lambda$, and $\mu_{b}=2 \mu_{a}$ (i.e., $k=2$), what the reduction of the blocking probability will be compared with the case when $k=1$.

Problem 2-5 points

1. (2.5 points) Which of the following two cases has a lower end-to-end delay:
(a) $\mathrm{A} \mathrm{M} / \mathrm{M} / 1$ queue where packets arrive at rate λ and depart at rate μ.
(b) Two concatenated $M / M / 1$ queues, where packets arrive at rate λ to the first queue. The two queues have a service rate equal to $\mu^{\prime}=2 \mu$. The propagation delay between the first and second queue is negligible.
2. (2.5 points) What is the value of μ^{\prime} that makes the end-to-end delay equal in the two cases. Explain the obtained result.

Solution

The Markov chain has 4 states: $\{0,1,2,3\}$, where all forward transitions are λ and backward transitions are respectively $\mu_{a}, 2 \mu_{b}, 2 \mu_{b}$. Then, the equilibrium distribution is (obtained from the balance equations):

$$
\begin{aligned}
\pi_{1} & =\frac{\lambda}{\mu_{a}} \pi_{0}=a \pi_{0} \\
\pi_{2} & =\frac{\lambda}{2 \mu_{b}} \pi_{1}=\frac{\lambda}{2 \mu_{b}} \frac{\lambda}{\mu_{a}} \pi_{0}=\frac{\lambda^{2}}{2 k \mu_{a}^{2}} \pi_{0}=\frac{a^{2}}{2 k} \pi_{0} \\
\pi_{3} & =\frac{\lambda}{2 \mu_{b}} \pi_{2}=\frac{\lambda}{2 \mu_{b}} \frac{\lambda}{2 \mu_{b}} \frac{\lambda}{\mu_{a}} \pi_{0}=\frac{\lambda^{3}}{4 k^{2} \mu_{a}^{3}} \pi_{0}=\frac{a^{3}}{4 k^{2}} \pi_{0} \\
\pi_{0} & =\frac{1}{1+a+\frac{a^{2}}{2 k}+\frac{a^{3}}{4 k^{2}}}
\end{aligned}
$$

If $\mu_{a}=\lambda$, and $\mu_{b}=k \mu_{a}$, we have that $a=1$.

$$
\pi_{0}=\frac{1}{1+a+\frac{a^{2}}{2 k}+\frac{a^{3}}{4 k^{2}}}=\frac{1}{1+1+\frac{1}{2 k}+\frac{1}{4 k^{2}}}
$$

For large values of k :

$$
\lim _{k \rightarrow \infty} \frac{1}{1+1+\frac{1}{2 k}+\frac{1}{4 k^{2}}}=\frac{1}{2}
$$

When $k=2$, the blocking probability will be:

$$
\pi_{b}=\frac{\frac{1}{4 k^{2}}}{1+1+\frac{1}{2 k}+\frac{1}{4 k^{2}}}=\frac{\frac{1}{16}}{1+1+\frac{1}{4}+\frac{1}{16}}=\frac{\frac{1}{16}}{\frac{37}{16}}=\frac{1}{37}
$$

Compared to the case when $k=1$, where we have:

$$
\pi_{b}=\frac{\frac{1}{4 k^{2}}}{1+1+\frac{1}{2 k}+\frac{1}{4 k^{2}}}=\frac{\frac{1}{4}}{1+1+\frac{1}{2}+\frac{1}{4}}=\frac{\frac{1}{4}}{\frac{11}{4}}=\frac{1}{11},
$$

we can observe that the reduction is bigger than a factor of 2 .

Solution Exercise 2

We know that the delay of an $\mathrm{M} / \mathrm{M} / 1$ queue is $E[D]_{1 q}=\frac{1}{\mu-\lambda}$. Therefore, the delay of two consecutive queues is $E[D]_{2 q}=\frac{2}{2 \mu-\lambda}$. Comparing both, assuming that $\lambda<\mu$, as otherwise the first case would not be stable, we observe that $\frac{1}{\mu-\lambda}>\frac{1}{\mu-\frac{\lambda}{2}}$, which tells us the second case is faster.

To compute the value of μ^{\prime} that makes both delays equal, we do:

$$
\begin{aligned}
\frac{1}{\mu-\lambda} & =\frac{2}{\mu^{\prime}-\lambda} \\
\mu^{\prime}-\lambda & =2(\mu-\lambda) \\
\mu^{\prime} & =2 \mu-2 \lambda+\lambda \\
\mu^{\prime} & =2 \mu-\lambda
\end{aligned}
$$

This is a very interesting result. For low λ values, we need μ^{\prime} values twice higher than μ. However, for λ values close to μ, we have that $\mu^{\prime} \approx \mu$, which is a non intuitive result at all. It can be justified because when λ tends to $\mu, E[D]_{1 q}$ behaves asymptotically, and any small variation in that range causes a large difference in delay (the response is not linear).

